1
|
Bestsennaia E, Maslov I, Balandin T, Alekseev A, Yudenko A, Abu Shamseye A, Zabelskii D, Baumann A, Catapano C, Karathanasis C, Gordeliy V, Heilemann M, Gensch T, Borshchevskiy V. Channelrhodopsin-2 Oligomerization in Cell Membrane Revealed by Photo-Activated Localization Microscopy. Angew Chem Int Ed Engl 2024; 63:e202307555. [PMID: 38226794 DOI: 10.1002/anie.202307555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Microbial rhodopsins are retinal membrane proteins that found a broad application in optogenetics. The oligomeric state of rhodopsins is important for their functionality and stability. Of particular interest is the oligomeric state in the cellular native membrane environment. Fluorescence microscopy provides powerful tools to determine the oligomeric state of membrane proteins directly in cells. Among these methods is quantitative photoactivated localization microscopy (qPALM) allowing the investigation of molecular organization at the level of single protein clusters. Here, we apply qPALM to investigate the oligomeric state of the first and most used optogenetic tool Channelrhodopsin-2 (ChR2) in the plasma membrane of eukaryotic cells. ChR2 appeared predominantly as a dimer in the cell membrane and did not form higher oligomers. The disulfide bonds between Cys34 and Cys36 of adjacent ChR2 monomers were not required for dimer formation and mutations disrupting these bonds resulted in only partial monomerization of ChR2. The monomeric fraction increased when the total concentration of mutant ChR2 in the membrane was low. The dissociation constant was estimated for this partially monomerized mutant ChR2 as 2.2±0.9 proteins/μm2 . Our findings are important for understanding the mechanistic basis of ChR2 activity as well as for improving existing and developing future optogenetic tools.
Collapse
Affiliation(s)
- Ekaterina Bestsennaia
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Ivan Maslov
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and the Biomedical Research Institute, Hasselt University, B3590, Diepenbeek, Belgium
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001, Leuven, Belgium
| | - Taras Balandin
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Alexey Alekseev
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Anna Yudenko
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Assalla Abu Shamseye
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Dmitrii Zabelskii
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
- European XFEL, 22869, Schenefeld, Germany
| | - Arnd Baumann
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Claudia Catapano
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Valentin Gordeliy
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Thomas Gensch
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Valentin Borshchevskiy
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| |
Collapse
|
2
|
Piatkevich KD, Boyden ES. Optogenetic control of neural activity: The biophysics of microbial rhodopsins in neuroscience. Q Rev Biophys 2023; 57:e1. [PMID: 37831008 DOI: 10.1017/s0033583523000033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optogenetics, the use of microbial rhodopsins to make the electrical activity of targeted neurons controllable by light, has swept through neuroscience, enabling thousands of scientists to study how specific neuron types contribute to behaviors and pathologies, and how they might serve as novel therapeutic targets. By activating a set of neurons, one can probe what functions they can initiate or sustain, and by silencing a set of neurons, one can probe the functions they are necessary for. We here review the biophysics of these molecules, asking why they became so useful in neuroscience for the study of brain circuitry. We review the history of the field, including early thinking, early experiments, applications of optogenetics, pre-optogenetics targeted neural control tools, and the history of discovering and characterizing microbial rhodopsins. We then review the biophysical attributes of rhodopsins that make them so useful to neuroscience - their classes and structure, their photocycles, their photocurrent magnitudes and kinetics, their action spectra, and their ion selectivity. Our hope is to convey to the reader how specific biophysical properties of these molecules made them especially useful to neuroscientists for a difficult problem - the control of high-speed electrical activity, with great precision and ease, in the brain.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Edward S Boyden
- McGovern Institute and Koch Institute, Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, K. Lisa Yang Center for Bionics and Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
3
|
Feroz H, Ferlez B, Oh H, Mohammadiarani H, Ren T, Baker CS, Gajewski JP, Lugar DJ, Gaudana SB, Butler P, Hühn J, Lamping M, Parak WJ, Blatt MR, Kerfeld CA, Smirnoff N, Vashisth H, Golbeck JH, Kumar M. Liposome-based measurement of light-driven chloride transport kinetics of halorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183637. [PMID: 33930372 DOI: 10.1016/j.bbamem.2021.183637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022]
Abstract
We report a simple and direct fluorimetric vesicle-based method for measuring the transport rate of the light-driven ions pumps as specifically applied to the chloride pump, halorhodopsin, from Natronomonas pharaonis (pHR). Previous measurements were cell-based and methods to determine average single channel permeability challenging. We used a water-in-oil emulsion method for directional pHR reconstitution into two different types of vesicles: lipid vesicles and asymmetric lipid-block copolymer vesicles. We then used stopped-flow experiments combined with fluorescence correlation spectroscopy to determine per protein Cl- transport rates. We obtained a Cl- transport rate of 442 (±17.7) Cl-/protein/s in egg phosphatidyl choline (PC) lipid vesicles and 413 (±26) Cl-/protein/s in hybrid block copolymer/lipid (BCP/PC) vesicles with polybutadine-polyethylene oxide (PB12PEO8) on the outer leaflet and PC in the inner leaflet at a photon flux of 1450 photons/protein/s. Normalizing to a per photon basis, this corresponds to 0.30 (±0.07) Cl-/photon and 0.28 (±0.04) Cl-/photon for pure PC and BCP/PC hybrid vesicles respectively, both of which are in agreement with recently reported turnover of ~500 Cl-/protein/s from flash photolysis experiments and with voltage-clamp measurements of 0.35 (±0.16) Cl-/photon in pHR-expressing oocytes as well as with a pHR quantum efficiency of ~30%.
Collapse
Affiliation(s)
- Hasin Feroz
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Bryan Ferlez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Hyeonji Oh
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | | | - Tingwei Ren
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Carol S Baker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - John P Gajewski
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Daniel J Lugar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sandeep B Gaudana
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Peter Butler
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Jonas Hühn
- Department of Physics and Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Matthias Lamping
- Department of Physics and Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Wolfgang J Parak
- Center of Hybrid Nanostructures (CHyN), Universität Hamburg, Hamburg, Germany
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular Cell and Systems Biology, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA; Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Harish Vashisth
- Department of Chemical Engineering, The University of New Hampshire, Durham, NH, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Manish Kumar
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
4
|
Yamamoto A, Tsukamoto T, Suzuki K, Hashimoto E, Kobashigawa Y, Shibasaki K, Uchida T, Inagaki F, Demura M, Ishimori K. Spectroscopic Characterization of Halorhodopsin Reconstituted into Nanodisks Using Native Lipids. Biophys J 2020; 118:2853-2865. [PMID: 32396848 DOI: 10.1016/j.bpj.2020.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022] Open
Abstract
We successfully reconstituted single Natronomonas pharaonis halorhodopsin (NpHR) trimers into a nanodisk (ND) using the native archaeal lipid (NL) and an artificial lipid having a zwitterionic headgroup, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Incorporation of single trimeric NpHR into NDs was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, size-exclusion chromatography, and visible circular dichroism spectroscopy. The Cl- binding affinity of NpHR in NDs using NL (NL-ND NpHR) or POPC (POPC-ND NpHR) was examined by absorption spectroscopy, showing that the Cl--releasing affinities (Kd,N↔O) of these ND-reconstituted NpHRs are more than 10 times higher than that obtained from native NpHR membrane fragments (MFs) harvested from a NpHR-overexpressing archaeal strain (MF NpHR). The photoreaction kinetics of these ND-reconstituted NpHRs revealed that the Cl- uptake was faster than that of MF NpHR. These differences in the Cl--releasing and uptake properties of ND-reconstituted NpHRs and MF NpHR may arise from suppression of protein conformational changes associated with Cl- release from the trimeric NpHR caused by ND reconstitution, conformational perturbation in the trimeric state, and loss of the trimer-trimer interactions. On the other hand, POPC-ND NpHR demonstrated accelerated Cl- uptake compared to NL-ND NpHR, suggesting that the negative charge on the archaeal membrane surface regulates the photocycle of NpHR. Although NL-ND NpHR and MF NpHR are embedded in the same lipid, the lower Cl--binding affinity at the initial state (Kd,initial) and faster recovering from the NpHR' state to the original state of the photoreaction cycle were observed for NL-ND NpHR, probably because of insufficient interactions with a chromophore in the native membrane, bacterioruberin in reconstituted NDs. Our results indicate that specific interactions of NpHR with surrounding lipids and bacterioruberin, structural flexibility of the membrane, and interactions between trimeric NpHRs may be necessary for efficient Cl- pumping.
Collapse
Affiliation(s)
- Ayumi Yamamoto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Takashi Tsukamoto
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Kenshiro Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Eri Hashimoto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | | | - Kousuke Shibasaki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Fuyuhiko Inagaki
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
5
|
Ganapathy S, Opdam L, Hontani Y, Frehan S, Chen Q, Hellingwerf KJ, de Groot HJ, Kennis JT, de Grip WJ. Membrane matters: The impact of a nanodisc-bilayer or a detergent microenvironment on the properties of two eubacterial rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183113. [DOI: 10.1016/j.bbamem.2019.183113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
|
6
|
Fujisawa T, Kiyota H, Kikukawa T, Unno M. Low-Temperature Raman Spectroscopy of Halorhodopsin from Natronomonas pharaonis: Structural Discrimination of Blue-Shifted and Red-Shifted Photoproducts. Biochemistry 2019; 58:4159-4167. [PMID: 31538771 DOI: 10.1021/acs.biochem.9b00643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
From the low-temperature absorption and Raman measurements of halorhodopsin from Natronomonas pharaonis (pHR), we observed that the two photoproducts were generated after exciting pHR at 80 K by green light. One photoproduct was the red-shifted K intermediate (pHRK) as the primary photointermediate for Cl- pumping, and the other was the blue-shifted one (pHRhypso), which was not involved in the Cl- pumping and thermally relaxed to the original unphotolyzed state by increasing temperature. The formation of these two kinds of photoproducts was previously reported for halorhodopsin from Halobacterium sarinarum [ Zimanyi et al. Biochemistry 1989 , 28 , 1656 ]. We found that the same took place in pHR, and we revealed the chromophore structures of the two photointermediates from their Raman spectra for the first time. pHRhypso had the distorted all-trans chromophore, while pHRK contained the distorted 13-cis form. The present results revealed that the structural analyses of pHRK carried out so far at ∼80 K potentially included a significant contribution from pHRhypso. pHRhypso was efficiently formed via the photoexcitation of pHRK, indicating that pHRhypso was likely a side product after photoexcitation of pHRK. The formation of pHRhypso suggested that the active site became tight in pHRK due to the slight movement of Cl-, and the back photoisomerization then produced the distorted all-trans chromophore in pHRhypso.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| | - Hayato Kiyota
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science , Hokkaido University , Sapporo 060-0810 , Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education , Hokkaido University , Sapporo 060-0810 , Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering , Saga University , Saga 840-8502 , Japan
| |
Collapse
|
7
|
Morizumi T, Ou WL, Van Eps N, Inoue K, Kandori H, Brown LS, Ernst OP. X-ray Crystallographic Structure and Oligomerization of Gloeobacter Rhodopsin. Sci Rep 2019; 9:11283. [PMID: 31375689 PMCID: PMC6677831 DOI: 10.1038/s41598-019-47445-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/24/2019] [Indexed: 01/27/2023] Open
Abstract
Gloeobacter rhodopsin (GR) is a cyanobacterial proton pump which can be potentially applied to optogenetics. We solved the crystal structure of GR and found that it has overall similarity to the homologous proton pump from Salinibacter ruber, xanthorhodopsin (XR). We identified distinct structural characteristics of GR’s hydrogen bonding network in the transmembrane domain as well as the displacement of extracellular sides of the transmembrane helices relative to those of XR. Employing Raman spectroscopy and flash-photolysis, we found that GR in the crystals exists in a state which displays retinal conformation and photochemical cycle similar to the functional form observed in lipids. Based on the crystal structure of GR, we selected a site for spin labeling to determine GR’s oligomerization state using double electron–electron resonance (DEER) spectroscopy and demonstrated the pH-dependent pentamer formation of GR. Determination of the structure of GR as well as its pentamerizing propensity enabled us to reveal the role of structural motifs (extended helices, 3-omega motif and flipped B-C loop) commonly found among light-driven bacterial pumps in oligomer formation. Here we propose a new concept to classify these pumps based on the relationship between their oligomerization propensities and these structural determinants.
Collapse
Affiliation(s)
- Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Wei-Lin Ou
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Keiichi Inoue
- The Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 464-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 464-8555, Japan
| | - Leonid S Brown
- Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada. .,Department of Molecular Genetics, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
8
|
Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy. Sci Rep 2018; 8:8262. [PMID: 29844455 PMCID: PMC5974397 DOI: 10.1038/s41598-018-26606-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/15/2018] [Indexed: 01/05/2023] Open
Abstract
Oligomeric assembly is a common feature of membrane proteins and often relevant to their physiological functions. Determining the stoichiometry and the oligomeric state of membrane proteins in a lipid bilayer is generally challenging because of their large size, complexity, and structural alterations under experimental conditions. Here, we use high-speed atomic force microscopy (HS-AFM) to directly observe the oligomeric states in the lipid membrane of various microbial rhodopsins found within eubacteria to archaea. HS-AFM images show that eubacterial rhodopsins predominantly exist as pentamer forms, while archaeal rhodopsins are trimers in the lipid membrane. In addition, circular dichroism (CD) spectroscopy reveals that pentameric rhodopsins display inverted CD couplets compared to those of trimeric rhodopsins, indicating different types of exciton coupling of the retinal chromophore in each oligomer. The results clearly demonstrate that the stoichiometry of the fundamental oligomer of microbial rhodopsins strongly correlate with the phylogenetic tree, providing a new insight into the relationship between the oligomeric structure and function-structural evolution of microbial rhodopsins.
Collapse
|
9
|
Ji L, Ma B, Meng Q, Li L, Liu K, Chen D. Detergent-resistant oligomeric Leptosphaeria rhodopsin is a promising bio-nanomaterial and an alternative to bacteriorhodopsin. Biochem Biophys Res Commun 2017; 493:352-357. [PMID: 28887035 DOI: 10.1016/j.bbrc.2017.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 01/10/2023]
Abstract
Bacteriorhodopsin has attracted remarkable attention as a photoactive bio-nanomaterial in the last decades. However, its instability in the presence of detergents has restricted the extent to which bacteriorhodopsin may be applied. In this study, we investigated the oligomerization of a eukaryotic light-driven H+-pump, Leptosphaeria rhodopsin, using circular dichroism spectroscopy and other biophysical and biochemical methods. Our findings revealed that Leptosphaeria rhodopsin assembled into oligomers in the cell membrane and also in 0.05% DDM detergent micelles. Moreover, unlike bacteriorhodopsin in purple membrane, Leptosphaeria rhodopsin retained its oligomeric structure in 1% Triton X-100 and demonstrated strong resistance to other common detergents. A maximal photocurrent density of ∼85 nA/cm2 was consistently generated, which was substantially larger than that of solubilized bacteriorhodopsin (∼10 nA/cm2). Therefore, oligomeric Leptosphaeria rhodopsin may be a promising bio-nanomaterial, and an alternative to bacteriorhodopsin, especially with the use of detergents.
Collapse
Affiliation(s)
- Liangliang Ji
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baofu Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Meng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longjie Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Recent advances in biophysical studies of rhodopsins - Oligomerization, folding, and structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1512-1521. [PMID: 28844743 DOI: 10.1016/j.bbapap.2017.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/06/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022]
Abstract
Retinal-binding proteins, mainly known as rhodopsins, function as photosensors and ion transporters in a wide range of organisms. From halobacterial light-driven proton pump, bacteriorhodopsin, to bovine photoreceptor, visual rhodopsin, they have served as prototypical α-helical membrane proteins in a large number of biophysical studies and aided in the development of many cutting-edge techniques of structural biology and biospectroscopy. In the last decade, microbial and animal rhodopsin families have expanded significantly, bringing into play a number of new interesting structures and functions. In this review, we will discuss recent advances in biophysical approaches to retinal-binding proteins, primarily microbial rhodopsins, including those in optical spectroscopy, X-ray crystallography, nuclear magnetic resonance, and electron paramagnetic resonance, as applied to such fundamental biological aspects as protein oligomerization, folding, and structure.
Collapse
|
11
|
Oligomeric Structure of Anabaena Sensory Rhodopsin in a Lipid Bilayer Environment by Combining Solid-State NMR and Long-range DEER Constraints. J Mol Biol 2017; 429:1903-1920. [DOI: 10.1016/j.jmb.2017.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/27/2017] [Accepted: 05/06/2017] [Indexed: 11/22/2022]
|
12
|
Ward ME, Wang S, Munro R, Ritz E, Hung I, Gor'kov PL, Jiang Y, Liang H, Brown LS, Ladizhansky V. In situ structural studies of Anabaena sensory rhodopsin in the E. coli membrane. Biophys J 2016; 108:1683-1696. [PMID: 25863060 DOI: 10.1016/j.bpj.2015.02.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/18/2014] [Accepted: 02/12/2015] [Indexed: 01/06/2023] Open
Abstract
Magic-angle spinning nuclear magnetic resonance is well suited for the study of membrane proteins in the nativelike lipid environment. However, the natural cellular membrane is invariably more complex than the proteoliposomes most often used for solid-state NMR (SSNMR) studies, and differences may affect the structure and dynamics of the proteins under examination. In this work we use SSNMR and other biochemical and biophysical methods to probe the structure of a seven-transmembrane helical photoreceptor, Anabaena sensory rhodopsin (ASR), prepared in the Escherichia coli inner membrane, and compare it to that in a bilayer formed by DMPC/DMPA lipids. We find that ASR is organized into trimers in both environments but forms two-dimensional crystal lattices of different symmetries. It favors hexagonal packing in liposomes, but may form a square lattice in the E. coli membrane. To examine possible changes in structure site-specifically, we perform two- and three-dimensional SSNMR experiments and analyze the differences in chemical shifts and peak intensities. Overall, this analysis reveals that the structure of ASR is largely conserved in the inner membrane of E. coli, with many of the important structural features of rhodopsins previously observed in ASR in proteoliposomes being preserved. Small, site-specific perturbations in protein structure that occur as a result of the membrane changes indicate that the protein can subtly adapt to its environment without large structural rearrangement.
Collapse
Affiliation(s)
- Meaghan E Ward
- Department of Physics, University of Guelph, Guelph, Ontario, Canada; Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Shenlin Wang
- Department of Physics, University of Guelph, Guelph, Ontario, Canada; Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Rachel Munro
- Department of Physics, University of Guelph, Guelph, Ontario, Canada; Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Emily Ritz
- Department of Physics, University of Guelph, Guelph, Ontario, Canada
| | - Ivan Hung
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida
| | - Peter L Gor'kov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida
| | - Yunjiang Jiang
- Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado
| | - Hongjun Liang
- Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado
| | - Leonid S Brown
- Department of Physics, University of Guelph, Guelph, Ontario, Canada; Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada.
| | - Vladimir Ladizhansky
- Department of Physics, University of Guelph, Guelph, Ontario, Canada; Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
13
|
Kikukawa T, Kusakabe C, Kokubo A, Tsukamoto T, Kamiya M, Aizawa T, Ihara K, Kamo N, Demura M. Probing the Cl − -pumping photocycle of pharaonis halorhodopsin: Examinations with bacterioruberin, an intrinsic dye, and membrane potential-induced modulation of the photocycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:748-58. [DOI: 10.1016/j.bbabio.2015.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
|
14
|
Characterization of an Unconventional Rhodopsin from the Freshwater Actinobacterium Rhodoluna lacicola. J Bacteriol 2015; 197:2704-12. [PMID: 26055118 DOI: 10.1128/jb.00386-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Rhodopsin-encoding microorganisms are common in many environments. However, knowing that rhodopsin genes are present provides little insight into how the host cells utilize light. The genome of the freshwater actinobacterium Rhodoluna lacicola encodes a rhodopsin of the uncharacterized actinorhodopsin family. We hypothesized that actinorhodopsin was a light-activated proton pump and confirmed this by heterologously expressing R. lacicola actinorhodopsin in retinal-producing Escherichia coli. However, cultures of R. lacicola did not pump protons, even though actinorhodopsin mRNA and protein were both detected. Proton pumping in R. lacicola was induced by providing exogenous retinal, suggesting that the cells lacked the retinal cofactor. We used high-performance liquid chromatography (HPLC) and oxidation of accessory pigments to confirm that R. lacicola does not synthesize retinal. These results suggest that in some organisms, the actinorhodopsin gene is constitutively expressed, but rhodopsin-based light capture may require cofactors obtained from the environment. IMPORTANCE Up to 70% of microbial genomes in some environments are predicted to encode rhodopsins. Because most microbial rhodopsins are light-activated proton pumps, the prevalence of this gene suggests that in some environments, most microorganisms respond to or utilize light energy. Actinorhodopsins were discovered in an analysis of freshwater metagenomic data and subsequently identified in freshwater actinobacterial cultures. We hypothesized that actinorhodopsin from the freshwater actinobacterium Rhodoluna lacicola was a light-activated proton pump and confirmed this by expressing actinorhodopsin in retinal-producing Escherichia coli. Proton pumping in R. lacicola was induced only after both light and retinal were provided, suggesting that the cells lacked the retinal cofactor. These results indicate that photoheterotrophy in this organism and others may require cofactors obtained from the environment.
Collapse
|
15
|
Tsukamoto T, Demura M, Sudo Y. Irreversible trimer to monomer transition of thermophilic rhodopsin upon thermal stimulation. J Phys Chem B 2014; 118:12383-94. [PMID: 25279934 DOI: 10.1021/jp507374q] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Assembly is one of the keys to understand biological molecules, and it takes place in spatial and temporal domains upon stimulation. Microbial rhodopsin (also called retinal protein) is a membrane-embedded protein that has a retinal chromophore within seven-transmembrane α-helices and shows homo-, di-, tri-, penta-, and hexameric assemblies. Those assemblies are closely related to critical physiological properties such as stabilizing the protein structure and regulating their photoreaction dynamics. Here we investigated the assembly and disassembly of thermophilic rhodopsin (TR), which is a novel proton-pumping rhodopsin derived from a thermophile living at 75 °C. TR was characterized using size-exclusion chromatography and circular dichroism spectroscopy, and formed a trimer at 25 °C, but irreversibly dissociated into monomers upon thermal stimulation. The transition temperature was estimated to be 68 °C. The irreversible nature made it possible to investigate the photochemical properties of both the trimer and the monomer independently. Compared with the trimer, the absorption maximum of the monomer is blue-shifted by 6 nm without any changes in the retinal composition, pKa value for the counterion or the sequence of the proton movement. The photocycling rate of the monomeric TR was similar to that of the trimeric TR. A similar trimer-monomer transition upon thermal stimulation was observed for another eubacterial rhodopsin GR but not for the archaeal rhodopsins AR3 and HwBR, suggesting that the transition is conserved in bacterial rhodopsins. Thus, the thermal stimulation of TR induces the irreversible disassembly of the trimer.
Collapse
Affiliation(s)
- Takashi Tsukamoto
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University , 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | | | | |
Collapse
|
16
|
Brown LS. Eubacterial rhodopsins - unique photosensors and diverse ion pumps. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:553-61. [PMID: 23748216 DOI: 10.1016/j.bbabio.2013.05.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
Since the discovery of proteorhodopsins, the ubiquitous marine light-driven proton pumps of eubacteria, a large number of other eubacterial rhodopsins with diverse structures and functions have been characterized. Here, we review the body of knowledge accumulated on the four major groups of eubacterial rhodopsins, with the focus on their biophysical characterization. We discuss advances and controversies on the unique eubacterial sensory rhodopsins (as represented by Anabaena sensory rhodopsin), proton-pumping proteorhodopsins and xanthorhodopsins, as well as novel non-proton ion pumps. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
17
|
Inoue K, Tsukamoto T, Sudo Y. Molecular and evolutionary aspects of microbial sensory rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:562-77. [PMID: 23732219 DOI: 10.1016/j.bbabio.2013.05.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 02/03/2023]
Abstract
Retinal proteins (~rhodopsins) are photochemically reactive membrane-embedded proteins, with seven transmembrane α-helices which bind the chromophore retinal (vitamin A aldehyde). They are widely distributed through all three biological kingdoms, eukarya, bacteria and archaea, indicating the biological significance of the retinal proteins. Light absorption by the retinal proteins triggers a photoisomerization of the chromophore, leading to the biological function, light-energy conversion or light-signal transduction. This article reviews molecular and evolutionary aspects of the light-signal transduction by microbial sensory receptors and their related proteins. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Takashi Tsukamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yuki Sudo
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan; Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, Japan.
| |
Collapse
|
18
|
Salt bridge in the conserved His-Asp cluster inGloeobacterrhodopsin contributes to trimer formation. FEBS Lett 2013; 587:322-7. [DOI: 10.1016/j.febslet.2012.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 12/18/2022]
|
19
|
Wang S, Munro RA, Kim SY, Jung KH, Brown LS, Ladizhansky V. Paramagnetic Relaxation Enhancement Reveals Oligomerization Interface of a Membrane Protein. J Am Chem Soc 2012; 134:16995-8. [DOI: 10.1021/ja308310z] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | - So Young Kim
- Department of Life Science and
Institute of Biological Interfaces, Sogang University, Seoul, Korea
| | - Kwang-Hwan Jung
- Department of Life Science and
Institute of Biological Interfaces, Sogang University, Seoul, Korea
| | | | | |
Collapse
|
20
|
Homotrimer formation and dissociation of pharaonis halorhodopsin in detergent system. Biophys J 2012; 102:2906-15. [PMID: 22735541 DOI: 10.1016/j.bpj.2012.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 05/06/2012] [Accepted: 05/08/2012] [Indexed: 12/13/2022] Open
Abstract
Halorhodopsin from NpHR is a light-driven Cl(-) pump that forms a trimeric NpHR-bacterioruberin complex in the native membrane. In the case of NpHR expressed in Escherichia coli cell, NpHR forms a robust homotrimer in a detergent DDM solution. To identify the important residue for the homotrimer formation, we carried out mutation experiments on the aromatic amino acids expected to be located at the molecular interface. The results revealed that Phe(150) was essential to form and stabilize the NpHR trimer in the DDM solution. Further analyses for examining the structural significance of Phe(150) showed the dissociation of the trimer in F150A (dimer) and F150W (monomer) mutants. Only the F150Y mutant exhibited dissociation into monomers in an ionic strength-dependent manner. These results indicated that spatial positions and interactions between F150-aromatic side chains were crucial to homotrimer stabilization. This finding was supported by QM calculations. In a functional respect, differences in the reaction property in the ground and photoexcited states were revealed. The analysis of photointermediates revealed a decrease in the accumulation of O, which is important for Cl(-) release, and the acceleration of the decay rate in L1 and L2, which are involved in Cl(-) transfer inside the molecule, in the trimer-dissociated mutants. Interestingly, the affinity of them to Cl(-) in the photoexcited state increased rather than the trimer, whereas that in the ground state was almost the same without relation to the oligomeric state. It was also observed that the efficient recovery of the photocycle to the ground state was inhibited in the mutants. In addition, a branched pathway that was not included in Cl(-) transportation was predicted. These results suggest that the trimer assembly may contribute to the regulation of the dynamics in the excited state of NpHR.
Collapse
|
21
|
Sasaki T, Razak NWA, Kato N, Mukai Y. Characteristics of halorhodopsin-bacterioruberin complex from Natronomonas pharaonis membrane in the solubilized system. Biochemistry 2012; 51:2785-94. [PMID: 22369627 DOI: 10.1021/bi201876p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Halorhodopsin is a retinal protein with a seven-transmembrane helix and acts as an inward light-driven Cl(-) pump. In this study, structural state of the solubilized halorhodopsin (NpHR) from the biomembrane of mutant strain KM-1 of Natronomonas pharaonis in nonionic detergent was investigated. A gel filtration chromatography monitored absorbances at 280 and 504 nm corresponding to the protein and a lipid soluble pigment of bacterioruberin (BR), respectively, has clearly detected an oligomer formation of the NpHRs and a complex formation between the NpHR and BR in the solubilized system. A molar ratio of NpHR:BR in the solubilized complex was close to 1:1. Further SDS-PAGE analysis of the solubilized NpHR cross-linked by 1% glutaraldehyde has revealed that the NpHR forms homotrimer in detergent system. Although this trimeric structure was stable in the presence of NaCl, it was dissociated to the monomer by the heat treatment at 45 °C in the desalted condition. The same tendency has been reported in the case of trimeric NpHR expressed heterologously on the E. coli membrane, leading to a conclusion that the change of strength of the trimeric association dependent on the ion binding is a universal feature of the NpHR. Interestingly, the trimer dissociation on the NpHR was accompanied by the complete dissociation of the BR molecule from the protein, indicated that the cavity formed by the NpHR protomers in the trimeric conformation is important for tight binding of the BR. Because the binding affinity for Cl(-) and the resistance to hydroxylamine under light illumination showed only minor differences between the NpHR in the solubilized state and that on the biomembrane, the influences of solubilization to the tertiary structure and function of the protein are thought to be minor. This NpHR-BR complex in the solubilized system has a potential to be a good model system to investigate the intermolecular interaction between the membrane protein and lipid.
Collapse
Affiliation(s)
- Takanori Sasaki
- School of Science and Technology, Meiji University, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan.
| | | | | | | |
Collapse
|
22
|
Yamashita Y, Kikukawa T, Tsukamoto T, Kamiya M, Aizawa T, Kawano K, Miyauchi S, Kamo N, Demura M. Expression of salinarum halorhodopsin in Escherichia coli cells: solubilization in the presence of retinal yields the natural state. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2905-12. [PMID: 21925140 DOI: 10.1016/j.bbamem.2011.08.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/27/2011] [Accepted: 08/30/2011] [Indexed: 11/29/2022]
Abstract
Salinarum halorhodopsin (HsHR), a light-driven chloride ion pump of haloarchaeon Halobacterium salinarum, was heterologously expressed in Escherichia coli. The expressed HsHR had no color in the E. coli membrane, but turned purple after solubilization in the presence of all-trans retinal. This colored HsHR was purified by Ni-chelate chromatography in a yield of 3-4 mg per liter culture. The purified HsHR showed a distinct chloride pumping activity by incorporation into the liposomes, and showed even in the detergent-solubilized state, its typical behaviors in both the unphotolyzed and photolyzed states. Upon solubilization, HsHR expressed in the E. coli membrane attains the proper folding and a trimeric assembly comparable to those in the native membranes.
Collapse
Affiliation(s)
- Yasutaka Yamashita
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sasaki T, Demura M, Kato N, Mukai Y. Sensitive Detection of Protein−Lipid Interaction Change on Bacteriorhodopsin Using Dodecyl β-d-Maltoside. Biochemistry 2011; 50:2283-90. [DOI: 10.1021/bi101993s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takanori Sasaki
- School of Science and Technology, Meiji University, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| | - Makoto Demura
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Noritaka Kato
- School of Science and Technology, Meiji University, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| | - Yuri Mukai
- School of Science and Technology, Meiji University, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| |
Collapse
|
24
|
Kouyama T, Kanada S, Takeguchi Y, Narusawa A, Murakami M, Ihara K. Crystal Structure of the Light-Driven Chloride Pump Halorhodopsin from Natronomonas pharaonis. J Mol Biol 2010; 396:564-79. [DOI: 10.1016/j.jmb.2009.11.061] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/21/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
|
25
|
Sasaki T, Aizawa T, Kamiya M, Kikukawa T, Kawano K, Kamo N, Demura M. Effect of Chloride Binding on the Thermal Trimer−Monomer Conversion of Halorhodopsin in the Solubilized System. Biochemistry 2009; 48:12089-95. [DOI: 10.1021/bi901380c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takanori Sasaki
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- School of Science and Technology, Meiji University, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| | - Tomoyasu Aizawa
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masakatsu Kamiya
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Kikukawa
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keiichi Kawano
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Bunkyo-cho, Matsuyama 790-8578, Japan
| | - Makoto Demura
- Faculty of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
26
|
Inoue K, Kubo M, Demura M, Kamo N, Terazima M. Reaction dynamics of halorhodopsin studied by time-resolved diffusion. Biophys J 2009; 96:3724-34. [PMID: 19413978 DOI: 10.1016/j.bpj.2008.12.3932] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/24/2008] [Accepted: 12/31/2008] [Indexed: 11/26/2022] Open
Abstract
Reaction dynamics of a chloride ion pump protein, halorhodopsin (HR), from Natronomonas pharaonis (N. pharaonis) (NpHR) was studied by the pulsed-laser-induced transient grating (TG) method. A detailed investigation of the TG signal revealed that there is a spectrally silent diffusion process besides the absorption-observable reaction dynamics. We interpreted these dynamics in terms of release, diffusion, and uptake of the Cl(-) ion. From a quantitative global analysis of the signals at various grating wavenumbers, it was concluded that the release of the Cl(-) ion is associated with the L2 --> (L2 (or N) <==> O) process, and uptake of Cl(-) occurs with the (L2 (or N) <==> O) -->NpHR' process. The diffusion coefficient of NpHR solubilized in a detergent did not change during the cyclic reaction. This result contrasts the behavior of many photosensor proteins and implies that the change in the H-bond network from intra- to intermolecular is not significant for the activity of this protein pump.
Collapse
Affiliation(s)
- Keiichi Inoue
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
27
|
Kubo M, Kikukawa T, Miyauchi S, Seki A, Kamiya M, Aizawa T, Kawano K, Kamo N, Demura M. Role of Arg123 in Light-driven Anion Pump Mechanisms ofpharaonisHalorhodopsin. Photochem Photobiol 2009; 85:547-55. [DOI: 10.1111/j.1751-1097.2009.00538.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|