1
|
Ricardi MM, Tribelli PM, Costa CS, Pezzoni M. Global transcriptional response of Pseudomonas aeruginosa to UVA radiation. Photochem Photobiol Sci 2024:10.1007/s43630-024-00649-9. [PMID: 39470974 DOI: 10.1007/s43630-024-00649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/04/2024] [Indexed: 11/01/2024]
Abstract
Ultraviolet A (UVA) radiation is the major fraction of UV radiation reaching the Earth's surface. Its harmful effects on microorganisms, due mainly to oxidative damage, have been exploited for development of natural solar and commercial UVA-based disinfection methods. In this work, the global transcriptional response of Pseudomonas aeruginosa exposed to ultraviolet A (UVA) radiation was analyzed. To conduct this study, we analyzed the whole transcriptome of the PAO1 strain grown to logarithmic phase under sublethal doses of UVA or in the dark. We found that a total of 298 genes responded to UVA with a change of at least two-fold (5.36% of the total P. aeruginosa genome), and showed equal amount of induced and repressed genes. An important fraction of the induced genes were involved in the response to DNA damage and included induction of SOS, prophage and pyocins genes. The results presented in this study suggest that one of the main UVA targets are proteins carrying [Fe-S] clusters since several genes involved in the processes of synthesis, trafficking and assembly of these structures were upregulated. The management of intracellular iron levels also seems to be a robust response to this stress factor. The strong induction of genes involved in denitrification suggest that this pathway and/or reactive nitrogen species such as nitric oxide could have a role in the response to this radiation. Regarding the down-regulated genes, we found many involved in the biosynthesis of PQS, a quorum-sensing signal molecule with a possible role as endogenous photosensitizer.
Collapse
Affiliation(s)
- Martiniano M Ricardi
- IFIByNE (CONICET), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula M Tribelli
- IQUIBICEN (CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cristina S Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499B1650KNA, General San Martín, Prov. de Buenos Aires, Argentina
| | - Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499B1650KNA, General San Martín, Prov. de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Gilaberte Y, Piquero-Casals J, Schalka S, Leone G, Brown A, Trullàs C, Jourdan E, Lim HW, Krutmann J, Passeron T. Exploring the impact of solar radiation on skin microbiome to develop improved photoprotection strategies. Photochem Photobiol 2024. [PMID: 38767119 DOI: 10.1111/php.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
The skin microbiome undergoes constant exposure to solar radiation (SR), with its effects on health well-documented. However, understanding SR's influence on host-associated skin commensals remains nascent. This review surveys existing knowledge on SR's impact on the skin microbiome and proposes innovative sun protection methods that safeguard both skin integrity and microbiome balance. A team of skin photodamage specialists conducted a comprehensive review of 122 articles sourced from PubMed and Research Gateway. Key terms included skin microbiome, photoprotection, photodamage, skin cancer, ultraviolet radiation, solar radiation, skin commensals, skin protection, and pre/probiotics. Experts offered insights into novel sun protection products designed not only to shield the skin but also to mitigate SR's effects on the skin microbiome. Existing literature on SR's influence on the skin microbiome is limited. SR exposure can alter microbiome composition, potentially leading to dysbiosis, compromised skin barrier function, and immune system activation. Current sun protection methods generally overlook microbiome considerations. Tailored sun protection products that prioritize both skin and microbiome health may offer enhanced defense against SR-induced skin conditions. By safeguarding both skin and microbiota, these specialized products could mitigate dysbiosis risks associated with SR exposure, bolstering skin defense mechanisms and reducing the likelihood of SR-mediated skin issues.
Collapse
Affiliation(s)
- Yolanda Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, IIS Aragón, Zaragoza, Spain
| | - Jaime Piquero-Casals
- Department of Dermatology, Dermik Multidisciplinary Dermatology Clinic, Barcelona, Spain
| | - Sergio Schalka
- Medcin Skin Research Center and Biochemistry Department, Chemistry Institute of São Paulo University, São Paulo, Brazil
| | - Giovanni Leone
- Photodermatology and Vitiligo Treatment Unit, Israelite Hospital, Rome, Italy
| | | | | | - Eric Jourdan
- Innovation and Development, ISDIN, Barcelona, Spain
| | - Henry W Lim
- The Henry W. Lim Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
| | - Jean Krutmann
- IUF - Leibniz-Institut für umweltmedizinische Forschung, Düsseldorf, Germany
| | - Thierry Passeron
- Department of Dermatology, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
- Centre Méditerranéen de Médecine Moléculaire, INSERM U1065, Université Côte d'Azur, Nice, France
| |
Collapse
|
3
|
Sandri A, Tessari A, Giannetti D, Cetti A, Lleo MM, Boschi F. UV-A Radiation: Safe Human Exposure and Antibacterial Activity. Int J Mol Sci 2023; 24:ijms24098331. [PMID: 37176038 PMCID: PMC10179708 DOI: 10.3390/ijms24098331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
UV radiation is used for sterilization but has adverse health effects in humans. UV-A radiation has lower antimicrobial effect than UV-B and UV-C but constitutes a lower health risk, opening up the possibility to sanitize environments with human presence in controlled exposure conditions. We investigated this possibility by identifying safe exposure conditions to a UV-A lamp along with efficient sanitization of the environment. The human exposure limits were calculated following the guidelines provided by the International Commission on Non-Ionizing Radiation Protection and the International Commission on Illumination. Antibacterial activity was evaluated on Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The maximum human exposure duration has been identified at different irradiation distance and angle, increasing with the increase of both parameters. Bactericidal activity was observed in all microorganisms and was higher with higher exposure time and at lower distance from the source. Noteworthily, in equal conditions of radiant exposure, the exposure time impacts on the bactericidal activity more than the distance from the source. The modulation of factors such as distance from the source, exposure time and irradiation angle can enable effective antibacterial activity and human safety. Prolonged direct irradiation of the surfaces associated with indirect human exposure represents the condition of greater efficacy and safety.
Collapse
Affiliation(s)
- Angela Sandri
- Department of Diagnostics and Public Health, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Aldo Tessari
- FOR ALL Srl, Via 8 Marzo 10-12, Bussolengo, 37012 Verona, Italy
| | | | - Alberto Cetti
- FOR ALL Srl, Via 8 Marzo 10-12, Bussolengo, 37012 Verona, Italy
| | - Maria M Lleo
- Department of Diagnostics and Public Health, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Federico Boschi
- Department of Engineering for Innovation Medicine, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| |
Collapse
|
4
|
Grossich R, Lemos Vilches M, Costa CS, Pezzoni M. Role of Pel and Psl polysaccharides in the response of Pseudomonas aeruginosa to environmental challenges: oxidative stress agents (UVA, H 2O 2, sodium hypochlorite) and its competitor Staphylococcus aureus. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36757866 DOI: 10.1099/mic.0.001301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Pseudomonas aeruginosa is a versatile bacterium capable of adapting to a wide range of stress factors, including solar UVA radiation (400-315 nm). High UVA doses produce lethal effects due to the action of reactive oxygen species. Sublethal UVA doses also induces oxidative damage, but, in addition, it triggers a variety of adaptive responses, including the overexpression of pelA and pslA genes in P. aeruginosa. These genes encode the synthesis of Pel and Psl, which are essential polysaccharides in biofilm formation. The present study analysed the role of Pel and Psl in the adaptive responses generated by exposure to low UVA doses, and their importance in the response to lethal doses of UVA, hydrogen peroxide (H2O2), and sodium hypochlorite, in both planktonic cells and submerged and air-liquid interface (ALI) biofilms. It also studied the roles of Pel and Psl in P. aeruginosa-Staphylococcus aureus interaction. The results demonstrate that the capacity of sublethal UVA exposure to increase cell hydrophobicity and cell attachment and generate cross-protection phenomena in P. aeruginosa depends on the presence of Pel and Psl. The study also shows that Pel and Psl have a key role in the tolerance to lethal doses of UVA radiation, sodium hypochlorite and H2O2, in both biofilms and planktonic cells. Finally, co-culture assays showed total inhibition of S. aureus growth in presence of P. aeruginosa. This phenomenon depends, at least in part, on the simultaneous presence of Pel and Psl in planktonic cells and biofilms, suggesting a relevant role of these polysaccharides in the interaction between these species.
Collapse
Affiliation(s)
- Romina Grossich
- Departamento de Radiobiología, Comision Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Martín Lemos Vilches
- Departamento de Radiobiología, Comision Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Cristina S Costa
- Departamento de Radiobiología, Comision Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Magdalena Pezzoni
- Departamento de Radiobiología, Comision Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| |
Collapse
|
5
|
UVA as environmental signal for alginate production in Pseudomonas aeruginosa: role of this polysaccharide in the protection of planktonic cells and biofilms against lethal UVA doses. Photochem Photobiol Sci 2022; 21:1459-1472. [PMID: 35551642 DOI: 10.1007/s43630-022-00236-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Pseudomonas aeruginosa is an extremely versatile microorganism that survives in a wide variety of niches. It is capable to respond rapidly to changes in the environment by producing secondary metabolites and virulence factors, including alginate. Alginate is an extracellular polysaccharide that protects the bacteria from antibiotics and oxidative agents, and enhances cell adhesion to solid surfaces in the process of biofilm formation. In the present study, we analyzed the role of alginate in the response of P. aeruginosa to lethal doses of ultraviolet-A (UVA) radiation, the major fraction of solar UV radiation reaching the Earth's surface. We also studied the role of alginate in the context of the adaptive responses generated when P. aeruginosa is exposed to sublethal doses of UVA radiation. The survival studies demonstrated that alginate has a key role in the resistance of P. aeruginosa to the oxidative stress generated by lethal UVA doses, both in planktonic cells and in static biofilms. In addition, the presence of alginate proved to be essential in the occurrence of adaptive responses such as induction of biofilm formation and cross-protection against hydrogen peroxide and sodium hypochlorite, both generated by exposure to low UVA doses. Finally, we demonstrated that the increase of biofilm formation is accompanied by an increase in alginate concentration in the biofilm matrix, possibly through the ppGpp-dependent induction of genes related to alginate regulation (algR and algU) and biosynthesis (algD operon). Given the importance of alginate in biofilm formation and its protective roles, better understanding of the mechanisms associated to its functions and synthesis is relevant, given the normal exposure of P. aeruginosa to UVA radiation and other types of oxidative stresses.
Collapse
|
6
|
Low Temperature Plasma Strategies for Xylella fastidiosa Inactivation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The quarantine bacterium Xylella fastidiosa was first detected in Salento (Apulia, Italy) in 2013 and caused severe symptoms in olives, leading to plant death. The disease, named Olive Quick Decline Syndrome (OQDS), is caused by the strain “De Donno” ST53 of the subspecies pauca of this bacterium (XfDD), which is spread by the insect Philaenus spumarius. The epidemic poses a serious threat to the agricultural economy and the landscape, as X. fastidiosa infects several plant species and there is yet no recognized solution. Research on OQDS is focused on finding strategies to control its spread or mitigate its symptoms. As a perspective solution, we investigated the efficacy of the low-temperature plasma and plasma-activated water to kill bacterial cells. Experiments were conducted in vitro to test the biocidal effect of the direct application of a Surface Dielectric Barrier Discharge (SDBD) plasma on bacteria cells and Plasma Activated Water (PAW). PAW activity was tested as a possible biocidal agent that can move freely in the xylem network paving the way to test the strategy on infected plants. The results showed a high decontamination rate even for cells of XfDD embedded in biofilms grown on solid media and complete inactivation in liquid culture medium.
Collapse
|
7
|
Pezzoni M, Pizarro RA, Costa CS. Role of quorum sensing in UVA-induced biofilm formation in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2020; 166:735-750. [PMID: 32496187 DOI: 10.1099/mic.0.000932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pseudomonas aeruginosa, a versatile bacterium present in terrestrial and aquatic environments and a relevant opportunistic human pathogen, is largely known for the production of robust biofilms. The unique properties of these structures complicate biofilm eradication, because they make the biofilms very resistant to diverse antibacterial agents. Biofilm development and establishment is a complex process regulated by multiple regulatory genetic systems, among them is quorum sensing (QS), a mechanism employed by bacteria to regulate gene transcription in response to population density. In addition, environmental factors such as UVA radiation (400-315 nm) have been linked to biofilm formation. In this work, we further investigate the mechanism underlying the induction of biofilm formation by UVA, analysing the role of QS in this phenomenon. We demonstrate that UVA induces key genes of the Las and Rhl QS systems at the transcriptional level. We also report that pelA and pslA genes, which are essential for biofilm formation and whose transcription depends in part on QS, are significantly induced under UVA exposure. Finally, the results demonstrate that in a relA strain (impaired for ppGpp production), the UVA treatment does not induce biofilm formation or QS genes, suggesting that the increase of biofilm formation due to exposure to UVA in P. aeruginosa could rely on a ppGpp-dependent QS induction.
Collapse
Affiliation(s)
- Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Ramón A Pizarro
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Cristina S Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| |
Collapse
|
8
|
Kvam E, Benner K. Mechanistic insights into UV-A mediated bacterial disinfection via endogenous photosensitizers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111899. [PMID: 32485344 DOI: 10.1016/j.jphotobiol.2020.111899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/09/2023]
Abstract
UV-A and visible light are thought to excite endogenous photosensitizers in microbes, thereby initiating complex chemical interactions that ultimately kill cells. Natural solar-based disinfection methods have been adapted into commercial lighting technologies with varying degrees of reported efficacy and associated safety hazards for human exposure. Here we utilize a narrow-spectrum UV-A LED prototype (currently in development for health care applications) to investigate the mechanism of bacterial photoinactivation using 365 nm light. Using a combination of reverse genetics and biochemical investigation, we report mechanistic evidence that 365nm light initiates a chain-reaction of superoxide-mediated damage via auto-excitation of vitamin-based electron carriers, specifically vitamin K2 menaquinones and the FAD flavoprotein in Complex II in the electron transport chain. We observe that photoinactivation is modifiable through supplementation of the environment to bypass cell damage. Lastly, we observe that bacteria forced into metabolic dormancy by desiccation become hypersensitized to the effects of UV-A light, thereby permitting photoinactivation at fluences that are significantly lower than the industry threshold for safe human exposure. In total, these results substantiate the mechanism and potential application of narrow- spectrum UV-A light for bacterial disinfection purposes.
Collapse
Affiliation(s)
- Erik Kvam
- GE Research, One Research Circle, Niskayuna, NY 12309, USA.
| | - Kevin Benner
- GE Current, a Daintree Company, East Cleveland, OH 44112, USA
| |
Collapse
|
9
|
Angarano V, Smet C, Akkermans S, Watt C, Chieffi A, Van Impe JF. Visible Light as an Antimicrobial Strategy for Inactivation of Pseudomonas fluorescens and Staphylococcus epidermidis Biofilms. Antibiotics (Basel) 2020; 9:E171. [PMID: 32290162 PMCID: PMC7235755 DOI: 10.3390/antibiotics9040171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The increase of antimicrobial resistance is challenging the scientific community to find solutions to eradicate bacteria, specifically biofilms. Light-Emitting Diodes (LED) represent an alternative way to tackle this problem in the presence of endogenous or exogenous photosensitizers. This work adds to a growing body of research on photodynamic inactivation using visible light against biofilms. Violet (400 nm), blue (420 nm), green (570 nm), yellow (584 nm) and red (698 nm) LEDs were used against Pseudomonas fluorescens and Staphylococcus epidermidis. Biofilms, grown on a polystyrene surface, were irradiated for 4 h. Different irradiance levels were investigated (2.5%, 25%, 50% and 100% of the maximum irradiance). Surviving cells were quantified and the inactivation kinetic parameters were estimated. Violet light could successfully inactivate P. fluorescens and S. epidermidis (up to 6.80 and 3.69 log10 reduction, respectively), while blue light was effective only against P. fluorescens (100% of maximum irradiance). Green, yellow and red irradiation neither increased nor reduced the biofilm cell density. This is the first research to test five different wavelengths (each with three intensities) in the visible spectrum against Gram-positive and Gram-negative biofilms. It provides a detailed study of the potential of visible light against biofilms of a different Gram-nature.
Collapse
Affiliation(s)
- Valeria Angarano
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Charlotte Watt
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Andre Chieffi
- Procter & Gamble, Newcastle Innovation Center, Newcastle NE12 9TS, UK;
| | - Jan F.M. Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| |
Collapse
|
10
|
Pezzoni M, Pizarro RA, Costa CS. Exposure to low doses of UVA increases biofilm formation in Pseudomonas aeruginosa. BIOFOULING 2018; 34:673-684. [PMID: 30185068 DOI: 10.1080/08927014.2018.1480758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
The establishment of bacterial biofilms on abiotic surfaces is a complex process regulated by multiple genetic regulators and environmental factors which are able to modulate the passage of planktonic cells to a sessile state. Solar ultraviolet-A radiation (UVA, 315-400) is one of the main environmental stress factors that bacteria must face at the Earth´s surface. The deleterious effects of UVA are mainly due to oxidative damage. This paper reports that exposure to low UVA doses promotes biofilm formation in three prototypical strains of Pseudomonas aeruginosa, a relevant opportunistic human pathogen. It demonstrates that exposure of planktonic cells to sublethal doses of UVA can increase cell surface hydrophobicity and swimming motility, two parameters known to favor cell adhesion. These results suggest that UVA radiation acts, at least in part, by promoting the first stages of biofilm development.
Collapse
Affiliation(s)
- Magdalena Pezzoni
- a Dpto. de Radiobiología , Comisión Nacional de Energía Atómica , General San Martín , Argentina
| | - Ramón A Pizarro
- a Dpto. de Radiobiología , Comisión Nacional de Energía Atómica , General San Martín , Argentina
| | - Cristina S Costa
- a Dpto. de Radiobiología , Comisión Nacional de Energía Atómica , General San Martín , Argentina
| |
Collapse
|
11
|
Comparative Analysis of UV Irradiation Effects on Escherichia coli and Pseudomonas aeruginosa Bacterial Cells Utilizing Biological and Computational Approaches. Cell Biochem Biophys 2016; 74:381-9. [DOI: 10.1007/s12013-016-0748-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/09/2016] [Indexed: 01/27/2023]
|
12
|
Mozziconacci O, Schöneich C. Chemical degradation of proteins in the solid state with a focus on photochemical reactions. Adv Drug Deliv Rev 2015; 93:2-13. [PMID: 25481682 DOI: 10.1016/j.addr.2014.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 01/10/2023]
Abstract
Protein pharmaceuticals comprise an increasing fraction of marketed products but the limited solution stability of proteins requires considerable research effort to prepare stable formulations. An alternative is solid formulation, as proteins in the solid state are thermodynamically less susceptible to degradation. Nevertheless, within the time of storage a large panel of kinetically controlled degradation reactions can occur such as, e.g., hydrolysis reactions, the formation of diketopiperazine, condensation and aggregation reactions. These mechanisms of degradation in protein solids are relatively well covered by the literature. Considerably less is known about oxidative and photochemical reactions of solid proteins. This review will provide an overview over photolytic and non-photolytic degradation reactions, and specially emphasize mechanistic details on how solid structure may affect the interaction of protein solids with light.
Collapse
Affiliation(s)
- Olivier Mozziconacci
- Department of Pharmaceutical Chemistry, 2095 Constant Avenue, University of Kansas, Lawrence, KS 66047, USA
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, 2095 Constant Avenue, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
13
|
Pezzoni M, Meichtry M, Pizarro RA, Costa CS. Role of the Pseudomonas quinolone signal (PQS) in sensitising Pseudomonas aeruginosa to UVA radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 142:129-40. [DOI: 10.1016/j.jphotobiol.2014.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
|
14
|
Protective role of extracellular catalase (KatA) against UVA radiation in Pseudomonas aeruginosa biofilms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 131:53-64. [DOI: 10.1016/j.jphotobiol.2014.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/28/2013] [Accepted: 01/07/2014] [Indexed: 11/16/2022]
|
15
|
Araujo PZ, Oppezzo OJ, Ibáñez JA, Blesa M, Pizarro RA. Factors Capable of Modifying the Response of Pseudomonas aeruginosa to the Inactivation Induced by Heterogeneous Photocatalysis. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2013. [DOI: 10.1515/ijcre-2012-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The heterogeneous photocatalysis (HP) procedure has been demonstrated to be an interesting method for disinfecting water. It is effective for inactivating Pseudomonas aeruginosa, but its effectiveness may be reduced due to the action of several factors which are able to affect bacterial radio-sensitivity. The results reported here show the influence of nutritional stress and pre-exposure to sub-lethal UVA doses on the efficiency of the inactivation of P. aeruginosa by HP. Both previous exposures to low UVA fluencies and nutrient deprivation induce bacterial resistance to this process, in concordance with previous observations about the lethal effect of direct UVA irradiation. Starvation plus pre-irradiation did not have synergistic or antagonist effects. Kinetic parameters are presented for all three cases. These factors should be taken into account in the design of a water treatment process.
Collapse
|
16
|
Protective effect of low UVA irradiation against the action of lethal UVA on Pseudomonas aeruginosa: Role of the relA gene. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 116:95-104. [DOI: 10.1016/j.jphotobiol.2012.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/17/2012] [Accepted: 08/09/2012] [Indexed: 11/23/2022]
|
17
|
Oppezzo OJ. Contribution of UVB radiation to bacterial inactivation by natural sunlight. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 115:58-62. [PMID: 22819168 DOI: 10.1016/j.jphotobiol.2012.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/21/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
The contribution of different components of sunlight to the lethal action exerted by this radiation on bacteria was studied using Pseudomonas aeruginosa ATCC27853 as a model organism. When solar UVB was excluded from the incident radiation by filtering it through a naphthalene solution (cut off 327 nm), significant modifications were observed in the cell-death kinetics. These modifications were comparable to those expected for a reduction of 27-32% in the dose rate, according to the model used in the analysis of the survival curves, and were also observed when the effects of sunlight filtered through polyethylene terephthalate (cut off 331 nm) or polystyrene (cut off 298 nm) were compared. Viability of P. aeruginosa remained almost unchanged when the incident radiation was filtered through a sodium nitrite solution (cut off 406 nm) in order to exclude the UVA and UVB components of sunlight. Nevertheless, a delay in colony formation was detected in bacteria treated in this way, suggesting that a non-lethal effect was exerted by visible light. The results are not consistent with a generally accepted notion which attributes the lethal action of sunlight to the radiation with wavelengths above 320 nm. The characterization of UVB contribution to the lethal effect of sunlight on bacteria is relevant for understanding of the mechanism of cell death, and for improvement of dosimetry techniques and irradiation procedures.
Collapse
Affiliation(s)
- Oscar J Oppezzo
- Comisión Nacional de Energía Atómica, Departamento de Radiobiología, Avenida General Paz 1499, B1650KNA General San Martín, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Sereda JM, Vandergucht DM, Hudson JJ. In situ UVA exposure modulates change in the uptake of radiophosphate in size-fractionated plankton assemblages following UVR exposure. MICROBIAL ECOLOGY 2012; 63:751-760. [PMID: 22124571 DOI: 10.1007/s00248-011-9982-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/02/2011] [Indexed: 05/31/2023]
Abstract
We investigated the effect of ultraviolet radiation (UVR) on the uptake and partitioning of radiophosphate ((33)PO (4) (3-) ) in size-fractionated plankton assemblages (0.2-0.8, 0.8-2.0 and >2.0 μm) collected from nine freshwater lakes located in Saskatchewan, Canada. A significant (p < 0.05) reduction in (33)PO (4) (3-) uptake by plankton was observed in seven of the nine lakes. Plankton >2.0 μm were generally unaffected by UVR, whereas the 0.2-0.8 μm size fraction exhibited severe photoinhibition. The effect of UVR on the 0.8-2.0 μm size fraction was variable, ranging from significant reductions to significant increases in (33)PO (4) (3-) uptake. The >2.0 μm size fraction was composed of a diversity of phytoplankton genera, suggesting that P uptake mechanisms for a range of phytoplankton are resistant to UVR. Our ability to detect a UVR effect on specific plankton size fractions was confounded by the resolution of the analysis. That is, only examining the <2.0 and >2.0 μm size fractions concealed the effect of UVR on plankton <0.8 μm. The magnitude of decrease in P uptake by plankton <0.8 μm was significantly and negatively correlated with in situ UVA exposure. Our results underscore the need for studies to consider both the size resolution of their analysis (i.e., the size of target organisms) and the ambient light conditions under which organisms may have acclimated before generalizing results across limnetic systems.
Collapse
Affiliation(s)
- Jeff M Sereda
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | | |
Collapse
|
19
|
Polo A, Diamanti MV, Bjarnsholt T, Høiby N, Villa F, Pedeferri MP, Cappitelli F. Effects of Photoactivated Titanium Dioxide Nanopowders and Coating on Planktonic and Biofilm Growth of Pseudomonas aeruginosa. Photochem Photobiol 2011; 87:1387-94. [DOI: 10.1111/j.1751-1097.2011.00972.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Hörtnagl P, Pérez MT, Sommaruga R. Contrasting effects of ultraviolet radiation on the growth efficiency of freshwater bacteria. AQUATIC ECOLOGY 2011; 45:125-136. [PMID: 21516253 PMCID: PMC3079902 DOI: 10.1007/s10452-010-9341-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 08/19/2010] [Indexed: 05/30/2023]
Abstract
In this study, we tested the hypothesis that the growth efficiency of freshwater bacteria is differentially affected by ultraviolet radiation (UVR, 280-400 nm) as mediated through changes in their production and respiration rates. Five bacterial strains affiliated to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinobacteria were isolated from different freshwater habitats and exposed in the laboratory to photosynthetically active radiation (PAR) and PAR + UVR, or kept in the dark for 4 h. Afterward, bacterial carbon production and respiration were assessed by measuring leucine incorporation and oxygen consumption rates, respectively. Ultraviolet radiation decreased significantly the bacterial production of Acidovorax sp., Pseudomonas sp. and Actinobacterium MHWTa3, and the respiration rate of Acidovorax sp. and Acinetobacter lwoffii. Measurements of respiration of a natural bacterial community collected from the same lake where A. lwoffii was isolated resulted in significantly higher rates after exposure to PAR + UVR than in the dark. In the presence of UVR, bacterial growth efficiency significantly decreased in Acidovorax sp., Pseudomonas sp., and Actinobacterium MHWTa3, but it increased in A. lwoffii or it remained unchanged in Sphingomonas sp. Our results indicate that although the outcome was strain-specific, UVR has the potential to alter the efficiency by which dissolved organic matter is transformed into bacterial biomass and thus to affect the biogeochemical carbon cycle.
Collapse
Affiliation(s)
- Paul Hörtnagl
- Laboratory of Aquatic Photobiology and Plankton Ecology, Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - María Teresa Pérez
- Laboratory of Aquatic Photobiology and Plankton Ecology, Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Ruben Sommaruga
- Laboratory of Aquatic Photobiology and Plankton Ecology, Institute of Ecology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
Influence of rpoS mutations on the response of Salmonella enterica serovar Typhimurium to solar radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 102:20-5. [DOI: 10.1016/j.jphotobiol.2010.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/03/2010] [Accepted: 08/30/2010] [Indexed: 11/20/2022]
|
22
|
Costa CS, Pezzoni M, Fernández RO, Pizarro RA. Role of the Quorum Sensing Mechanism in the Response of Pseudomonas aeruginosa to Lethal and Sublethal UVA Irradiation. Photochem Photobiol 2010; 86:1334-42. [DOI: 10.1111/j.1751-1097.2010.00800.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Tsivou M, Livadara D, Georgakopoulos DG, Koupparis MA, Atta-Politou J, Georgakopoulos CG. Stabilization of human urine doping control samples. Anal Biochem 2009; 388:179-91. [PMID: 19233115 DOI: 10.1016/j.ab.2009.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 02/09/2009] [Accepted: 02/11/2009] [Indexed: 02/04/2023]
Affiliation(s)
- M Tsivou
- Doping Control Laboratory of Athens, Olympic Athletic Center of Athens (OAKA), 15123 Maroussi, Greece
| | | | | | | | | | | |
Collapse
|
24
|
Mena KD, Gerba CP. Risk assessment of Pseudomonas aeruginosa in water. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 201:71-115. [PMID: 19484589 DOI: 10.1007/978-1-4419-0032-6_3] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
P. aeruginosa is part of a large group of free-living bacteria that are ubiquitous in the environment. This organism is often found in natural waters such as lakes and rivers in concentrations of 10/100 mL to >1,000/100 mL. However, it is not often found in drinking water. Usually it is found in 2% of samples, or less, and at concentrations up to 2,300 mL(-1) (Allen and Geldreich 1975) or more often at 3-4 CFU/mL. Its occurrence in drinking water is probably related more to its ability to colonize biofilms in plumbing fixtures (i.e., faucets, showerheads, etc.) than its presence in the distribution system or treated drinking water. P. aeruginosa can survive in deionized or distilled water (van der Jooij et al. 1982; Warburton et al. 1994). Hence, it may be found in low nutrient or oligotrophic environments, as well as in high nutrient environments such as in sewage and in the human body. P. aeruginosa can cause a wide range of infections, and is a leading cause of illness in immunocompromised individuals. In particular, it can be a serious pathogen in hospitals (Dembry et al. 1998). It can cause endocarditis, osteomyelitis, pneumonia, urinary tract infections, gastrointestinal infections, and meningitis, and is a leading cause of septicemia. P. aeruginosa is also a major cause of folliculitis and ear infections acquired by exposure to recreational waters containing the bacterium. In addition, it has been recognized as a serious cause of keratitis, especially in patients wearing contact lenses. P. aeruginosa is also a major pathogen in burn and cystic fibrosis (CF) patients and causes a high mortality rate in both populations (MOlina et al. 1991; Pollack 1995). P. aeruginosa is frequently found in whirlpools and hot tubs, sometimes in 94-100% of those tested at concenrations of <1 to 2,400 CFU/mL. The high concentrations found probably result from the relatively high temperatures of whirlpools, which favor the growth of P. aeruginosa, and the aeration which also enhances its growth. The organism is usually found in whirlpools when the chlorine concentrations are low, but it has been isolated even in the presence of 3.00 ppm residual free chlorine (Price and Ahearn 1988). Many outbreaks of folliculitis and ear infections have been reportedly associated with the use of whirlpools and hot tubs that contain P. aeruginosa (Ratnam et al. 1986). Outbreaks have also been reported from exposure to P. aeruginosa in swimming pools and water slides. Although P. aeruginosa has a reputation for being resistant to disinfection, most studies show that it does not exhibit any marked resistance to the disinfectants used to treat drinking water such as chlorine, chloramines, ozone, or iodine. One author, however, did find it to be slightly more resistant to UV disinfection than most other bacteria (Wolfe 1990). Although much has been written about biofilms in the drinking water industry, very little has been reported regarding the role of P. aeruginosa in biofilms. Tap water appears to be a significant route of transmission in hospitals, from colonization of plumbing fixtures. It is still not clear if the colonization results from the water in the distribution system, or personnel use within the hospital. Infections and colonization can be significantly reduced by placement of filters on the water taps. The oral dose of P. aeruginosa required to establish colonization in a healthy subject is high (George et al. 1989a). During dose-response studies, even when subjects (mice or humans) were colonized via ingestion, there was no evidence of disease. P. aeruginosa administered by the aerosol route at levels of 10(7) cells did cause disease symptoms in mice, and was lethal in aerosolized doses of 10(9) cells. Aerosol dose-response studies have not been undertaken with human subjects. Human health risks associated with exposure to P. aeruginosa via drinking water ingestion were estimated using a four-step risk assessment approach. The risk of colonization from ingesting P. aeruginosa in drinking water is low. The risk is slightly higher if the subject is taking an antibiotic resisted by P. aeruginosa. The fact that individuals on ampicillin are more susceptible to Pseudomonas gastrointestinal infection probably results from suppression of normal intestinal flora, which would allow Pseudomonas to colonize. The process of estimating risk was significantly constrained because of the absence of specific (quantitative) occurrence data for Pseudomonas. Sensitivity analysis shows that the greatest source of variability/uncertainty in the risk assessment is from the density distribution in the exposure rather than the dose-response or water consumption distributions. In summary, two routes appear to carry the greatest health risks from contacting water contaminated with P. aeruginosa (1) skin exposure in hot tubs and (2) lung exposure from inhaling aerosols.
Collapse
Affiliation(s)
- Kristina D Mena
- University of Texas-Houston School of Public Health, Houston, Texas, USA.
| | | |
Collapse
|
25
|
Brook L, Evans P, Foster H, Pemble M, Steele A, Sheel D, Yates H. Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition. J Photochem Photobiol A Chem 2007. [DOI: 10.1016/j.jphotochem.2006.09.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Williams HD, Zlosnik JEA, Ryall B. Oxygen, cyanide and energy generation in the cystic fibrosis pathogen Pseudomonas aeruginosa. Adv Microb Physiol 2006; 52:1-71. [PMID: 17027370 DOI: 10.1016/s0065-2911(06)52001-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa is a gram-negative, rod-shaped bacterium that belongs to the gamma-proteobacteria. This clinically challenging, opportunistic pathogen occupies a wide range of niches from an almost ubiquitous environmental presence to causing infections in a wide range of animals and plants. P. aeruginosa is the single most important pathogen of the cystic fibrosis (CF) lung. It causes serious chronic infections following its colonisation of the dehydrated mucus of the CF lung, leading to it being the most important cause of morbidity and mortality in CF sufferers. The recent finding that steep O2 gradients exist across the mucus of the CF-lung indicates that P. aeruginosa will have to show metabolic adaptability to modify its energy metabolism as it moves from a high O2 to low O2 and on to anaerobic environments within the CF lung. Therefore, the starting point of this review is that an understanding of the diverse modes of energy metabolism available to P. aeruginosa and their regulation is important to understanding both its fundamental physiology and the factors significant in its pathogenicity. The main aim of this review is to appraise the current state of knowledge of the energy generating pathways of P. aeruginosa. We first look at the organisation of the aerobic respiratory chains of P. aeruginosa, focusing on the multiple primary dehydrogenases and terminal oxidases that make up the highly branched pathways. Next, we will discuss the denitrification pathways used during anaerobic respiration as well as considering the ability of P. aeruginosa to carry out aerobic denitrification. Attention is then directed to the limited fermentative capacity of P. aeruginosa with discussion of the arginine deiminase pathway and the role of pyruvate fermentation. In the final part of the review, we consider other aspects of the biology of P. aeruginosa that are linked to energy metabolism or affected by oxygen availability. These include cyanide synthesis, which is oxygen-regulated and can affect the operation of aerobic respiratory pathways, and alginate production leading to a mucoid phenotype, which is regulated by oxygen and energy availability, as well as having a role in the protection of P. aeruginosa against reactive oxygen species. Finally, we consider a possible link between cyanide synthesis and the mucoid switch that operates in P. aeruginosa during chronic CF lung infection.
Collapse
Affiliation(s)
- Huw D Williams
- Division of Biology, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | | |
Collapse
|
27
|
Robertson JM, J. Robertson PK, Lawton LA. A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms. J Photochem Photobiol A Chem 2005. [DOI: 10.1016/j.jphotochem.2005.04.033] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Photocatalytic Inactivation of Legionella Pneumophila and an Aerobic Bacteria Consortium in Water over TiO2/SiO2 Fibres in a Continuous Reactor. Top Catal 2005. [DOI: 10.1007/s11244-005-3835-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Dube A, Jayasankar K, Prabakaran L, Kumar V, Gupta PK. Nitrogen laser irradiation (337 nm) causes temporary inactivation of clinical isolates of Mycobacterium tuberculosis. Lasers Med Sci 2004; 19:52-6. [PMID: 15278725 DOI: 10.1007/s10103-004-0304-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Accepted: 05/20/2004] [Indexed: 10/26/2022]
Abstract
We have investigated the effect of nitrogen laser irradiation (337 nm) on viability of clinical isolates of Mycobacterium tuberculosis. Bacteria were exposed to a nitrogen laser (average power 2.0 mW) in vitro at power density of 70 +/- 0.7 W/m2 for 0-30 min, and the cell viability was determined by luciferase reporter phage (LRP) assay. Immediately after laser exposure, all the clinical isolates investigated showed a dose-dependent decrease in cell viability. However, when the laser-exposed isolates were incubated in broth medium for 3 days, most of these showed significant recovery from laser-induced damage. Addition of 5.0 microg/ml acriflavine (a DNA repair inhibitor) in the incubation medium had no significant effect on recovery. This suggests that DNA damage may not be involved in the cell inactivation. Electron paramagnetic resonance (EPR) studies using 5-doxyl strearic acid (5-DS) as a probe suggest alterations in lipid regions of the cell wall. Implications of these results for understanding therapeutic effect of nitrogen laser on drug-resistant tuberculosis are discussed.
Collapse
Affiliation(s)
- Alok Dube
- Biomedical Applications Section, Laser R and D, Block D, Centre for Advanced Technology, 452013, Indore, India.
| | | | | | | | | |
Collapse
|
30
|
Ibáñez JA, Litter MI, Pizarro RA. Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae. J Photochem Photobiol A Chem 2003. [DOI: 10.1016/s1010-6030(03)00074-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Oppezzo OJ, Pizarro RA. Sublethal effects of ultraviolet A radiation on Enterobacter cloacae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2001; 62:158-65. [PMID: 11566280 DOI: 10.1016/s1011-1344(01)00180-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report the sublethal effects of ultraviolet A (UVA) on Enterobacter cloacae in comparison with those produced in Escherichia coli. UVA-induced sublethal effects were investigated in either bacterial membrane and at tRNA level. Limited dependence on oxygen concentration for photoinduced inhibition of biochemical membrane functions and low levels of oxidative damage during the irradiation period were found in En. cloacae. On the other hand, ultraviolet spectroscopy and reversed-phase HPLC analysis of hydrolysed tRNA showed that radio induced damage to tRNA is similar in En. cloacae and E. coli. Nevertheless, growth delay induced by UVA in En. cloacae was shorter than that found in E. coli submitted to the same experimental conditions. A limited post-irradiation ppGpp accumulation and the absence of any influence of the membrane damage on the growth delay extent seem to be responsible for the shortness of this effect in En. cloacae. Most of the differences between En. cloacae and E. coli could be attributed to an increased ability of En. cloacae to overcome oxidative stress during UVA exposure.
Collapse
Affiliation(s)
- O J Oppezzo
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, General San Martín, Buenos Aires, Argentina.
| | | |
Collapse
|
32
|
Fernández RO, Pizarro RA. Pseudomonas aeruginosa UV-A-induced lethal effect: influence of salts, nutritional stress and pyocyanine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1999; 50:59-65. [PMID: 10443032 DOI: 10.1016/s1011-1344(99)00071-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The presence of NaCl in plating media shows an important protection against the Pseudomonas aeruginosa UV-A-induced lethal effect, contrasting with the known sensitizing action of salts on UV-A-irradiated Escherichia coli cells. MgSO4 exhibits a similar protection, but lower concentrations than for NaCl are needed to achieve the same effect. NaCl protection from lethal effects involves an osmotic mechanism, while MgSO4 could act by a different process. On the other hand, when cells grown in a complete medium are then incubated for 20 min in a synthetic medium and irradiated with UV-A, a very marked protection is obtained. This protection is dependent on protein synthesis, since treatment with tetracycline, during the nutritional stress, blocks its induction. These results offer a new example of cross-protection among different stressing agents. In our experimental conditions, natural phenazines of P. aeruginosa are not present in the cells, ruling out the possibility that these pigments act as photosensitizers. Conversely, pyocyanine (the major phenazine produced by this microorganism) prevents the UV-A killing effect in a concentration-dependent way when present in the irradiation media. Finally, UV-A irradiation induces, as in E. coli, the accumulation of guanosine tetraphosphate and guanosine pentaphosphate, although the physiological meaning of this finding has yet to be determined.
Collapse
Affiliation(s)
- R O Fernández
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina.
| | | |
Collapse
|
33
|
Sommaruga R, Obernosterer I, Herndl GJ, Psenner R. Inhibitory effect of solar radiation on thymidine and leucine incorporation by freshwater and marine bacterioplankton. Appl Environ Microbiol 1997; 63:4178-84. [PMID: 16535724 PMCID: PMC1389280 DOI: 10.1128/aem.63.11.4178-4184.1997] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the effect of solar radiation on the incorporation of [(sup3)H]thymidine ([(sup3)H]TdR) and [(sup14)C]leucine ([(sup14)C]Leu) by bacterioplankton in a high mountain lake and the northern Adriatic Sea. After short-term exposure (3 to 4 h) of natural bacterial assemblages to sunlight just beneath the surface, the rates of incorporation of [(sup3)H]TdR and [(sup14)C]Leu were reduced at both sites by up to (symbl)70% compared to those for the dark control. Within the solar UV radiation (290 to 400 nm), the inhibition was caused exclusively by UV-A radiation (320 to 400 nm). However, photosynthetically active radiation (PAR) (400 to 700 nm) contributed almost equally to this effect. Experiments with samples from the high mountain lake showed that at a depth of 2.5 m, the inhibition was caused almost exclusively by UV-A radiation. At a depth of 8.5 m, where chlorophyll a concentrations were higher than those in the upper water column, the rates of incorporation of [(sup3)H]TdR were higher in those samples exposed to full sunlight or to UV-A plus PAR than in the dark control. In laboratory experiments with artificial UV light, the incorporation of [(sup3)H]TdR and [(sup14)C]Leu by mixed bacterial lake cultures was also inhibited mainly by UV-A. In contrast, in the presence of the green alga Chlamydomonas geitleri at a chlorophyll a concentration of 2.5 (mu)g liter(sup-1), inhibition by UV radiation was significantly reduced. These results suggest that there may be complex interactions among UV radiation, heterotrophic bacteria, and phytoplankton and their release of extracellular organic carbon. Our findings indicate that the wavelengths which caused the strongest inhibition of TdR and Leu incorporation by bacterioplankton in the water column were in the UV-A range. However, it may be premature to extrapolate this effect to estimates of bacterial production before more precise information on how solar radiation affects the transport of TdR and Leu into the cell is obtained.
Collapse
|
34
|
Fernández RO, Pizarro RA. High-performance liquid chromatographic analysis of Pseudomonas aeruginosa phenazines. J Chromatogr A 1997. [DOI: 10.1016/s0021-9673(97)00092-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|