1
|
Li X, Zhang Y, Shi L, Kawamura K, Kunwar B, Takami A, Arakaki T, Lai S. Aerosol Proteinaceous Matter in Coastal Okinawa, Japan: Influence of Long-Range Transport and Photochemical Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5256-5265. [PMID: 35358385 DOI: 10.1021/acs.est.1c08658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The characteristics, sources, and atmospheric oxidation processes of marine aerosol proteinaceous matter (APM), including total proteins and free amino acids (FAAs), were investigated using a set of 1 year total suspended particulate (TSP) samples collected in the coastal area of Okinawa Island in the western North Pacific rim. The concentrations of APM at this site (total proteins: 0.16 ± 0.10 μg m-3 and total FAAs: 9.7 ± 5.6 ng m-3, annual average) are comparable to those of marine APM. The major FAA species of APM are also similar to previously reported marine APM with glycine as the dominant species (31%). Based on the different seasonal trends and weak correlations of total proteins and FAAs, we found that they were contributed by different sources, especially with the influence of long-range transport from the Asian continent of northern China and Mongolia and the oceanic area of the Bohai Sea, Yellow Sea, and East China Sea. The photochemical oxidation processes of high-molecular-weight proteins releasing FAAs (especially glycine) were also considered as an important factor influencing the characteristics of APM at this site. In addition, we propose a degradation process based on the correlation with ozone and ultraviolet radiation, emphasizing their roles in the degradation of proteins. Our findings help to deepen the understanding of atmospheric photochemical reaction processes of organic aerosols.
Collapse
Affiliation(s)
- Xiaoying Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yingyi Zhang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Luhan Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Bhagawati Kunwar
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Akinori Takami
- Center for Regional Environmental Research, National Institute of Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Takemitsu Arakaki
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Senchao Lai
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Photo-oxidation of IgG1 and Model Peptides: Detection and Analysis of Triply Oxidized His and Trp Side Chain Cleavage Products. Pharm Res 2016; 34:229-242. [DOI: 10.1007/s11095-016-2058-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/24/2016] [Indexed: 12/15/2022]
|
3
|
Mozziconacci O, Schöneich C. Chemical degradation of proteins in the solid state with a focus on photochemical reactions. Adv Drug Deliv Rev 2015; 93:2-13. [PMID: 25481682 DOI: 10.1016/j.addr.2014.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 01/10/2023]
Abstract
Protein pharmaceuticals comprise an increasing fraction of marketed products but the limited solution stability of proteins requires considerable research effort to prepare stable formulations. An alternative is solid formulation, as proteins in the solid state are thermodynamically less susceptible to degradation. Nevertheless, within the time of storage a large panel of kinetically controlled degradation reactions can occur such as, e.g., hydrolysis reactions, the formation of diketopiperazine, condensation and aggregation reactions. These mechanisms of degradation in protein solids are relatively well covered by the literature. Considerably less is known about oxidative and photochemical reactions of solid proteins. This review will provide an overview over photolytic and non-photolytic degradation reactions, and specially emphasize mechanistic details on how solid structure may affect the interaction of protein solids with light.
Collapse
Affiliation(s)
- Olivier Mozziconacci
- Department of Pharmaceutical Chemistry, 2095 Constant Avenue, University of Kansas, Lawrence, KS 66047, USA
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, 2095 Constant Avenue, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
4
|
Mozziconacci O, Schöneich C. Sequence-specific formation of d-amino acids in a monoclonal antibody during light exposure. Mol Pharm 2014; 11:4291-7. [PMID: 25283332 DOI: 10.1021/mp500508w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The photoirradiation of a monoclonal antibody 1 (mAb1) at λ = 254 nm and λmax = 305 nm resulted in the sequence-specific generation of d-Val, d-Tyr, and potentially d-Ala and d-Arg, in the heavy chain sequence [95-101] YCARVVY. d-Amino acid formation is most likely the product of reversible intermediary carbon-centered radical formation at the (α)C-positions of the respective amino acids ((α)C(•) radicals) through the action of Cys thiyl radicals (CysS(•)). The latter can be generated photochemically either through direct homolysis of cystine or through photoinduced electron transfer from Trp and/or Tyr residues. The potential of mAb1 sequences to undergo epimerization was first evaluated through covalent H/D exchange during photoirradiation in D2O, and proteolytic peptides exhibiting deuterium incorporation were monitored by HPLC-MS/MS analysis. Subsequently, mAb1 was photoirradiated in H2O, and peptides, for which deuterium incorporation in D2O had been documented, were purified by HPLC and subjected to hydrolysis and amino acid analysis. Importantly, not all peptide sequences which incorporated deuterium during photoirradiation in D2O also exhibited photoinduced d-amino acid formation. For example, the heavy chain sequence [12-18] VQPGGSL showed significant deuterium incorporation during photoirradiation in D2O, but no photoinduced formation of d-amino acids was detected. Instead this sequence contained ca. 22% d-Val in both a photoirradiated and a control sample. This observation could indicate that d-Val may have been generated either during production and/or storage or during sample preparation. While sample preparation did not lead to the formation of d-Val or other d-amino acids in the control sample for the heavy chain sequence [95-101] YCARVVY, we may have to consider that during hydrolysis N-terminal residues (such as in VQPGGSL) may be more prone to epimerization. We conclude that the photoinduced, radical-dependent formation of d-amino acids requires not only the intermediary formation of a (α)C(•) radical but also sufficient flexibility of the protein domain to allow both pro-chiral faces of the (α)C(•) radical to accept a hydrogen atom.
Collapse
Affiliation(s)
- Olivier Mozziconacci
- Department of Pharmaceutical Chemistry, University of Kansas , 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | | |
Collapse
|
5
|
Mozziconacci O, Williams TD, Kerwin BA, Schöneich C. Reversible Intramolecular Hydrogen Transfer between Protein Cysteine Thiyl Radicals and αC−H Bonds in Insulin: Control of Selectivity by Secondary Structure. J Phys Chem B 2008; 112:15921-32. [DOI: 10.1021/jp8066519] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Olivier Mozziconacci
- Department of Pharmaceutical Chemistry, 2095 Constant Avenue, University of Kansas, Lawrence, Kansas 66047; Mass Spectrometry Laboratory, University of Kansas, Lawrence, Kansas 66045; and the Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119
| | - Todd D. Williams
- Department of Pharmaceutical Chemistry, 2095 Constant Avenue, University of Kansas, Lawrence, Kansas 66047; Mass Spectrometry Laboratory, University of Kansas, Lawrence, Kansas 66045; and the Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119
| | - Bruce A. Kerwin
- Department of Pharmaceutical Chemistry, 2095 Constant Avenue, University of Kansas, Lawrence, Kansas 66047; Mass Spectrometry Laboratory, University of Kansas, Lawrence, Kansas 66045; and the Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, 2095 Constant Avenue, University of Kansas, Lawrence, Kansas 66047; Mass Spectrometry Laboratory, University of Kansas, Lawrence, Kansas 66045; and the Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119
| |
Collapse
|
6
|
|
7
|
Creed D. THE PHOTOPHYSICS AND PHOTOCHEMISTRY OF THE NEAR-UV ABSORBING AMINO ACIDS-I. TRYPTOPHAN AND ITS SIMPLE DERIVATIVES. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1984.tb03890.x] [Citation(s) in RCA: 429] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Abstract
The exposure of proteins to light and the ensuing chemical and physical degradation has been studied extensively for many years. The residues in proteins that undergo primary photooxidation include tryptophan, tyrosine, phenylalanine, and cysteine/cystine. While photooxidation has been recognized as a major contributor to protein degradation, the effects of photoinduced damage have not been widely studied for biopharmaceuticals. This is particularly important since photodegradation can lead to changes in primary, secondary, and tertiary structures of protein and these changes, while not definitively established, could lead to differences in long-term stability, bioactivity, or immunogenicity. In this review we briefly describe the major pathways of photodegradation for proteins followed by a description of the limited data on photodegradation of biopharmaceuticals and methods that have been used to reduce or prevent damage. It is our intent to spur additional research in this area for increasing the safety and effectiveness of biopharmaceutical products.
Collapse
Affiliation(s)
- Bruce A Kerwin
- Department of Protein Pharmaceutics, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA.
| | | |
Collapse
|
9
|
Affiliation(s)
- F Knoll
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Germany
| | | | | |
Collapse
|
10
|
|
11
|
Giddings GG. The basis of color in muscle foods. CRC CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION 1977; 9:81-114. [PMID: 336284 DOI: 10.1080/10408397709527231] [Citation(s) in RCA: 82] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
|
13
|
|