1
|
Abstract
Expression and purification of recombinant proteins are important for the structure-function study of phytochromes. However, it is difficult to purify phytochrome proteins from natural sources or using a bacterial expression system, due to the presence of multiple phytochrome species and low expression and solubility, respectively. Here we describe the expression of recombinant full-length plant phytochromes in the yeast Pichia pastoris, and the spectral analysis of chromophore-assembled phytochromes before and after the purification by streptavidin affinity chromatography.
Collapse
|
2
|
Natori C, Kim JI, Bhoo SH, Han YJ, Hanzawa H, Furuya M, Song PS. Differential interactions of phytochrome A (Pr vs. Pfr) with monoclonal antibodies probed by a surface plasmon resonance technique. Photochem Photobiol Sci 2006; 6:83-9. [PMID: 17200742 DOI: 10.1039/b611077k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phytochromes are red- and far-red light-reversible photoreceptors for photomorphogenesis in plants. Phytochrome A is a dimeric chromopeptide that mediates very low fluence and high irradiance responses. To analyze the surface properties of phytochrome A (phyA), the epitopes of 21 anti-phyA monoclonal antibodies were determined by variously engineered recombinant phyA proteins and the dissociation constants of seven anti-phyA monoclonal antibodies with phyA were measured using a surface plasmon resonance (SPR)-based resonant mirror biosensor (IAsys). Purified oat phyA was immobilized on the sensor surface using a carboxymethyl dextran cuvette in advance, and the interactions of each chosen monoclonal antibody against phyA in either red light absorbing form (Pr) or far-red light absorbing form (Pfr) at different concentrations were monitored. The binding profiles were analyzed using the FAST Fit program of IAsys. The resultant values of dissociation constants clearly demonstrated the differential affinities between the phyA epitopes and the monoclonal antibodies dependent upon Pr vs. Pfr conformations. Monoclonal antibody mAP20 preferentially recognized the epitope at amino acids 653-731 in the Pr form, whereas mAA02, mAP21 and mAR07/mAR08 displayed preferential affinities for the Pfr's surfaces at epitopes 494-601 (the hinge region between the N- and C-terminal domains), 601-653 (hinge in PASI domain), and 772-1128 (C-terminal domain), respectively. The N-terminal extension (1-74) was not recognized by mAP09 and mAP15, suggesting that the N-terminal extreme is not exposed in the native conformation of phyA. On the other hand, the C-terminal domain becomes apparently exposed on Pr-to-Pfr phototransformation, suggesting an inter-domain cross-talk. The use of surface plasmon resonance spectroscopy offers a new approach to study the surface properties of phytochromes associated with the photoreversible structural changes, as well as for the study of protein-protein interactions of phytochromes with their interacting proteins involved in light signaling events in plants.
Collapse
Affiliation(s)
- Chihoko Natori
- Hitachi Advanced Research Laboratory, Hatoyama, Saitama 350-0395, Japan
| | | | | | | | | | | | | |
Collapse
|
3
|
Eitoku T, Zarate X, Kozhukh GV, Kim JI, Song PS, Terazima M. Time-resolved detection of conformational changes in oat phytochrome A: time-dependent diffusion. Biophys J 2006; 91:3797-804. [PMID: 16935954 PMCID: PMC1630454 DOI: 10.1529/biophysj.106.092882] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conformational changes in oat phytochrome A (phy) in solution after photoexcitation of the red-absorbing form (Pr) were studied in time-domain by the pulsed laser-induced transient grating technique. It was found that the diffusion coefficient (D) of far-red-absorbing form (Pfr) of large phy (1.3 x 10(-11) m(2) s(-1)) is markedly reduced compared with that of Pr (5.8 x 10(-11) m(2) s(-1)). This large reduction indicates that the conformation of Pfr is significantly changed from that of Pr, so that the intermolecular interaction with water molecules increases. This change completes within 1 ms after the photoexcitation. On the other hand, D of Pr of intact phy (4.1 x 10(-11) m(2) s(-1)) first decreases upon photoexcitation to 0.89 x 10(-11) m(2) s(-1) within 1 ms and then gradually increases with a time constant of 100 ms to the value of Pfr, 1.7 x 10(-11) m(2) s(-1). This slower phase suggests that the conformation of the N-terminal region changes with 100 ms to decrease the intermolecular interaction with water after a global change in the large phy region. The increase of D was interpreted in terms of alpha-helix formation in the Pfr form from the random coil structure in the Pr form.
Collapse
Affiliation(s)
- Takeshi Eitoku
- Department of Chemistry, Graduate School of Science, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Im YJ, Kim JI, Shen Y, Na Y, Han YJ, Kim SH, Song PS, Eom SH. Structural analysis of Arabidopsis thaliana nucleoside diphosphate kinase-2 for phytochrome-mediated light signaling. J Mol Biol 2004; 343:659-70. [PMID: 15465053 DOI: 10.1016/j.jmb.2004.08.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 08/17/2004] [Accepted: 08/18/2004] [Indexed: 12/14/2022]
Abstract
In plants, nucleoside diphosphate kinases (NDPKs) play a key role in the signaling of both stress and light. However, little is known about the structural elements involved in their function. Of the three NDPKs (NDPK1-NDPK3) expressed in Arabidopsis thaliana, NDPK2 is involved in phytochrome-mediated signal transduction. In this study, we found that the binding of dNDP or NTP to NDPK2 strengthens the interaction significantly between activated phytochrome and NDPK2. To better understand the structural basis of the phytochrome-NDPK2 interaction, we determined the X-ray structures of NDPK1, NDPK2, and dGTP-bound NDPK2 from A.thaliana at 1.8A, 2.6A, and 2.4A, respectively. The structures showed that nucleotide binding caused a slight conformational change in NDPK2 that was confined to helices alphaA and alpha2. This suggests that the presence of nucleotide in the active site and/or the evoked conformational change contributes to the recognition of NDPK2 by activated phytochrome. In vitro binding assays showed that only NDPK2 interacted specifically with the phytochrome and the C-terminal regulatory domain of phytochrome is involved in the interaction. A domain swap experiment between NDPK1 and NDPK2 showed that the variable C-terminal region of NDPK2 is important for the activation by phytochrome. The structure of Arabidopsis NDPK1 and NDPK2 showed that the isoforms share common electrostatic surfaces at the nucleotide-binding site, but the variable C-terminal regions have distinct electrostatic charge distributions. These findings suggest that the binding of nucleotide to NDPK2 plays a regulatory role in phytochrome signaling and that the C-terminal extension of NDPK2 provides a potential binding surface for the specific interaction with phytochromes.
Collapse
Affiliation(s)
- Young Jun Im
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Shen Y, Kim JI, Song PS. NDPK2 as a signal transducer in the phytochrome-mediated light signaling. J Biol Chem 2004; 280:5740-9. [PMID: 15561724 DOI: 10.1074/jbc.m408965200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleoside-diphosphate kinase (NDPK) 2 in Arabidopsis has been identified as a phytochrome-interacting protein by using the C-terminal domain of phytochrome A (PhyA) as the bait in yeast two-hybrid screening. The far-red light-absorbing form of phytochrome (Pfr) A stimulates NDPK2 gamma-phosphate exchange activity in vitro. To better understand the multiple functions of NDPK and its role in phytochrome-mediated signaling, we characterized the interaction between phytochrome and NDPK2. Domain studies revealed that PER-ARNT-SIM domain A in the C-terminal domain of phytochrome is the binding site for NDPK2. Additionally, phytochrome recognizes both the NDPK2 C-terminal fragment and the NDPK2 hexameric structure to fulfill its binding. To illustrate the mechanism of how the Pfr form of phytochrome stimulates NDPK2, His-197-surrounding residue mutants were made and tested. Results suggested that the H-bonding with His-197 inside the nucleotide-binding pocket is critical for NDPK2 functioning. The pH dependence profiles of NDPK2 indicated that mutants with different activities from the wild type have different pK(a) values of His-197 and that NDPK2 hyperactive mutants possess lower pK(a) values. Because a lower pK(a) value of His-197 accelerates NDPK2 autophosphorylation and the phospho-transfer between the phosphorylated NDPK2 and its kinase substrate, we concluded that the Pfr form of phytochrome stimulates NDPK2 by lowering the pK(a) value of His-197.
Collapse
Affiliation(s)
- Yu Shen
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA
| | | | | |
Collapse
|
6
|
Park CM, Shim JY, Yang SS, Kang JG, Kim JI, Luka Z, Song PS. Chromophore-apoprotein interactions in Synechocystis sp. PCC6803 phytochrome Cph1. Biochemistry 2000; 39:6349-56. [PMID: 10828948 DOI: 10.1021/bi992916s] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The secondary, tertiary, and quaternary structures of the Synechocystis Cph1 phytochrome were investigated by absorption and circular dichroism spectroscopy, size exclusion chromatography, and limited proteolysis. The Cph1 protein was coexpressed with a bacterial thioredoxin in Escherichia coli, reconstituted in vitro with tetrapyrrole chromophores, and purified by chitin affinity chromatography. The resultant Cph1 holoproteins were essentially pure and had the specific absorbance ratio (SAR) of 0.8-0.9. Circular dichroism spectroscopy and limited proteolysis showed that the chromophore binding induced marked conformational changes in the Cph1 protein. The alpha-helical content increased to 42-44% in the holoproteins from 37% in the apoprotein. However, no significant difference in the secondary structure was detected between the Pr and Pfr forms. The tertiary structure of the Cph1 apoprotein appeared to be relatively flexible but became more compact and resistant to tryptic digestion upon chromophore binding. Interestingly, a small chromopeptide of about 30 kDa was still predominant even after longer tryptic digestion. The N-terminal location of this chromopeptide was confirmed by expression in E. coli and in vitro reconstitution with chromophores of the 32.5 kDa N-terminal fragment of the Cph1 protein. This chromopeptide was fully photoreversible with the spectral characteristic similar to that of the full-size Cph1 protein. The Cph1 protein forms dimers through the C-terminal region. These results suggest that the prokaryotic Cph1 phytochrome shares the structural and conformational characteristics of plant phytochromes, such as the two-domain structure consisting of the relatively compact N-terminal and the relatively flexible C-terminal regions, in addition to the chromophore-induced conformational changes.
Collapse
Affiliation(s)
- C M Park
- Kumho Life & Environmental Science Laboratory, Kwangju 500-712, Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Choi G, Yi H, Lee J, Kwon YK, Soh MS, Shin B, Luka Z, Hahn TR, Song PS. Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 1999; 401:610-3. [PMID: 10524631 DOI: 10.1038/44176] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because plants are sessile, they have developed intricate strategies to adapt to changing environmental variables, including light. Their growth and development, from germination to flowering, is critically influenced by light, particularly at red (660 nm) and far-red (730 nm) wavelengths. Higher plants perceive red and far-red light by means of specific light sensors called phytochromes(A-E). However, very little is known about how light signals are transduced to elicit responses in plants. Here we report that nucleoside diphosphate kinase 2 (NDPK2) is an upstream component in the phytochrome signalling pathway in the plant Arabidopsis thaliana. In animal and human cells, NDPK acts as a tumour suppressor. We show that recombinant NDPK2 in Arabidopsis preferentially binds to the red-light-activated form of phytochrome in vitro and that this interaction increases the activity of recombinant NDPK2. Furthermore, a mutant lacking NDPK2 showed a partial defect in responses to both red and farred light, including cotyledon opening and greening. These results indicate that NDPK2 is a positive signalling component of the phytochrome-mediated light-signal-transduction pathway in Arabidopsis.
Collapse
Affiliation(s)
- G Choi
- Kumho Life and Environmental Science Laboratory, Kwangju, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lapko VN, Jiang XY, Smith DL, Song PS. Mass spectrometric characterization of oat phytochrome A: isoforms and posttranslational modifications. Protein Sci 1999; 8:1032-44. [PMID: 10338014 PMCID: PMC2144336 DOI: 10.1110/ps.8.5.1032] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
At least four mRNAs for oat phytochrome A (phyA) are present in etiolated oat tissue. The complete amino acid sequences of two phyA isoforms (A3 and A4) and the N-terminal amino acid sequence of a third isoform (A5) were deduced from cDNA sequencing (Hershey et al., 1985). In the present study, heterogeneity of phyA on a protein level was studied by tryptic mapping using electrospray ionization mass-spectrometry (ESIMS). The total tryptic digest of iodoacetamide-modified phyA was fractionated by gel filtration chromatography followed by reversed-phase high-performance liquid chromatography. ESIMS was used to identify peptides. Amino acid sequences of the peptides were confirmed or determined by collision-induced dissociation mass spectrometry (CID MS), MS/MS, or by subdigestion of the tryptic peptides followed by ESIMS analysis. More than 97% of the phyA3 sequence (1,128 amino acid residues) was determined in the present study. Mass-spectrometric analysis of peptides unique to each form showed that phyA purified from etiolated oat seedling is represented by three isoforms A5, A3, and A4, with ratio 3.4:2.3:1.0. Possible light-induced changes in phytochrome in vivo phosphorylation site at Ser7 (Lapko VN et al., 1997, Biochemistry 36:10595-10599) as well at Ser17 and Ser598 (known as in vitro phosphorylation sites) were also analyzed. The extent of phosphorylation at Ser7 appears to be the same for phyA isolated from dark-grown and red-light illuminated seedlings. In addition to Ser7, Ser598 was identified as an in vivo phosphorylation site in oat phyA. Ser598 phosphorylation was found only in phyA from the red light-treated seedlings, suggesting that the protein phosphorylation plays a functional role in the phytochrome A-mediated light-signal transduction.
Collapse
Affiliation(s)
- V N Lapko
- Department of Chemistry, University of Nebraska-Lincoln, 68588-0304, USA
| | | | | | | |
Collapse
|
9
|
Lapko VN, Jiang XY, Smith DL, Song PS. Surface topography of phytochrome A deduced from specific chemical modification with iodoacetamide. Biochemistry 1998; 37:12526-35. [PMID: 9730825 DOI: 10.1021/bi980834i] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phytochromes are a photoreversible photochromic light switch for photomorphogenesis in plants. The molecular structure and functional mechanism of phytochromes are not fully understood. On the basis of complete mapping of total tryptic digest of the iodoacetamide-modified oat phytochrome A (phyA), the molecular surface topography of phyA was probed by specific chemical modification of cysteine residues with [14C]iodoacetamide. Under native conditions, only two cysteines (Cys-158 and Cys-311) of eleven half-cystines of the N-terminal chromophore binding domain were modified to a significant extent. In the C-terminal domain, six cysteine residues (Cys-715, Cys-774, Cys-809, Cys-869, Cys-961, Cys-995) were readily accessible to iodoacetamide. Among the reactive cysteine residues, only cysteine-311 displayed reactivity that was dependent on the photochromic form (Pr left arrow over right arrow Pfr) of the photoreceptor. Surprisingly, the modification of Cys-311 in the vicinity of the chromophore attachment site (Cys-321) did not have any detectable effect on spectral properties of phyA. Most of the cysteines of the N-terminal domain (Cys-83, Cys-175, Cys-291, Cys-370, Cys-386, Cys-445, Cys-506) are deeply buried in the core of the chromophore binding domain, as they can be modified only after denaturation of the chromoprotein. In the C-terminal domain, modification of only one cysteine residue (Cys-939) required protein denaturation. Since all 22 half-cystines can be modified with iodoacetamide without reduction of the chromoprotein, it follows that oat phyA does not have any disulfide bonds. We found that Cys-311, Cys-774, Cys-961, and Cys-995 could be easily partially oxidized under the conditions used for phytochrome isolation. The surface topography/conformation of oat phyA and its role in protein-protein recognition in phytochrome-mediated signal transduction are discussed in terms of the relative reactivity of cysteine residues.
Collapse
Affiliation(s)
- V N Lapko
- Department of Chemistry, University of Nebraska-Lincoln 68588, USA
| | | | | | | |
Collapse
|
10
|
Bischoff M, Hermann G, Rentsch S, Strehlow D. Ultrashort Processes of Native Phytochrome: Femtosecond Kinetics of the Far-Red-Absorbing Form Pfr. J Phys Chem A 1998. [DOI: 10.1021/jp973197z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Bischoff
- Institute for Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, and Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany
| | - G. Hermann
- Institute for Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, and Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany
| | - S. Rentsch
- Institute for Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, and Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany
| | - D. Strehlow
- Institute for Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, D-07743 Jena, Germany, and Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
11
|
Murphy JT, Lagarias JC. Purification and characterization of recombinant affinity peptide-tagged oat phytochrome A. Photochem Photobiol 1997; 65:750-8. [PMID: 9114754 DOI: 10.1111/j.1751-1097.1997.tb01920.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Full-length Avena sativa (oat) phytochrome A (ASPHYA) was expressed in the yeast Saccharomyces cerevisiae and purified to apparent homogeneity. Expression of an ASPHYA cDNA that encoded the full-length photoreceptor with a 15 amino acid 'strep-tag' peptide at its C-terminus produced a single polypeptide with a molecular mass of 124 kDa. This strep-tagged polypeptide (ASPHYA-ST) bound tightly to streptavidin agarose and was selectively eluted using diaminobiotin, with a chromatographic efficiency of 45%. Incubation of ASPHYA-ST with phytochromobilin (P phi B) and the unnatural chromophore precursors, phycocyanobilin (PCB) and phycoerythrobilin (PEB), produced covalent adducts that were similarly affinity purified. Both P phi B and PCB adducts of ASPHYA-ST were photoactive--the P phi B adduct displaying spectrophotometric properties nearly indistinguishable from those of the native photoreceptor, and the PCB adduct exhibiting blue-shifted absorption maxima. Although the PEB adduct of ASPHYA-ST was photochemically inactive, it was intensely fluorescent with an excitation maximum at 576 nm and emission maxima at 586 nm. The superimposability of its absorption and fluorescence excitation spectra established that a single biliprotein species was responsible for fluorescence from the adduct produced when ASPHYA-ST was incubated with PEB. Steric exclusion HPLC also confirmed that ASPHYA-ST and its three bilin adducts were homodimers, as has been established for phytochrome A isolated from natural sources. The ability to express and purify recombinant phytochromes with biochemical properties very similar to those of the native molecule should facilitate detailed structural analysis of this important class of photoreceptors.
Collapse
Affiliation(s)
- J T Murphy
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | |
Collapse
|