1
|
Dias LM, de Keijzer MJ, Ernst D, Sharifi F, de Klerk DJ, Kleijn TG, Desclos E, Kochan JA, de Haan LR, Franchi LP, van Wijk AC, Scutigliani EM, Fens MH, Barendrecht AD, Cavaco JEB, Huang X, Xu Y, Pan W, den Broeder MJ, Bogerd J, Schulz RW, Castricum KC, Thijssen VL, Cheng S, Ding B, Krawczyk PM, Heger M. Metallated phthalocyanines and their hydrophilic derivatives for multi-targeted oncological photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112500. [PMID: 35816857 DOI: 10.1016/j.jphotobiol.2022.112500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/27/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIM A photosensitizer (PS) delivery and comprehensive tumor targeting platform was developed that is centered on the photosensitization of key pharmacological targets in solid tumors (cancer cells, tumor vascular endothelium, and cellular and non-cellular components of the tumor microenvironment) before photodynamic therapy (PDT). Interstitially targeted liposomes (ITLs) encapsulating zinc phthalocyanine (ZnPC) and aluminum phthalocyanine (AlPC) were formulated for passive targeting of the tumor microenvironment. In previous work it was established that the PEGylated ITLs were taken up by cultured cholangiocarcinoma cells. The aim of this study was to verify previous results in cancer cells and to determine whether the ITLs can also be used to photosensitize cells in the tumor microenvironment and vasculature. Following positive results, rudimentary in vitro and in vivo experiments were performed with ZnPC-ITLs and AlPC-ITLs as well as their water-soluble tetrasulfonated derivatives (ZnPCS4 and AlPCS4) to assemble a research dossier and bring this platform closer to clinical transition. METHODS Flow cytometry and confocal microscopy were employed to determine ITL uptake and PS distribution in cholangiocarcinoma (SK-ChA-1) cells, endothelial cells (HUVECs), fibroblasts (NIH-3T3), and macrophages (RAW 264.7). Uptake of ITLs by endothelial cells was verified under flow conditions in a flow chamber. Dark toxicity and PDT efficacy were determined by cell viability assays, while the mode of cell death and cell cycle arrest were assayed by flow cytometry. In vivo systemic toxicity was assessed in zebrafish and chicken embryos, whereas skin phototoxicity was determined in BALB/c nude mice. A PDT efficacy pilot was conducted in BALB/c nude mice bearing human triple-negative breast cancer (MDA-MB-231) xenografts. RESULTS The key findings were that (1) photodynamically active PSs (i.e., all except ZnPCS4) were able to effectively photosensitize cancer cells and non-cancerous cells; (2) following PDT, photodynamically active PSs were highly toxic-to-potent as per anti-cancer compound classification; (3) the photodynamically active PSs did not elicit notable systemic toxicity in zebrafish and chicken embryos; (4) ITL-delivered ZnPC and ZnPCS4 were associated with skin phototoxicity, while the aluminum-containing PSs did not exert detectable skin phototoxicity; and (5) ITL-delivered ZnPC and AlPC were equally effective in their tumor-killing capacity in human tumor breast cancer xenografts and superior to other non-phthalocyanine PSs when appraised on a per mole administered dose basis. CONCLUSIONS AlPC(S4) are the safest and most effective PSs to integrate into the comprehensive tumor targeting and PS delivery platform. Pending further in vivo validation, these third-generation PSs may be used for multi-compartmental tumor photosensitization.
Collapse
Affiliation(s)
- Lionel Mendes Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Daniël Ernst
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Farangis Sharifi
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Emilie Desclos
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Jakub A Kochan
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Leonardo P Franchi
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB 2), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Albert C van Wijk
- Department of Surgery, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Enzo M Scutigliani
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Marcel H Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - José E B Cavaco
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Xuan Huang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Ying Xu
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, PR China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, PR China
| | - Marjo J den Broeder
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, the Netherlands
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, the Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, the Netherlands
| | - Kitty C Castricum
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Victor L Thijssen
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, The Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, PR China
| | - Baoyue Ding
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| | - Przemek M Krawczyk
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Dias LM, Sharifi F, de Keijzer MJ, Mesquita B, Desclos E, Kochan JA, de Klerk DJ, Ernst D, de Haan LR, Franchi LP, van Wijk AC, Scutigliani EM, Cavaco JEB, Tedesco AC, Huang X, Pan W, Ding B, Krawczyk PM, Heger M. Attritional evaluation of lipophilic and hydrophilic metallated phthalocyanines for oncological photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112146. [PMID: 33601256 DOI: 10.1016/j.jphotobiol.2021.112146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Oncological photodynamic therapy (PDT) relies on photosensitizers (PSs) to photo-oxidatively destroy tumor cells. Currently approved PSs yield satisfactory results in superficial and easy-to-access tumors but are less suited for solid cancers in internal organs such as the biliary system and the pancreas. For these malignancies, second-generation PSs such as metallated phthalocyanines are more appropriate. Presently it is not known which of the commonly employed metallated phtahlocyanines, namely aluminum phthalocyanine (AlPC) and zinc phthalocyanine (ZnPC) as well as their tetrasulfonated derivatives AlPCS4 and ZnPCS4, is most cytotoxic to tumor cells. This study therefore employed an attritional approach to ascertain the best metallated phthalocyanine for oncological PDT in a head-to-head comparative analysis and standardized experimental design. METHODS ZnPC and AlPC were encapsulated in PEGylated liposomes. Analyses were performed in cultured A431 cells as a template for tumor cells with a dysfunctional P53 tumor suppressor gene and EGFR overexpression. First, dark toxicity was assessed as a function of PS concentration using the WST-1 and sulforhodamine B assay. Second, time-dependent uptake and intracellular distribution were determined by flow cytometry and confocal microscopy, respectively, using the intrinsic fluorescence of the PSs. Third, the LC50 values were established for each PS at 671 nm and a radiant exposure of 15 J/cm2 following 1-h PS exposure. Finally, the mode of cell death as a function of post-PDT time and cell cycle arrest at 24 h after PDT were analyzed. RESULTS In the absence of illumination, AlPC and ZnPC were not toxic to cells up to a 1.5-μM PS concentration and exposure for up to 72 h. Dark toxicity was noted for AlPCS4 at 5 μM and ZnPCS4 at 2.5 μM. Uptake of all PSs was observed as early as 1 min after PS addition to cells and increased in amplitude during a 2-h incubation period. After 60 min, the entire non-nuclear space of the cell was photosensitized, with PS accumulation in multiple subcellular structures, especially in case of AlPC and AlPCS4. PDT of cells photosensitized with ZnPC, AlPC, and AlPCS4 yielded LC50 values of 0.13 μM, 0.04 μM, and 0.81 μM, respectively, 24 h post-PDT (based on sulforhodamine B assay). ZnPCS4 did not induce notable phototoxicity, which was echoed in the mode of cell death and cell cycle arrest data. At 4 h post-PDT, the mode of cell death comprised mainly apoptosis for ZnPC and AlPC, the extent of which was gradually exacerbated in AlPC-photosensitized cells during 8 h. ZnPC-treated cells seemed to recover at 8 h post-PDT compared to 4 h post-PDT, which had been observed before in another cell line. AlPCS4 induced considerable necrosis in addition to apoptosis, whereby most of the cell death had already manifested at 2 h after PDT. During the course of 8 h, necrotic cell death transitioned into mainly late apoptotic cell death. Cell death signaling coincided with a reduction in cells in the G0/G1 phase (ZnPC, AlPC, AlPCS4) and cell cycle arrest in the S-phase (ZnPC, AlPC, AlPCS4) and G2 phase (ZnPC and AlPC). Cell cycle arrest was most profound in cells that had been photosensitized with AlPC and subjected to PDT. CONCLUSIONS Liposomal AlPC is the most potent PS for oncological PDT, whereas ZnPCS4 was photodynamically inert in A431 cells. AlPC did not induce dark toxicity at PS concentrations of up to 1.5 μM, i.e., > 37 times the LC50 value, which is favorable in terms of clinical phototoxicity issues. AlPC photosensitized multiple intracellular loci, which was associated with extensive, irreversible cell death signaling that is expected to benefit treatment efficacy and possibly immunological long-term tumor control, granted that sufficient AlPC will reach the tumor in vivo. Given the differential pharmacokinetics, intracellular distribution, and cell death dynamics, liposomal AlPC may be combined with AlPCS4 in a PS cocktail to further improve PDT efficacy.
Collapse
Affiliation(s)
- Lionel Mendes Dias
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Farangis Sharifi
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Mark J de Keijzer
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Barbara Mesquita
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Emilie Desclos
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Jakub A Kochan
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Daniel J de Klerk
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Daniël Ernst
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Lianne R de Haan
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Campus Samambaia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil; Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Albert C van Wijk
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Enzo M Scutigliani
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - José E B Cavaco
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Antonio C Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Xuan Huang
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, PR China
| | - Baoyue Ding
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Przemek M Krawczyk
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Michal Heger
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
3
|
Wang X, Zhao H, Chen Z, Luo F, Guo L, Qiu B, Lin Z, Wang J. A homogeneous photoelectrochemical hydrogen sulfide sensor based on the electronic transfer mediated by tetrasulfophthalocyanine. Analyst 2020; 145:3543-3548. [DOI: 10.1039/d0an00302f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A homogeneous photoelectrochemical sensor for H2S detection based on the electronic transfer mediated by [Fe(iii)PcS4]+was developed with an un-modified photoelectrode.
Collapse
Affiliation(s)
- Xinyang Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Huanan Zhao
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Zhonghui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Fang Luo
- College of Biological Science and Engineering
- Fuzhou University
- Fuzhou
- China
| | - Longhua Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| |
Collapse
|
4
|
Zinc(II) phthalocyanines as photosensitizers for antitumor photodynamic therapy. Int J Biochem Cell Biol 2019; 114:105575. [PMID: 31362060 DOI: 10.1016/j.biocel.2019.105575] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) is a highly specific and clinically approved method for cancer treatment in which a nontoxic drug known as photosensitizer (PS) is administered to a patient. After selective tumor irradiation, an almost complete eradication of the tumor can be reached as a consequence of reactive oxygen species (ROS) generation, which not only damage tumor cells, but also lead to tumor-associated vasculature occlusion and the induction of an immune response. Despite exhaustive investigation and encouraging results, zinc(II) phthalocyanines (ZnPcs) have not been approved as PSs for clinical use yet. This review presents an overview on the physicochemical properties of ZnPcs and biological results obtained both in vitro and in more complex models, such as 3D cell cultures, chicken chorioallantoic membranes and tumor-bearing mice. Cell death pathways induced after PDT treatment with ZnPcs are discussed in each case. Finally, combined therapeutic strategies including ZnPcs and the currently available clinical trials are mentioned.
Collapse
|
5
|
Moret F, Reddi E. Strategies for optimizing the delivery to tumors of macrocyclic photosensitizers used in photodynamic therapy (PDT). J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s1088424617300014] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review briefly summaries the principles and mechanisms of action of photodynamic therapy (PDT) as concerns its application in the oncological field, highlighting its drawbacks and some of the strategies that have been or are being explored to overcome them. The major aim is to increase the efficiency and selectivity of the photosensitizer (PS) uptake in the cancer cells for optimizing the PDT effects on tumors while sparing normal cells. Some attempts to achieve this are based on the conjugation of the PS to biomolecules (small ligands, peptides) functioning as carriers with the ability to efficiently penetrate cells and/or specifically recognize and bind proteins/receptors overexpressed on the surface of cancer cells. Alternatively, the PS can be entrapped in nanocarriers derived from various types of materials that can target the tumor by exploiting the enhanced permeability and retention (EPR) effects. The use of nanocarriers is particularly attractive because it allows the simultaneous delivery of more than one drug with the possibility of combining PDT with other therapeutic modalities.
Collapse
Affiliation(s)
- Francesca Moret
- Department of Biology, University of Padova, via U. Bassi 58/B 35121 Padova, Italy
| | - Elena Reddi
- Department of Biology, University of Padova, via U. Bassi 58/B 35121 Padova, Italy
| |
Collapse
|
6
|
Broekgaarden M, Weijer R, van Gulik TM, Hamblin MR, Heger M. Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev 2015; 34:643-90. [PMID: 26516076 PMCID: PMC4661210 DOI: 10.1007/s10555-015-9588-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photodynamic therapy (PDT) has emerged as a promising alternative to conventional cancer therapies such as surgery, chemotherapy, and radiotherapy. PDT comprises the administration of a photosensitizer, its accumulation in tumor tissue, and subsequent irradiation of the photosensitizer-loaded tumor, leading to the localized photoproduction of reactive oxygen species (ROS). The resulting oxidative damage ultimately culminates in tumor cell death, vascular shutdown, induction of an antitumor immune response, and the consequent destruction of the tumor. However, the ROS produced by PDT also triggers a stress response that, as part of a cell survival mechanism, helps cancer cells to cope with the PDT-induced oxidative stress and cell damage. These survival pathways are mediated by the transcription factors activator protein 1 (AP-1), nuclear factor E2-related factor 2 (NRF2), hypoxia-inducible factor 1 (HIF-1), nuclear factor κB (NF-κB), and those that mediate the proteotoxic stress response. The survival pathways are believed to render some types of cancer recalcitrant to PDT and alter the tumor microenvironment in favor of tumor survival. In this review, the molecular mechanisms are elucidated that occur post-PDT to mediate cancer cell survival, on the basis of which pharmacological interventions are proposed. Specifically, pharmaceutical inhibitors of the molecular regulators of each survival pathway are addressed. The ultimate aim is to facilitate the development of adjuvant intervention strategies to improve PDT efficacy in recalcitrant solid tumors.
Collapse
Affiliation(s)
- Mans Broekgaarden
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ruud Weijer
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Thomas M van Gulik
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Warram JM, de Boer E, Sorace AG, Chung TK, Kim H, Pleijhuis RG, van Dam GM, Rosenthal EL. Antibody-based imaging strategies for cancer. Cancer Metastasis Rev 2015; 33:809-22. [PMID: 24913898 DOI: 10.1007/s10555-014-9505-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although mainly developed for preclinical research and therapeutic use, antibodies have high antigen specificity, which can be used as a courier to selectively deliver a diagnostic probe or therapeutic agent to cancer. It is generally accepted that the optimal antigen for imaging will depend on both the expression in the tumor relative to normal tissue and the homogeneity of expression throughout the tumor mass and between patients. For the purpose of diagnostic imaging, novel antibodies can be developed to target antigens for disease detection, or current FDA-approved antibodies can be repurposed with the covalent addition of an imaging probe. Reuse of therapeutic antibodies for diagnostic purposes reduces translational costs since the safety profile of the antibody is well defined and the agent is already available under conditions suitable for human use. In this review, we will explore a wide range of antibodies and imaging modalities that are being translated to the clinic for cancer identification and surgical treatment.
Collapse
Affiliation(s)
- Jason M Warram
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Li XS, Ke MR, Huang W, Ye CH, Huang JD. A pH-responsive layered double hydroxide (LDH)-phthalocyanine nanohybrid for efficient photodynamic therapy. Chemistry 2015; 21:3310-7. [PMID: 25639348 DOI: 10.1002/chem.201404514] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Indexed: 11/10/2022]
Abstract
A pH-responsive nanohybrid (LDH-ZnPcPS4 ), in which a highly hydrophilic zinc(II) phthalocyanine tetra-α-substituted with 4-sulfonatophenoxy groups (ZnPcPS4 ) is incorporated with a cationic layered double hydroxide (LDH) based on electrostatic interaction, has been specially designed and prepared through a facile co-precipitation approach. ZnPcPS4 is an excellent singlet-oxygen generator with strong absorption at the near-infrared region (692 nm) in cellular culture media, whereas the photoactivities of ZnPcPS4 were remarkably inhibited after incorporation with the LDH. The nanohybrid is essentially stable in aqueous media at pH 7.4; nevertheless, in slightly acidic media of pH 6.5 or 5.0, ZnPcPS4 can be efficiently released from the LDH matrix, thus leading to restoration of the photoactivities. The nanohybrid shows a high photocytotoxicity against HepG2 cells as a result of much more efficient cellular uptake and preferential accumulation in lysosomes, whereby the acidic environment leads to the release of ZnPcPS4 . The IC50 value of LDH-ZnPcPS4 is as low as 0.053 μM, which is 24-fold lower than that of ZnPcPS4 . This work provides a facile approach for the fabrication of photosensitizers with high photocytotoxicity, potential tumor selectivity, and rapid clearance character.
Collapse
Affiliation(s)
- Xing-Shu Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108 (China)Fax: (+86) 591-22866227
| | | | | | | | | |
Collapse
|
9
|
Khoza P, Nyokong T. Photocatalytic behavior of phthalocyanine-silver nanoparticle conjugates supported on polystyrene fibers. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcata.2014.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther 2014; 1:279-93. [PMID: 25048432 DOI: 10.1016/s1572-1000(05)00007-4] [Citation(s) in RCA: 1357] [Impact Index Per Article: 135.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 01/11/2005] [Accepted: 01/27/2005] [Indexed: 10/25/2022]
Abstract
The use of non-toxic dyes or photosensitizers (PS) in combination with harmless visible light that is known as photodynamic therapy (PDT) has been known for over a hundred years, but is only now becoming widely used. Originally developed as a tumor therapy, some of its most successful applications are for non-malignant disease. In a series of three reviews we will discuss the mechanisms that operate in the field of PDT. Part one discusses the recent explosion in discovery and chemical synthesis of new PS. Some guidelines on how to choose an ideal PS for a particular application are presented. The photochemistry and photophysics of PS and the two pathways known as Type I (radicals and reactive oxygen species) and Type II (singlet oxygen) photochemical processes are discussed. To carry out PDT effectively in vivo, it is necessary to ensure sufficient light reaches all the diseased tissue. This involves understanding how light travels within various tissues and the relative effects of absorption and scattering. The fact that most of the PS are also fluorescent allows various optical imaging and monitoring strategies to be combined with PDT. The most important factor governing the outcome of PDT is how the PS interacts with cells in the target tissue or tumor, and the key aspect of this interaction is the subcellular localization of the PS. Examples of PS that localize in mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes are given. Finally the use of 5-aminolevulinic acid as a natural precursor of the heme biosynthetic pathway, stimulates accumulation of the PS protoporphyrin IX is described.
Collapse
Affiliation(s)
- Ana P Castano
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Bartlett 3, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, USA
| | - Tatiana N Demidova
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Bartlett 3, Boston, MA 02114, USA; Department of Cellular, Molecular and Developmental Biology, Tufts University, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Bartlett 3, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, USA
| |
Collapse
|
11
|
Allison RR, Moghissi K. Oncologic photodynamic therapy: clinical strategies that modulate mechanisms of action. Photodiagnosis Photodyn Ther 2013; 10:331-41. [PMID: 24284082 DOI: 10.1016/j.pdpdt.2013.03.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/17/2013] [Accepted: 03/28/2013] [Indexed: 01/08/2023]
Abstract
Photodynamic therapy (PDT) is an elegant minimally invasive oncologic therapy. The clinical simplicity of photosensitizer (PS) drug application followed by appropriate illumination of target leading to the oxygen dependent tumor ablative Photodynamic Reaction (PDR) has gained this treatment worldwide acceptance. Yet the true potential of clinical PDT has not yet been achieved. This paper will review current mechanisms of action and treatment paradigms with critical commentary on means to potentially improve outcome using readily available clinical tools.
Collapse
Affiliation(s)
- Ron R Allison
- Medical Director 21st Century Oncology, 801 WH Smith Boulevard, Greenville, NC 27834, USA.
| | | |
Collapse
|
12
|
Dixon DW, Gill AF, Sook BR. Characterization of sulfonated phthalocyanines by mass spectrometry and capillary electrophoresis. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424604000672] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report the characterization of sulfonated phthalocyanines using capillary electrophoresis and mass spectrometry. Derivatives investigated included the copper, cobalt, zinc and metal-free sulfonated phthalocyanines. In general, sulfonated phthalocyanines were found as aggregates in capillary electrophoresis separations, even at low concentration. Separations were much better at pH 9.0 than at pH 2.5. The addition of β-cyclodextrin did not alter the electropherograms significantly. The electropherograms of commercially available copper phthalocyanine-3,4',4″,4‴-tetrasulfonic acid and 4,4',4″,4‴-tetrasulfonic acid were very different, consistent with the latter compound having a structure that is not fully sulfonated. Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) were used to characterize the sulfonated phthalocyanines. In general, MALDI gave better results than ESI. Mass spectral evidence was obtained for a pentasulfonated species of both the metal-free phthalocyanine and zinc phthalocyanine when these species were made by sulfonation of the metal-free phthalocyanine (followed by zinc insertion in the latter case). Sulfonated tetraphenylporphyrin derivatives were used as standards for mass spectrometry and to estimate the effect of net charge on the capillary electrophoresis migration time for sulfonated tetrapyrroles. Clean separation of the sulfonated tetraphenylporphyrin derivatives [5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS4), 5,10,15-tris(4-sulfonatophenyl)-20-phenylporphyrin (TPPS3) and 5,10-bis(4-sulfonatophenyl)-15,20-diphenylporphyrin (TPPS2a)] was observed by capillary electrophoresis.
Collapse
Affiliation(s)
- Dabney W. Dixon
- Department of Chemistry, Box 4098, Georgia State University, Atlanta, GA 30303-4098, USA
| | - Anila F. Gill
- Department of Chemistry, Box 4098, Georgia State University, Atlanta, GA 30303-4098, USA
| | - Brian R. Sook
- Department of Chemistry, Box 4098, Georgia State University, Atlanta, GA 30303-4098, USA
| |
Collapse
|
13
|
Cauchon N, Turcotte E, Lecomte R, Hasséssian HM, Lier JEV. Predicting efficacy of photodynamic therapy by real-time FDG-PET in a mouse tumour model. Photochem Photobiol Sci 2012; 11:364-70. [PMID: 22234417 DOI: 10.1039/c1pp05294b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dynamic positron emission tomography (PET) combined with the constant infusion of 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) as a tracer permits real-time monitoring of systemic transient metabolic changes resulting from photodynamic therapy (PDT) in tumour bearing animals. The effect of PDT on tumour FDG uptake rates was evaluated using four different sulfonated phthalocyanine analogs as photosensitizers (PS) in combination with either continuous or fractionated illumination protocols. Mice bearing two EMT-6 tumours were infused with FDG to start PDT 30 min later. Dynamic images were acquired to produce FDG uptake over time for the treated and reference tumours. Practically all PDT protocols induced a reduction in the FDG uptake rates in the treated tumour during PDT, except for the zinc tetrasulfophthalocyanine, when using fractionated light, reflecting the low photodynamic efficacy of this PS. In general, the response to PDT was characterized by a rebound in the FDG uptake rate after illumination. A strong drop in FDG tumour uptake rates during PDT, followed by a strong rebound, together with short delay-to-response times, corresponded to optimal long-term tumour response outcomes. This dynamic FDG-PET protocol provides real-time observations to predict long-term PDT efficacy, while using fewer animals than conventional methods, thus making possible the rapid optimization of treatment parameters.
Collapse
Affiliation(s)
- Nicole Cauchon
- Sherbrooke Molecular Imaging Centre, CHUS, and Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
14
|
Ray A, Santhosh K, Bhattacharya S. New Photophysical Insights in Noncovalent Interaction between Fulleropyrrolidine and a Series of Zincphthalocyanines. J Phys Chem A 2011; 115:9929-40. [DOI: 10.1021/jp204924z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Anamika Ray
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan - 713 104, India
| | - Kotni Santhosh
- School of Chemistry, University of Hyderabad, Hyderabad, AP - 500 046, India
| | - Sumanta Bhattacharya
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan - 713 104, India
| |
Collapse
|
15
|
Subcellular co-localization of aluminum (III) phthalocyanine chloride tetrasulphonate with fluorescent markers in the human melanoma cell-line HT-144. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.mla.2011.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Chan BP. Biomedical Applications of Photochemistry. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:509-22. [DOI: 10.1089/ten.teb.2009.0797] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Barbara Pui Chan
- Medical Engineering Program, Department of Mechanical Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
17
|
Olivo M, Bhuvaneswari R, Lucky SS, Dendukuri N, Soo-Ping Thong P. Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-faceted Anti-Tumor Modalities. Pharmaceuticals (Basel) 2010; 3:1507-1529. [PMID: 27713315 PMCID: PMC4033994 DOI: 10.3390/ph3051507] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/28/2010] [Accepted: 05/11/2010] [Indexed: 01/23/2023] Open
Abstract
Photodynamic therapy (PDT) has emerged as one of the important therapeutic options in the management of cancer and other diseases. PDT involves a tumor-localized photosensitizer (PS), which when appropriately illuminated by visible light converts oxygen into cytotoxic reactive oxygen species (ROS), that attack key structural entities within the targeted cells, ultimately resulting in necrosis or apoptosis. Though PDT is a selective modality, it can be further enhanced by combining other targeted therapeutic strategies that include the use of synthetic peptides and nanoparticles for selective delivery of photosensitizers. Another potentially promising strategy is the application of targeted therapeutics that exploit a myriad of critical pathways involved in tumorigenesis and metastasis. Vascular disrupting agents that eradicate tumor vasculature during PDT and anti-angiogenic agents that targets specific molecular pathways and prevent the formation of new blood vessels are novel therapeutic approaches that have been shown to improve treatment outcome. In addition to the well-documented mechanisms of direct cell killing and damage to the tumor vasculature, PDT can also activate the body's immune response against tumors. Numerous pre-clinical studies and clinical observations have demonstrated the immuno-stimulatory capability of PDT. Herein, we aim to integrate the most important findings with regard to the combination of PDT and other novel targeted therapy approaches, detailing its potential in cancer photomedicine.
Collapse
Affiliation(s)
- Malini Olivo
- National Cancer Centre Singapore, 11 Hospital Drive, 169610, Singapore.
- Singapore Bioimaging Consortium, Biomedical Sciences Institutes, 11 Biopolis Way, #02-02 Helios, 138667, Singapore.
- School of Physics, National University of Ireland, Galway, Ireland.
- Department of Pharmacy, National University of Singapore, No. 18 Science Drive 4, Block S4, 117543, Singapore.
| | | | | | | | | |
Collapse
|
18
|
Cauchon N, Ali H, Hasséssian HM, van Lier JE. Structure–activity relationships of mono-substituted trisulfonated porphyrazines for the photodynamic therapy (PDT) of cancer. Photochem Photobiol Sci 2010; 9:331-41. [DOI: 10.1039/b9pp00109c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Abstract
Multiple, complementary techniques for tumor detection, including magnetic resonance, nuclear and optical imaging, are under active development; each approach has particular strengths and advantages. Efforts are also currently underway to develop bifunctional agents, so that a single molecule can be used for imaging, therapy, and monitoring the long-term tumor response. This chapter is mainly focused on illustrating the utility of certain tumor-avid photosensitizers in developing agents for tumor imaging [fluorescence, magnetic resonance imaging (MRI), positron emission tomography (PET)] and photodynamic therapy. Recent approaches for developing target-specific agents for photodynamic therapy (PDT) and in vivo tumor imaging are also briefly discussed.
Collapse
Affiliation(s)
- Ravindra K Pandey
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | |
Collapse
|
20
|
Bhuvaneswari R, Gan YY, Soo KC, Olivo M. The effect of photodynamic therapy on tumor angiogenesis. Cell Mol Life Sci 2009; 66:2275-83. [PMID: 19333552 PMCID: PMC11115708 DOI: 10.1007/s00018-009-0016-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/01/2009] [Accepted: 03/09/2009] [Indexed: 01/17/2023]
Abstract
Photodynamic therapy (PDT), the activation of a photosensitive drug in tumor tissue with light of specific wavelength, has been used effectively to treat certain solid tumors. Though therapeutic responses are encouraging, PDT-mediated oxidative stress can act as an angiogenic switch that ultimately leads to neovascularization and tumor recurrence. This article explores the effect of PDT on angiogenesis in different tumor models. Overexpression of proangiogenic vascular endothelial growth factor, cyclooxygenase-2 and matrix metalloproteases has often been reported post-illumination. Recent clinical studies have demonstrated that inhibiting angiogenesis after chemotherapy and radiotherapy is an attractive and valuable approach to cancer treatment. In this review, we report the effective therapeutic strategy of combining angiogenesis inhibitors with PDT to control and treat tumors.
Collapse
Affiliation(s)
| | - Yik Yuen Gan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616 Singapore
| | - Khee Chee Soo
- National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| | - Malini Olivo
- National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
- Singapore Bioimaging Consortium, Biomedical Sciences Institutes, 11 Biopolis Way, #02-02 Helios, Singapore, 138667 Singapore
- Department of Pharmacy, National University of Singapore, No. 18 Science Drive 4, Block S4, Singapore, 117543 Singapore
| |
Collapse
|
21
|
Ali H, Cauchon N, van Lier JE. Pd-catalyzed Heck reaction for the synthesis of isomeric metallo tetravinylsulfo phthalocyanines and their photosensitizing properties. Photochem Photobiol Sci 2009; 8:868-74. [DOI: 10.1039/b902530h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Farrell TJ, Wilson BC, Patterson MS, Olivo MC. Comparison of the In Vivo Photodynamic Threshold Dose for Photofrin, Mono- and Tetrasulfonated Aluminum Phthalocyanine Using a Rat Liver Model. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1998.tb09698.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Borgatti-Jeffreys A, Hooser SB, Miller MA, Lucroy MD. Phase I clinical trial of the use of zinc phthalocyanine tetrasulfonate as a photosensitizer for photodynamic therapy in dogs. Am J Vet Res 2007; 68:399-404. [PMID: 17397295 DOI: 10.2460/ajvr.68.4.399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the threshold for acute toxicosis of parenterally administered zinc phthalocyanine tetrasulfonate (ZnPcS(4)), a candidate second-generation photosensitizer, in mice and evaluate the compound's safety in a phase I clinical trial of ZnPcS(4)-based photodynamic therapy (PDT) in pet dogs with naturally occurring tumors. ANIMALS Male Swiss-Webster mice and client-owned dogs with naturally occurring neoplasms. PROCEDURES For the study of acute toxicosis, mice were given graded doses of ZnPcS(4). To determine safety, a rapid-titration phase I clinical trial of ZnPcS(4)-based PDT in tumor-bearing dogs was conducted. RESULTS In mice, administration of >or= 100 mg of ZnPcS(4)/kg resulted in renal tubular necrosis 24 hours after IP injection. In tumor-bearing dogs, ZnPcS(4) doses <or= 4 mg/kg induced no signs of toxicosis and resulted in partial to complete tumor responses in 10 of 12 dogs 4 weeks after PDT. Tumor remission was observed with ZnPcS(4) doses as low as 0.25 mg/kg. CONCLUSIONS AND CLINICAL RELEVANCE A conservative starting dose of ZnPcS(4) was arrived at on the basis of mouse toxicosis findings. Zinc phthalocyanine tetrasulfonate-based PDT was tolerated well by all dogs and warrants further study. The identification of the maximum tolerated dose through traditional phase I clinical trials may be unnecessary for evaluating novel PDT protocols.
Collapse
Affiliation(s)
- Antonella Borgatti-Jeffreys
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
24
|
Beeby A, FitzGerald S, Stanley CF. Protonation of Tetrasulfonated Zinc Phthalocyanine in Aqueous Acetonitrile Solution¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740566potzpi2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Cauchon N, Langlois R, Rousseau JA, Tessier G, Cadorette J, Lecomte R, Hunting DJ, Pavan RA, Zeisler SK, van Lier JE. PET imaging of apoptosis with 64Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V. Eur J Nucl Med Mol Imaging 2006; 34:247-58. [PMID: 17021816 DOI: 10.1007/s00259-006-0199-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 06/09/2006] [Indexed: 01/17/2023]
Abstract
PURPOSE In vivo detection of apoptosis is a diagnostic tool with potential clinical applications in cardiology and oncology. Radiolabeled annexin-V (anxV) is an ideal probe for in vivo apoptosis detection owing to its strong affinity for phosphatidylserine (PS), the molecular flag on the surface of apoptotic cells. Most clinical studies performed to visualize apoptosis have used (99m)Tc-anxV; however, its poor distribution profile often compromises image quality. In this study, tumor apoptosis after therapy was visualized by positron emission tomography (PET) using (64)Cu-labeled streptavidin (SAv), following pre-targeting of apoptotic cells with biotinylated anxV. METHODS Apoptosis was induced in tumor-bearing mice by photodynamic therapy (PDT) using phthalocyanine dyes as photosensitizers, and red light. After PDT, mice were injected i.v. with biotinylated anxV, followed 2 h later by an avidin chase, and after another 2 h with (64)Cu-DOTA-biotin-SAv. PET images were subsequently recorded up to 13 h after PDT. RESULTS PET images delineated apoptosis in treated tumors as early as 30 min after (64)Cu-DOTA-biotin-SAv administration, with tumor-to-background ratios reaching a maximum at 3 h post-injection, i.e., 7 h post-PDT. Omitting the administration of biotinylated anxV or the avidin chase failed to provide a clear PET image, confirming that all three steps are essential for adequate visualization of apoptosis. Furthermore, differences in action mechanisms between photosensitizers that target tumor cells directly or via initial vascular stasis were clearly recognized through differences in tracer uptake patterns detecting early or delayed apoptosis. CONCLUSION This study demonstrates the efficacy of a three-step (64)Cu pretargeting procedure for PET imaging of apoptosis. Our data also confirm the usefulness of small animal PET to evaluate cancer treatment protocols.
Collapse
Affiliation(s)
- Nicole Cauchon
- Sherbrooke Molecular Imaging Centre and Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gilaberte Y, Serra-Guillén C, de las Heras ME, Ruiz-Rodríguez R, Fernández-Lorente M, Benvenuto-Andrade C, González-Rodríguez S, Guillén-Barona C. Terapia fotodinámica en dermatología. ACTAS DERMO-SIFILIOGRAFICAS 2006; 97:83-102. [PMID: 16595110 DOI: 10.1016/s0001-7310(06)73359-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photodynamic therapy (PDT) is a therapeutic modality based on the photooxidation of biological materials induced by a photosensitizer, which selectively locates itself in certain tumorous cells or tissues, so that when illuminated by a light of the right length and at a sufficient dose, these cells are destroyed. In dermatology, PDT with topical 5-aminolevulinic acid or 5-methyl aminolevulinate is very effective in the treatment of actinic keratoses, basal cell carcinomas and Bowen's disease. In addition, very promising results have been obtained in inflammatory pathologies like morphea or sarcoidosis, infections like warts, and cosmetic processes such as photoaging, among others. This article reviews the most significant aspects of PDT in dermatology. First of all, we will review the basic fundamentals of photodynamic treatment. Next, we will outline its clinical applications in dermatology, both in oncological applications and all those dermatological processes in which PDT may play a role in their management. We will also discuss its promising cosmetic application in the treatment of photoaging. We will complete the review with photodiagnosis and the different non-invasive ways to monitor the effectiveness of PDT.
Collapse
|
27
|
Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: Part three-Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis Photodyn Ther 2005; 2:91-106. [PMID: 25048669 DOI: 10.1016/s1572-1000(05)00060-8] [Citation(s) in RCA: 349] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 06/02/2005] [Accepted: 06/05/2005] [Indexed: 01/30/2023]
Abstract
Photodynamic therapy (PDT) has been known for over a hundred years, but is only now becoming widely used. Originally developed as cancer therapy, some of its most successful applications are for non-malignant disease. The majority of mechanistic research into PDT, however, is still directed towards anti-cancer applications. In the final part of series of three reviews, we will cover the possible reasons for the well-known tumor localizing properties of photosensitizers (PS). When PS are injected into the bloodstream they bind to various serum proteins and this can affect their phamacokinetics and biodistribution. Different PS can have very different pharmacokinetics and this can directly affect the illumination parameters. Intravenously injected PS undergo a transition from being bound to serum proteins, then bound to endothelial cells, then bound to the adventitia of the vessels, then bound either to the extracellular matrix or to the cells within the tumor, and finally to being cleared from the tumor by lymphatics or blood vessels, and excreted either by the kidneys or the liver. The effect of PDT on the tumor largely depends at which stage of this continuous process light is delivered. The anti-tumor effects of PDT are divided into three main mechanisms. Powerful anti-vascular effects can lead to thrombosis and hemorrhage in tumor blood vessels that subsequently lead to tumor death via deprivation of oxygen and nutrients. Direct tumor cell death by apoptosis or necrosis can occur if the PS has been allowed to be taken up by tumor cells. Finally the acute inflammation and release of cytokines and stress response proteins induced in the tumor by PDT can lead to an influx of leukocytes that can both contribute to tumor destruction as well as to stimulate the immune system to recognize and destroy tumor cells even at distant locations.
Collapse
Affiliation(s)
- Ana P Castano
- BAR414, Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, USA
| | - Tatiana N Demidova
- BAR414, Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA; Cell, Molecular and Developmental Biology Program, Tufts University, USA
| | - Michael R Hamblin
- BAR414, Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, USA; Harvard-MIT Division of Health Sciences and Technology, USA
| |
Collapse
|
28
|
Yu G, Durduran T, Zhou C, Wang HW, Putt ME, Saunders HM, Sehgal CM, Glatstein E, Yodh AG, Busch TM. Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy. Clin Cancer Res 2005; 11:3543-52. [PMID: 15867258 DOI: 10.1158/1078-0432.ccr-04-2582] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To monitor tumor blood flow noninvasively during photodynamic therapy (PDT) and to correlate flow responses with therapeutic efficacy. EXPERIMENTAL DESIGN Diffuse correlation spectroscopy (DCS) was used to measure blood flow continuously in radiation-induced fibrosarcoma murine tumors during Photofrin (5 mg/kg)/PDT (75 mW/cm2, 135 J/cm2). Relative blood flow (rBF; i.e., normalized to preillumination values) was compared with tumor perfusion as determined by power Doppler ultrasound and was correlated with treatment durability, defined as the time of tumor growth to a volume of 400 mm3. Broadband diffuse reflectance spectroscopy concurrently quantified tumor hemoglobin oxygen saturation (SO2). RESULTS DCS and power Doppler ultrasound measured similar flow decreases in animals treated with identical protocols. DCS measurement of rBF during PDT revealed a series of PDT-induced peaks and declines dominated by an initial steep increase (average +/- SE: 168.1 +/- 39.5%) and subsequent decrease (59.2 +/- 29.1%). The duration (interval time; range, 2.2-15.6 minutes) and slope (flow reduction rate; range, 4.4 -45.8% minute(-1)) of the decrease correlated significantly (P = 0.0001 and 0.0002, r2= 0.79 and 0.67, respectively) with treatment durability. A positive, significant (P = 0.016, r2= 0.50) association between interval time and time-to-400 mm3 was also detected in animals with depressed pre-PDT blood flow due to hydralazine administration. At 3 hours after PDT, rBF and SO2 were predictive (P < or = 0.015) of treatment durability. CONCLUSION These data suggest a role for DCS in real-time monitoring of PDT vascular response as an indicator of treatment efficacy.
Collapse
Affiliation(s)
- Guoqiang Yu
- Department of Physics and Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Almeida RD, Manadas BJ, Carvalho AP, Duarte CB. Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta Rev Cancer 2004; 1704:59-86. [PMID: 15363861 DOI: 10.1016/j.bbcan.2004.05.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 05/26/2004] [Accepted: 05/28/2004] [Indexed: 12/28/2022]
Abstract
In photodynamic therapy (PDT) a sensitizer, light and oxygen are used to induce death of tumor cells and in the treatment of certain noncancerous conditions. Cell death in PDT may occur by apoptosis or by necrosis, depending on the sensitizer, on the PDT dose and on the cell genotype. Some sensitizers that have been used in PDT are accumulated in the mitochondria, and this may explain their efficiency in inducing apoptotic cell death, both in vitro and in vivo. In this review we will focus on the events that characterize apoptotic death in PDT and on the intracellular signaling events that are set in motion in photosensitized cells. Activation of phospholipases, changes in ceramide metabolism, a rise in the cytosolic free Ca2+ concentration, stimulation of nitric oxide synthase (NOS), changes in protein phosphorylation and alterations in the activity of transcription factors and on gene expression have all been observed in PDT-treated cells. Although many of these metabolic reactions contribute to the demise process, some of them may antagonize cell death. Understanding the signaling mechanisms in PDT may provide means to modulate the PDT effects at the molecular level and potentiate its antitumor effectiveness.
Collapse
Affiliation(s)
- Ramiro D Almeida
- Center for Neuroscience and Cell Biology, Department of Zoology, University of Coimbra, Coimbra, 3004-517 Portugal
| | | | | | | |
Collapse
|
30
|
Beeby A, FitzGerald S, Stanley CF. Protonation of tetrasulfonated zinc phthalocyanine in aqueous acetonitrile solution. Photochem Photobiol 2001; 74:566-9. [PMID: 11683036 DOI: 10.1562/0031-8655(2001)074<0566:potzpi>2.0.co;2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The phenomenon of protonation of phthalocyanines (Pc) and its effect upon their photophysical properties has seen considerable neglect in the literature. The work reported here clearly shows that tetrasulfonated zinc Pc, a known photodynamic therapy (PDT) agent, is strongly susceptible to protonation at the azomethine bridges. Absorption and fluorescence spectra demonstrate the absolute dependence of the redshifted peak on the pH of the solution. The fluorescence spectra and lifetimes of the protonated Pc are reported, and the potential application of this phenomenon to the development of a PDT agent with increased selectivity is discussed.
Collapse
Affiliation(s)
- A Beeby
- Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, UK.
| | | | | |
Collapse
|
31
|
Bremner JC, Wood SR, Bradley JK, Griffiths J, Adams GE, Brown SB. 31P magnetic resonance spectroscopy as a predictor of efficacy in photodynamic therapy using differently charged zinc phthalocyanines. Br J Cancer 1999; 81:616-21. [PMID: 10574246 PMCID: PMC2362881 DOI: 10.1038/sj.bjc.6690738] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Photodynamic therapy (PDT) is a developing approach to the treatment of solid tumours which requires the combined action of light and a photosensitizing drug in the presence of adequate levels of molecular oxygen. We have developed a novel series of photosensitizers based on zinc phthalocyanine which are water-soluble and contain neutral (TDEPC), positive (PPC) and negative (TCPC) side-chains. The PDT effects of these sensitizers have been studied in a mouse model bearing the RIF-1 murine fibrosarcoma line studying tumour regrowth delay, phosphate metabolism by magnetic resonance spectroscopy (MRS) and blood flow, using D2O uptake and MRS. The two main aims of the study were to determine if MRS measurements made at the time of PDT treatment could potentially be predictive of ultimate PDT efficacy and to assess the effects of sensitizer charge on PDT in this model. It was clearly demonstrated that there is a relationship between MRS measurements during and immediately following PDT and the ultimate effect on the tumour. For all three drugs, tumour regrowth delay was greater with a 1-h time interval between drug and light administration than with a 24-h interval. In both cases, the order of tumour regrowth delay was PPC > TDEPC = TCPC (though the data at 24 h were not statistically significant). Correspondingly, there were greater effects on phosphate metabolism (measured at the time of PDT or soon after) for the 1-h than for the 24-h time interval. Again effects were greatest with the cationic PPC, with the sequence being PPC > TDEPC > TCPC. A parallel sequence was observed for the blood flow effects, demonstrating that reduction in blood flow is an important factor in PDT with these sensitizers.
Collapse
|
32
|
Korbelik M, Cecic I. Enhancement of tumour response to photodynamic therapy by adjuvant mycobacterium cell-wall treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1998; 44:151-8. [PMID: 9757597 DOI: 10.1016/s1011-1344(98)00138-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mycobacterium cell-wall extract (MCWE) is a potent non-specific immunostimulant that elicits a local inflammatory response associated with antitumour activity. Tumour-localized administration of MCWE has been examined as an adjuvant to photodynamic therapy (PDT) mediated by the photosensitizers Photofrin, benzoporphyrin derivative monoacid (BPD), metatetrahydroxyphenylchlorin (mTHPC), or zinc (II)-phthalocyanine (ZnPc). A single MCWE treatment, given immediately after light treatment of murine EMT6 tumours, potentiates the curative effect of PDT. A similar enhancement of tumour response to Photofrin-based PDT is obtained with the live Bacillus Calmette-Guérin (BCG) vaccine. Despite differences in the kinetics/intensity of damage induction to tumour microvasculature and other characteristics underlying the mechanism of antitumour activity of Photofrin, BPD, mTHPC and ZnPc, there appear to be no marked differences in the therapeutic benefit of adjuvant MCWE therapy combined with the PDT mediated by these various photosensitizers. This may be related to the fact that MCWE elicits a wide range of immunomodulatory effects that could amplify and sustain the inflammatory/immune responses triggered by PDT. The enhancement of inflammatory effector cell activity is indicated by the increased infiltration of neutrophils and other myeloid cells at the expense of malignant cells found in the MCWE plus mTHPC-based PDT treatment group compared to the PDT-only group.
Collapse
Affiliation(s)
- M Korbelik
- Cancer Imaging Department, British Columbia Cancer Agency, Vancouver, Canada.
| | | |
Collapse
|
33
|
Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. J Natl Cancer Inst 1998; 90:889-905. [PMID: 9637138 PMCID: PMC4592754 DOI: 10.1093/jnci/90.12.889] [Citation(s) in RCA: 3722] [Impact Index Per Article: 143.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Photodynamic therapy involves administration of a tumor-localizing photosensitizing agent, which may require metabolic synthesis (i.e., a prodrug), followed by activation of the agent by light of a specific wavelength. This therapy results in a sequence of photochemical and photobiologic processes that cause irreversible photodamage to tumor tissues. Results from preclinical and clinical studies conducted worldwide over a 25-year period have established photodynamic therapy as a useful treatment approach for some cancers. Since 1993, regulatory approval for photodynamic therapy involving use of a partially purified, commercially available hematoporphyrin derivative compound (Photofrin) in patients with early and advanced stage cancer of the lung, digestive tract, and genitourinary tract has been obtained in Canada, The Netherlands, France, Germany, Japan, and the United States. We have attempted to conduct and present a comprehensive review of this rapidly expanding field. Mechanisms of subcellular and tumor localization of photosensitizing agents, as well as of molecular, cellular, and tumor responses associated with photodynamic therapy, are discussed. Technical issues regarding light dosimetry are also considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qian Peng
- Correspondence to: Qian Peng, Ph.D., Department of Biophysics, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.
| |
Collapse
|
34
|
Abstract
The subcellular, cellular and tissue/tumour interactions with non-toxic photosensitizing chemicals plus non-thermal visible light (photodynamic therapy (PDT) are reviewed. The extent to which endothelium/vasculature is the primary target is discussed, and the biochemical opportunities for manipulating outcome highlighted. The nature of tumour destruction by PDT lends itself to imaging outcome by MRI and PET.
Collapse
Affiliation(s)
- J V Moore
- Laser Oncology Programme, Paterson Institute for Cancer Research, Christie Hospital (NHS) Trust, Manchester, UK
| | | | | |
Collapse
|
35
|
Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1997; 39:1-18. [PMID: 9210318 DOI: 10.1016/s1011-1344(96)07428-3] [Citation(s) in RCA: 707] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Photodynamic therapy (PDT) is an innovative and attractive modality for the treatment of small and superficial tumours. PDT, as a multimodality treatment procedure, requires both a selective photosensitizer and a powerful light source which matches the absorption spectrum of the photosensitizer. Quadra Logic's Photofrin, a purified haematoporphyrin derivative, is so far the only sensitizer approved for phase III and IV clinical trials. The major drawbacks of this product are the lack of chemical homogeneity and stability, skin phototoxicity, unfavourable physicochemical properties and low selectivity with regard to uptake and retention by tumour vs. normal cells. Second-generation photosensitizers, including the phthalocyanines, show an increased photodynamic efficiency in the treatment of animal tumours and reduced phototoxic side effects. At the time of writing of this article, there were more than half a dozen new sensitizers in or about to start clinical trials. Most available data suggest a common mechanism of action. Following excitation of photosensitizers to long-lived excited singlet and/ or triplet states, the tumour is destroyed either by reactive singlet oxygen species (type II mechanism) and/or radical products (type I mechanism) generated in an energy transfer reaction. The major biological targets of the radicals produced and of singlet oxygen are well known today. Nucleic acids, enzymes and cellular membranes are rapidly attacked and cause the release of a wide variety of pathophysiologically highly reactive products, such as prostaglandins, thromboxanes and leukotrienes. Activation of the complement system and infiltration of immunologically active blood cells into the tumorous region enhance the damaging effect of these aggressive intermediates and ultimately initiate tumour necrosis. The purpose of this review article is to summarize the up-to-date knowledge on the mechanisms responsible for the induction of tumour necrotic reactions.
Collapse
Affiliation(s)
- M Ochsner
- Ciba-Geigy Ltd., Physics Department, Basle, Switzerland
| |
Collapse
|
36
|
Fingar VH. Vascular effects of photodynamic therapy. JOURNAL OF CLINICAL LASER MEDICINE & SURGERY 1996; 14:323-8. [PMID: 9612199 DOI: 10.1089/clm.1996.14.323] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vascular damage and blood flow stasis are consequences of photodynamic therapy (PDT) of solid tumors using many photosensitizers. Microvascular stasis and resulting hypoxia are effective means to produce cytotoxicity and tumor regression. The observation of blood flow stasis after photodynamic therapy results from a combination of damage to sensitive sites within the microvasculature and the resulting physiological responses to this damage. A generalized hypothesis for the mechanisms leading to vessel stasis begins with perturbation and damage to endothelial cells during light treatment of photosensitized tissues. Endothelial cell damage leads to the establishment of thrombogenic sites within the vessel lumen and this initiates a physiological cascade of responses including platelet aggregation, the release of vasoactive molecules, leukocyte adhesion, increases in vascular permeability, and vessel constriction. These effects from damage combine to produce blood flow stasis.
Collapse
Affiliation(s)
- V H Fingar
- Department of Surgery, James Graham Brown Cancer Center, University of Louisville, Kentucky 40292, USA
| |
Collapse
|
37
|
Peng Q, Moan J, Nesland JM. Correlation of subcellular and intratumoral photosensitizer localization with ultrastructural features after photodynamic therapy. Ultrastruct Pathol 1996; 20:109-129. [PMID: 8882357 DOI: 10.3109/01913129609016306] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Photodynamic therapy (PDT) of cancer typically involves systemic administration of tumor-localizing photosensitizers followed 48-72 h later by exposure to light of appropriate wavelengths. Knowledge about the distribution of photosensitizers in tissues is still fragmentary. In particular, little is known as to the detailed localization patterns of photosensitizers in neoplastic and normal tissues as well as the relationship between such patterns and the actual targets for the photosensitizing effect. This review focuses on ultrastructural features seen in treated cells and tumors. An attempt is made to correlate these findings with the subcellular/intratumoral localization pattern of the photosensitizers in tumor cell lines in vitro and in tumor models in vivo. Several subcellular sites are main targets of PDT with different sulfonated aluminum phthalocyanines (AIPcSn) in the human tumor cell line LOX. Nuclei are not among the primary targets. Overall, the ultrastructural changes correlate well with the data about the subcellular localization patterns for each analogue of AIPcSn in the same cell line. Similar findings are also obtained for the family of sulfonated mesotetraphenylporphines (TPPSn) in the NHIK 3025 cell line. The mechanisms involved in the killing of tumors by PDT seem to be a complex interplay between direct and indirect (via vascular damage) effects on neoplastic cells according to the intratumoral localization pattern of the applied dye. Several factors can affect the localization pattern of a drug, such as its chemical character, the mode of drug delivery, the time interval between drug administration and light exposure, and tumor type. Furthermore, whether local immune reactions (such as macrophages) and apoptosis (programmed cell death) are involved in the destruction of neoplastic cells by PDT in vivo is still an enigma. A general model for PDT-induced tumor destruction is suggested.
Collapse
Affiliation(s)
- Q Peng
- Department of Pathology and Biophysics, Norwegian Radium Hospital, Oslo, Norway
| | | | | |
Collapse
|
38
|
Synthesis of 2,7,12,17-tetraphenylporphycene (TPPo). First aryl-substituted porphycene for the photodynamic therapy of tumors. Tetrahedron Lett 1995. [DOI: 10.1016/0040-4039(95)00493-v] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Abstract
The presence of molecular oxygen is a determinant in the phototoxicity of phthalocyanines, and photosensitized oxidation is the accepted chemical mechanism for photo-dynamic action. However, it is difficult to establish whether the process is initiated by a type I electron transfer, or by a type II energy transfer reaction to form singlet oxygen. Usually, the involvement of singlet oxygen in photodamage has been indicated by the inhibition of the biological effect by a competitive physical or chemical singlet oxygen quencher, or by a rate increase in D2O, in which singlet oxygen has a longer lifetime than in H2O. Unfortunately, these techniques are not completely specific for singlet oxygen. Moreover, thermodynamic considerations suggest that photoinduced electron abstraction from appropriate biomaterials could compete with singlet oxygen production under in vivo conditions. This likely source of one electron-oxidized primary radicals, which can provide the precursors of the oxidative damage in phthalocyanine photosensitization, suggests the possibility of modulated toxicity by interaction with chemical additives. Examples of such additives recently studied are ascorbate, tocopherol and quercetin, all of which are natural antioxidants.
Collapse
Affiliation(s)
- I Rosenthal
- Department of Food Science, Volcani Institute, Bet Dagan, Israel
| | | |
Collapse
|