1
|
Makuch S, Kupczyk P, Woźniak M, Makarec A, Lipińska M, Klyta M, Sulecka-Zadka J, Szeja W, Gani M, Rapozzi V, Ziółkowski P, Smoleński P. In Vitro and In Vivo Antipsoriatic Efficacy of Protected and Unprotected Sugar-Zinc Phthalocyanine Conjugates. Pharmaceutics 2024; 16:838. [PMID: 38931958 PMCID: PMC11207564 DOI: 10.3390/pharmaceutics16060838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Psoriasis, a chronic immune-mediated skin disorder affecting over 125 million people globally, is characterized by abnormal keratinocyte proliferation and immune cell infiltration. Photodynamic therapy (PDT) remains underutilized in the treatment of psoriasis despite its potential as a promising and effective therapeutic approach. This study aimed to explore the efficacy of zinc phthalocyanine (ZnPc) and its sugar conjugates as potential antipsoriatic agents. We successfully synthesized protected and unprotected sugar-conjugated zinc phthalocyanines and evaluated their potential against cytokine-stimulated HaCaT keratinocytes, as well as an established IMQ psoriasis-like in vivo model. Tetrasubstituted protected glucose-ZnPc (Glu-4-ZnPc-P) demonstrated superior phototoxicity (IC50 = 2.55 µM) compared to unprotected glucose conjugate (IC50 = 22.7 µM), protected galactose-ZnPc (IC50 = 7.13 µM), and free ZnPc in cytokine-stimulated HaCaT cells (IC50 = 5.84 µM). Cellular uptake analysis revealed that IL-17A, a cytokine that plays a central role in the pathogenesis of psoriasis, enhanced unprotected Glu-4-ZnPc uptake by 56.3%, while GLUT1 inhibitor BAY-876 reduced its accumulation by 23.8%. Intracellular ROS generation following Glu-4-ZnPc-P-PDT was significantly increased after stimulation with IL-17A, correlating with in vitro photocytotoxicity. In vivo PDT using Glu-4-ZnPc-P exhibited significant improvement in Psoriasis Area and Severity Index (PASI), inhibiting splenomegaly and restoring normal skin morphology. This study highlights sugar-conjugated zinc phthalocyanines as potential candidates for targeted PDT in psoriasis, providing a basis for further clinical investigations.
Collapse
Affiliation(s)
- Sebastian Makuch
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (P.K.); (M.W.); (A.M.); (P.Z.)
| | - Piotr Kupczyk
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (P.K.); (M.W.); (A.M.); (P.Z.)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (P.K.); (M.W.); (A.M.); (P.Z.)
| | - Alicja Makarec
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (P.K.); (M.W.); (A.M.); (P.Z.)
| | - Maja Lipińska
- Experimental Animal Facility, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.L.); (M.K.)
| | - Magdalena Klyta
- Experimental Animal Facility, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.L.); (M.K.)
| | - Joanna Sulecka-Zadka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Wiesław Szeja
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland;
| | - Mariachiara Gani
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy; (M.G.); (V.R.)
| | - Valentina Rapozzi
- Department of Medicine, Laboratory of Biochemistry, P.le Kolbe 4, 33100 Udine, Italy; (M.G.); (V.R.)
| | - Piotr Ziółkowski
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (P.K.); (M.W.); (A.M.); (P.Z.)
| | - Piotr Smoleński
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
2
|
Reza Karimi A, Khodadadi A, Azadikhah F, Hadizadeh M. In Vitro
Photodynamic Activities of Amphiphilic Phthalocyanine‐Amino Appended
β
‐Cyclodextrin Conjugates as Efficient Schiff Base Photosensitizer. ChemistrySelect 2023. [DOI: 10.1002/slct.202203378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ali Reza Karimi
- Department of Chemistry Faculty of Science Arak University 38156-8-8349 Arak Iran
| | - Azam Khodadadi
- Department of Chemistry Faculty of Science Arak University 38156-8-8349 Arak Iran
| | - Farnaz Azadikhah
- Department of Chemistry Faculty of Science Arak University 38156-8-8349 Arak Iran
| | - Mahnaz Hadizadeh
- Department of Biotechnology Iranian Research Organization for Science and Technology (IROST) 3353136846 Tehran Iran
| |
Collapse
|
3
|
Obata M, Ishihara E, Hirohara S. Effect of tertiary amino groups in the hydrophobic segment of an amphiphilic block copolymer on zinc phthalocyanine encapsulation and photodynamic activity. RSC Adv 2022; 12:18144-18153. [PMID: 35800304 PMCID: PMC9210519 DOI: 10.1039/d2ra02224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polymer micelles are promising nanocarriers for hydrophobic photosensitizers of photodynamic therapy (PDT). Poly(styrene-co-(2-(N,N-dimethylamino)ethyl acrylate))-block-poly(polyethylene glycol monomethyl ether acrylate) (P(St-co-DMAEA)-b-PPEGA; 1) was prepared via reversible addition and fragmentation chain transfer (RAFT) polymerization as a carrier for a zinc phthalocyanine (ZnPc) photosensitizer to be used in PDT. The DMAEA-unit composition in the P(St-co-DMAEA) segment was adjusted to 0.40 molar ratio, which caused a sharp increase in water-solubility when the pH decreased from 7.4 to 5.0. The polymer 1 micelle size distribution also shifted to lower when the pH decreased, whereas this change was not observed in PSt-co-PPEGA (2), which was previously reported. The UV-vis spectrum of the ZnPc-loaded micelles of polymer 1 exhibited relatively sharp Q bands, comparable to those measured in DMSO, indicating good compatibility of the condensed core with ZnPc. ZnPc-loaded micelles of polymer 1 exerted excellent photocytotoxicity in the MNNG-induced mutant of the rat murine RGM-1 gastric epithelial cell line (RGK-1). In contrast, the ZnPc-loaded micelles of polymer 2 were completely inactive under the same conditions. Fluorescence from the RGK-1 cells treated with ZnPc-loaded micelles of polymer 1 was observed after 4 h of co-incubation, while no fluorescence was observed in cells treated with ZnPc-loaded micelles of polymer 2. These results indicate that the pH-responsive nature and good compatibility with ZnPc exhibited by the polymer 1 micelles are essential characteristics of ZnPc carriers for efficient photodynamic therapy. Tertiary amino groups in the hydrophobic core of polymer micelles affect the encapsulation and photodynamic activity of zinc phthalocyanine.![]()
Collapse
Affiliation(s)
- Makoto Obata
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| | - Eika Ishihara
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| | - Shiho Hirohara
- Department of Chemical and Biological Engineering, National Institute of Technology, Ube College, 2-14-1 Tokiwadai, Ube 755-8555, Japan
| |
Collapse
|
4
|
Parthiban V, Yen PYM, Uruma Y, Lai PS. Designing Synthetic Glycosylated Photosensitizers for Photodynamic Therapy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200079] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Venkatesan Parthiban
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan (R.O.C.)
| | - Priscilla Yoong Mei Yen
- Department of Materials Science, National Institute of Technology, Yonago College, Yonago, Tottori 683-8502, Japan
| | - Yoshiyuki Uruma
- Department of Materials Science, National Institute of Technology, Yonago College, Yonago, Tottori 683-8502, Japan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan (R.O.C.)
| |
Collapse
|
5
|
Ferreira JT, Pina J, Ribeiro CAF, Fernandes R, Tomé JPC, Rodríguez-Morgade MS, Torres T. Highly Efficient Singlet Oxygen Generators Based on Ruthenium Phthalocyanines: Synthesis, Characterization and in vitro Evaluation for Photodynamic Therapy. Chemistry 2019; 26:1789-1799. [PMID: 31605633 DOI: 10.1002/chem.201903546] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/10/2019] [Indexed: 12/24/2022]
Abstract
The synthesis of ruthenium(II) phthalocyanines (RuPcs) endowed with one carbohydrate unit-that is, glucose, galactose and mannose-and a dimethylsulfoxide (DMSO) ligand at the two axial coordination sites, respectively, is described. Two series of compounds, one unsubstituted at the periphery, and the other one bearing eight PEG chains at the isoindole meta-positions, have been prepared. The presence of the axial DMSO unit significantly increases the phthalocyanine singlet oxygen quantum yields, related to other comparable RuPcs. The compounds have been evaluated for PDT treatment in bladder cancer cells. In vitro studies have revealed high phototoxicity for RuPcs unsubstituted at their periphery. The phototoxicity of PEG-substituted RuPcs has been considerably improved by repeated light irradiation. The choice of the axial carbohydrate introduced little differences in the cellular uptake for both series of photosensitizers, but the phototoxic effects were considerably higher for compounds bearing mannose units.
Collapse
Affiliation(s)
- Joana T Ferreira
- Departamento de Química Orgánica, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049, Madrid, Spain.,Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - João Pina
- CQC, Department of Chemistry, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Carlos A F Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.iCBR Consortium, University of Coimbra, 3004-548, Coimbra, Portugal
| | - João P C Tomé
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.,CQE, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - M Salomé Rodríguez-Morgade
- Departamento de Química Orgánica, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Tomás Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.,Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia, C/ Faraday, 9, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
6
|
Bächle F, Siemens N, Ziegler T. Glycoconjugated Phthalocyanines as Photosensitizers for PDT – Overcoming Aggregation in Solution. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Felix Bächle
- Institute of Organic Chemistry University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology University of Greifswald Felix‐Hausdorff‐Str. 8 17487 Greifswald Germany
| | - Thomas Ziegler
- Institute of Organic Chemistry University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
7
|
Chen F, Huang G. Application of glycosylation in targeted drug delivery. Eur J Med Chem 2019; 182:111612. [DOI: 10.1016/j.ejmech.2019.111612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 01/10/2023]
|
8
|
Aggarwal A, Samaroo D, Jovanovic IR, Singh S, Tuz MP, Mackiewicz MR. Porphyrinoid-based photosensitizers for diagnostic and therapeutic applications: An update. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Porphyrin-based molecules are actively studied as dual function theranostics: fluorescence-based imaging for diagnostics and fluorescence-guided therapeutic treatment of cancers. The intrinsic fluorescent and photodynamic properties of the bimodal molecules allows for these theranostic approaches. Several porphyrinoids bearing both hydrophilic and/or hydrophobic units at their periphery have been developed for the aforementioned applications, but better tumor selectivity and high efficacy to destroy tumor cells is always a key setback for their use. Another issue related to their effective clinical use is that, most of these chromophores form aggregates under physiological conditions. Nanomaterials that are known to possess incredible properties that cannot be achieved from their bulk systems can serve as carriers for these chromophores. Porphyrinoids, when conjugated with nanomaterials, can be enabled to perform as multifunctional nanomedicine devices. The integrated properties of these porphyrinoid-nanomaterial conjugated systems make them useful for selective drug delivery, theranostic capabilities, and multimodal bioimaging. This review highlights the use of porphyrins, chlorins, bacteriochlorins, phthalocyanines and naphthalocyanines as well as their multifunctional nanodevices in various biomedical theranostic platforms.
Collapse
Affiliation(s)
- Amit Aggarwal
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Diana Samaroo
- New York City College of Technology, Department of Chemistry, 285 Jay Street, Brooklyn, NY 11201, USA
- Graduate Center, 365 5th Ave, New York, NY 10016, USA
| | | | - Sunaina Singh
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Michelle Paola Tuz
- LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | | |
Collapse
|
9
|
Ji Y, Li J, Zhao J, Shan S, Chu CC. A light-facilitated drug delivery system from a pseudo-protein/hyaluronic acid nanocomplex with improved anti-tumor effects. NANOSCALE 2019; 11:9987-10003. [PMID: 31080976 DOI: 10.1039/c9nr01909j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reduction-sensitive nanomedicine is a promising strategy to achieve controlled release of payloads in response to intracellular reductive milieu. However, endolysosomal sequestration of internalized carriers and insufficient redox potential in endolysosomes may delay the release of payloads and impact their therapeutic efficacy. Photochemical internalization (PCI), which takes advantage of light-induced endolysosomal rupture, is an effective technique for endosomal escape and cytosolic release of cargos. In this study, a biodegradable and reduction-sensitive nanocomplex was developed from arginine based poly(ester amide)s and hyaluronic acid (HA), and the PCI-photosensitizer AlPcS2a was conjugated to the surface of the nanocomplex (ArgPEA-ss-HA(AP)). This nanocomplex was used for the co-delivery of both PCI-photosensitizers and therapeutic agents to eliminate the biodistribution discrepancy resulting from the separated administration of free therapeutics. The PCI effect of the ArgPEA-ss-HA(AP) nanocomplex was validated in both monolayers and 3D spheroid models of MDA-MB-231 breast cancer cells. Synergism was detected between the PCI effect and doxorubicin-loaded nanocomplex in the inhibition of MDA-MB-231 cells. In addition, the ArgPEA-ss-HA(AP) nanocomplex also provided enhanced intratumoral penetration in 3D spheroids compared to free AlPcS2a. The in vivo results suggested that the conjugation of AlPCs2a in the nanocomplex enabled the consistent and preferential accumulation of both doxorubicin and AlPcS2a in tumor sites. A light-enhanced anti-tumor effect was observed for the doxorubicin-loaded nanocomplex at well-tolerable dosage. The ArgPEA-ss-HA(AP) nanocomplex, as a reduction-responsive delivery vehicle, can hold great potential to achieve spatio-temporally controllable anti-tumor effects.
Collapse
Affiliation(s)
- Ying Ji
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14853-4401, USA.
| | - Juan Li
- Key Laboratory of Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, PR China
| | - Jihui Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Shuo Shan
- Biomedical Engineering Field. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853-4401, USA
| | - Chih-Chang Chu
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14853-4401, USA. and Biomedical Engineering Field. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853-4401, USA
| |
Collapse
|
10
|
Selective chemosensor phthalocyanines for Pd2+ ions; synthesis, characterization, quantum chemical calculation, photochemical and photophysical properties. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.094] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Dube E, Oluwole DO, Nwaji N, Nyokong T. Glycosylated zinc phthalocyanine-gold nanoparticle conjugates for photodynamic therapy: Effect of nanoparticle shape. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:85-95. [PMID: 29860172 DOI: 10.1016/j.saa.2018.05.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
In this work, we report on the synthesis of tris-[(2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methoxy)-2-(4-benzo[d]thiazol-2-ylphenoxyphthalocyaninato] zinc(II) (complex 3) and its linkage to gold nanoparticles (AuNPs) of different shapes through S-Au/N-Au self-assembly. The conjugates of complex 3 (with both gold nanorods (AuNR) and nanospheres (AuNS)), displayed decreased fluorescence quantum yield with corresponding improved triplet and singlet quantum yields compared to complex 3 alone, however 3-AuNR showed improved properties than 3-AuNS. Complex 3 showed relatively low in vitro dark cytotoxicity against the epithelial breast cancer cells with cell survival ≥ 85% at concentration ≤ 160 μg/mL but afforded reduced photodynamic therapy activity which may be due to aggregation. 3-AuNR afforded superior PDT activity with <50% viable cells at concentration ≥ 40 μg/mL in comparison to 3-AuNS with <50% viable cells at concentration ≥ 80 μg/mL. The superior activity of 3-AuNR is attributed to the photothermal therapy effect since nanorods absorb more light at 680 nm than nanospheres.
Collapse
Affiliation(s)
- Edith Dube
- Center for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - David O Oluwole
- Center for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Njemuwa Nwaji
- Center for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Tebello Nyokong
- Center for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
13
|
da Silva RN, Cunha Â, Tomé AC. Phthalocyanine–sulfonamide conjugates: Synthesis and photodynamic inactivation of Gram-negative and Gram-positive bacteria. Eur J Med Chem 2018; 154:60-67. [DOI: 10.1016/j.ejmech.2018.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/11/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022]
|
14
|
Ji Y, Zhao J, Chu CC. Enhanced MHC-I antigen presentation from the delivery of ovalbumin by light-facilitated biodegradable poly(ester amide)s nanoparticles. J Mater Chem B 2018; 6:1930-1942. [PMID: 32254359 DOI: 10.1039/c7tb03233a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The generation of CD8 T cells is crucial in adaptive immunity against cancer and many infectious diseases. Vaccines aimed to stimulate CD8 T cell response typically become ineffective because the antigens are subject to sequestration in endocytic compartments, instead of being delivered cytosolically for MHC-I processing and presentation. In this study, a nano-carrier (Arg-Phe-PEA(AP) nanoparticles) for ovalbumin (OVA) was developed from arginine- and phenylalanine-based poly(ester amide)s, which further formed an electrostatic complex with AlPcS2a, a typical photosensitizer for photochemical internalization (PCI) strategies. The nanocarrier significantly enhanced the internalization efficiency by dendritic cells of both OVA and AlPcS2a. The photochemical interruption of endocytic compartments by the AlPcS2a photosensitizer complexed in the nanocarrier enabled the light-facilitated endosomal escape of OVA. MHC-I presentation and CD8 T cell response were elicited by OVA-loaded Arg-Phe-PEA(AP) nanoparticles when light irradiation was applied at 660 nm. The light-facilitated delivery of OVA was dependent on the light dose and the concentration of the photosensitizer, both in vitro and in vivo. The optimized stimulation of MHC-I response demonstrated the potency of this light-facilitated nano-platform for CD8 T cell-inducing vaccination.
Collapse
Affiliation(s)
- Ying Ji
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14853-4401, USA
| | | | | |
Collapse
|
15
|
Pavani C, Francisco CML, Gobo NRS, de Oliveira KT, Baptista MS. Improved photodynamic activity of a dual phthalocyanine–ALA photosensitiser. NEW J CHEM 2016. [DOI: 10.1039/c6nj02073a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The higher efficiency of the dual photosensitiser is a consequence of the generation of two photosensitisers inside the cell, which are activated concomitantly.
Collapse
Affiliation(s)
- Christiane Pavani
- Programa de Pós-graduação em Biofotônica Aplicada às Ciências da Saúde
- Universidade Nove de Julho (UNINOVE)
- São Paulo
- Brazil
| | - Cláudia M. L. Francisco
- Programa de Pós-graduação em Biofotônica Aplicada às Ciências da Saúde
- Universidade Nove de Julho (UNINOVE)
- São Paulo
- Brazil
| | - Nicholas R. S. Gobo
- Departamento de Química
- Centro de Ciências Exatas e de Tecnologia - Universidade Federal de São Carlos
- São Carlos
- Brazil
| | - Kleber T. de Oliveira
- Departamento de Química
- Centro de Ciências Exatas e de Tecnologia - Universidade Federal de São Carlos
- São Carlos
- Brazil
| | - Mauricio S. Baptista
- Departamento de Bioquímica
- Instituto de Química – Universidade de São Paulo
- São Paulo
- Brazil
| |
Collapse
|
16
|
Ooyama Y, Enoki T, Ohshita J. Development of a D–π–A pyrazinium photosensitizer possessing singlet oxygen generation. RSC Adv 2016. [DOI: 10.1039/c5ra26647e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
(D–π–)2A pyrazinium dyes (OEJ-1 and OEJ-2) bearing a counter anion (X− = Br− or I−) have been newly developed as a photosensitizer possessing singlet oxygen (1O2) generation.
Collapse
Affiliation(s)
- Yousuke Ooyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Toshiaki Enoki
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Joji Ohshita
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| |
Collapse
|
17
|
|
18
|
Synthesis and Spectroscopic Evaluation of Two Novel Glycosylated Zinc(II)-Phthalocyanines. Molecules 2015; 20:18367-86. [PMID: 26473808 PMCID: PMC6332196 DOI: 10.3390/molecules201018367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022] Open
Abstract
In continuation of our work on glycoconjugated phthalocyanines, two new water soluble, non-ionic zinc(II) phthalocyanines have been prepared and fully characterized by means of ¹H-NMR, 13C-NMR, MALDI-TOF, ESI-TOF, UV-Vis spectroscopy, emission spectroscopy and fluorescence lifetime measurements. The carbohydrate-containing phthalonitrile precursors were synthesized through a copper-catalyzed azide-alkyne cycloaddition (CuAAC). The 2-methoxyethoxymethyl protecting group (MEM) was used to protect the carbohydrate moieties. It resisted the harsh basic cyclotetramerization conditions and could be easily cleaved under mild acidic conditions. The glycoconjugated zinc(II) phthalocyanines described here have molar extinction coefficents εmax>10⁵ m(-1) cm(-1) and absorption maxima λ>680 nm, which make them attractive photosensitizers for photo-dynamic therapy.
Collapse
|
19
|
Singh S, Aggarwal A, Bhupathiraju NVSDK, Arianna G, Tiwari K, Drain CM. Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics. Chem Rev 2015; 115:10261-306. [PMID: 26317756 PMCID: PMC6011754 DOI: 10.1021/acs.chemrev.5b00244] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sunaina Singh
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, New York 11101, United States
| | - Amit Aggarwal
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, New York 11101, United States
| | - N. V. S. Dinesh K. Bhupathiraju
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Gianluca Arianna
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Kirran Tiwari
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Charles Michael Drain
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
- The Rockefeller University, New York, New York 10065, United States
| |
Collapse
|
20
|
Crucius G, Hanack M, Ziegler T. Synthesis of Glycoconjugated Phthalonitriles for New Phthalocyanine-Based Photosensitizers. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Taratula O, Patel M, Schumann C, Naleway MA, Pang AJ, He H, Taratula O. Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial phototherapy. Int J Nanomedicine 2015; 10:2347-62. [PMID: 25848255 PMCID: PMC4378304 DOI: 10.2147/ijn.s81097] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We report a novel cancer-targeted nanomedicine platform for imaging and prospect for future treatment of unresected ovarian cancer tumors by intraoperative multimodal phototherapy. To develop the required theranostic system, novel low-oxygen graphene nanosheets were chemically modified with polypropylenimine dendrimers loaded with phthalocyanine (Pc) as a photosensitizer. Such a molecular design prevents fluorescence quenching of the Pc by graphene nanosheets, providing the possibility of fluorescence imaging. Furthermore, the developed nanoplatform was conjugated with poly(ethylene glycol), to improve biocompatibility, and with luteinizing hormone-releasing hormone (LHRH) peptide, for tumor-targeted delivery. Notably, a low-power near-infrared (NIR) irradiation of single wavelength was used for both heat generation by the graphene nanosheets (photothermal therapy [PTT]) and for reactive oxygen species (ROS)-production by Pc (photodynamic therapy [PDT]). The combinatorial phototherapy resulted in an enhanced destruction of ovarian cancer cells, with a killing efficacy of 90%-95% at low Pc and low-oxygen graphene dosages, presumably conferring cytotoxicity to the synergistic effects of generated ROS and mild hyperthermia. An animal study confirmed that Pc loaded into the nanoplatform can be employed as a NIR fluorescence agent for imaging-guided drug delivery. Hence, the newly developed Pc-graphene nanoplatform has the significant potential as an effective NIR theranostic probe for imaging and combinatorial phototherapy.
Collapse
Affiliation(s)
- Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Mehulkumar Patel
- Department of Chemistry, Rutgers University-Newark, Newark, NJ, USA
| | - Canan Schumann
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Michael A Naleway
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Addison J Pang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| | - Huixin He
- Department of Chemistry, Rutgers University-Newark, Newark, NJ, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA
| |
Collapse
|
22
|
Taratula O, Schumann C, Duong T, Taylor KL, Taratula O. Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy. NANOSCALE 2015; 7:3888-3902. [PMID: 25422147 DOI: 10.1039/c4nr06050d] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multifunctional theranostic platforms capable of concurrent near-infrared (NIR) fluorescence imaging and phototherapies are strongly desired for cancer diagnosis and treatment. However, the integration of separate imaging and therapeutic components into nanocarriers results in complex theranostic systems with limited translational potential. A single agent-based theranostic nanoplatform, therefore, was developed for concurrent NIR fluorescence imaging and combinatorial phototherapy with dual photodynamic (PDT) and photothermal (PTT) therapeutic mechanisms. The transformation of a substituted silicon naphthalocyanine (SiNc) into a biocompatible nanoplatform (SiNc-NP) was achieved by SiNc encapsulation into the hydrophobic interior of a generation 5 polypropylenimine dendrimer following surface modification with polyethylene glycol. Encapsulation provides aqueous solubility to SiNc and preserves its NIR fluorescence, PDT and PTT properties. Moreover, an impressive photostability in the dendrimer-encapsulated SiNc has been detected. Under NIR irradiation (785 nm, 1.3 W cm(-2)), SiNc-NP manifested robust heat generation capability (ΔT = 40 °C) and efficiently produced reactive oxygen species essential for PTT and PDT, respectively, without releasing SiNc from the nanopaltform. By varying the laser power density from 0.3 W cm(-2) to 1.3 W cm(-2) the therapeutic mechanism of SiNc-NP could be switched from PDT to combinatorial PDT-PTT treatment. In vitro and in vivo studies confirmed that phototherapy mediated by SiNc can efficiently destroy chemotherapy resistant ovarian cancer cells. Remarkably, solid tumors treated with a single dose of SiNc-NP combined with NIR irradiation were completely eradicated without cancer recurrence. Finally, the efficiency of SiNc-NP as an NIR imaging agent was confirmed by recording the strong fluorescence signal in the tumor, which was not photobleached during the phototherapeutic procedure.
Collapse
Affiliation(s)
- Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, USA.
| | | | | | | | | |
Collapse
|
23
|
Silva EPDO, Mittmann J, Ferreira VTP, Cardoso MAG, Beltrame M. Photodynamic effects of zinc phthalocyanines on intracellular amastigotes of Leishmania amazonensis and Leishmania braziliensis. Lasers Med Sci 2014; 30:347-54. [DOI: 10.1007/s10103-014-1665-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/17/2014] [Indexed: 12/22/2022]
|
24
|
Setaro F, Ruiz-González R, Nonell S, Hahn U, Torres T. Synthesis, photophysical studies and 1O2 generation of carboxylate-terminated zinc phthalocyanine dendrimers. J Inorg Biochem 2014; 136:170-6. [DOI: 10.1016/j.jinorgbio.2014.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 11/16/2022]
|
25
|
Horiuchi H, Hosaka M, Mashio H, Terata M, Ishida S, Kyushin S, Okutsu T, Takeuchi T, Hiratsuka H. Silylation improves the photodynamic activity of tetraphenylporphyrin derivatives in vitro and in vivo. Chemistry 2014; 20:6054-60. [PMID: 24710805 DOI: 10.1002/chem.201303120] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/29/2014] [Indexed: 11/06/2022]
Abstract
The effects of silyl and hydrophilic groups on the photodynamic properties of tetraphenylporphyrin (TPP) derivatives have been studied in vitro and in vivo. Silylation led to an improvement in the quantum yield of singlet oxygen sensitization for both sulfo and carboxy derivatives, although the silylation did not affect other photophysical properties. Silylation also improved the cellular uptake efficiency for both sulfo and carboxy derivatives, enhancing the in vitro photodynamic activity of the photosensitizer in U251 human glioma cells. The carboxy derivative (SiTPPC4 ) was found to show higher cellular uptake efficiency and in vitro photodynamic activity than the corresponding sulfo derivative (SiTPPS4 ), which indicates that the carboxy group is a more promising hydrophilic group than the sulfo group in the silylated porphyrin. SiTPPC4 was found to show high selective accumulation efficiency in tumors, although almost no tumor selectivity was observed for the nonsilylated porphyrin. The concentration of SiTPPC4 in tumors was 13 times higher than that in muscle 12 h after drug administration. We also studied tumor response after treatment and found that silylation enhanced in vivo photodynamic activity significantly. SiTPPC4 shows higher photodynamic activity than NPe6 with white light irradiation.
Collapse
Affiliation(s)
- Hiroaki Horiuchi
- Division of Molecular Science and International Education and Research Center for Silicon Science, Faculty of Science and Technology, Gunma University, Kiryu (Japan), Fax: (+81) 277-30-1244.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Saccharide substituted zinc phthalocyanines: optical properties, interaction with bovine serum albumin and near infrared fluorescence imaging for sentinel lymph nodes. Molecules 2014; 19:525-37. [PMID: 24451248 PMCID: PMC6272003 DOI: 10.3390/molecules19010525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/24/2013] [Accepted: 12/24/2013] [Indexed: 11/17/2022] Open
Abstract
Saccharide-substituted zinc phthalocyanines, [2,9(10),16(17),23(24)-tetrakis((1-(β-d-glucose-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)phthalocyaninato]zinc(II) and [2,9(10),16(17),23(24)-tetrakis((1-(β-d-lactose-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)phthalocyaninato]zinc(II), were evaluated as novel near infrared fluorescence agents. Their interaction with bovine serum albumin was investigated by fluorescence and circular dichroism spectroscopy and isothermal titration calorimetry. Near infrared imaging for sentinel lymph nodes in vivo was performed using nude mice as models. Results show that saccharide- substituted zinc phthalocyanines have favourable water solubility, good optical stability and high emission ability in the near infrared region. The interaction of lactose-substituted phthalocyanine with bovine serum albumin displays obvious differences to that of glucose- substituted phthalocyanine. Moreover, lactose-substituted phthalocyanine possesses obvious imaging effects for sentinel lymph nodes in vivo.
Collapse
|
27
|
Taratula O, Schumann C, Naleway MA, Pang AJ, Chon KJ, Taratula O. A Multifunctional Theranostic Platform Based on Phthalocyanine-Loaded Dendrimer for Image-Guided Drug Delivery and Photodynamic Therapy. Mol Pharm 2013; 10:3946-58. [DOI: 10.1021/mp400397t] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Olena Taratula
- Department of Pharmaceutical
Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Canan Schumann
- Department of Pharmaceutical
Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Michael A. Naleway
- Department of Pharmaceutical
Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Addison J. Pang
- Department of Pharmaceutical
Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kaitlyn J. Chon
- Department of Pharmaceutical
Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Oleh Taratula
- Department of Pharmaceutical
Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
28
|
Vummidi BR, Noreen F, Alzeer J, Moelling K, Luedtke NW. Photodynamic agents with anti-metastatic activities. ACS Chem Biol 2013; 8:1737-46. [PMID: 23672401 DOI: 10.1021/cb400008t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new concept in multifunctional anticancer agents is demonstrated. Tetrakis-(diisopropyl-guanidino) zinc phthalocyanine (Zn-DIGP) exhibits excellent properties as a photodynamic therapy (PDT) agent, as well as potential anti-metastatic activities in vivo. Zn-DIGP exhibits good cellular uptake and low toxicity in the dark (EC50 > 80 μM) and is well tolerated upon its intravenous injection into mice at 8 mg/kg. Upon photoexcitation with red laser light (660 nm), Zn-DIGP exhibits a high quantum yield for singlet oxygen formation (Φ ≈ 0.51) that results in potent phototoxicity to cell cultures (EC50 ≈ 0.16 μM). Zn-DIGP is also capable of inhibiting the formation of tumor colonies in the lungs of C57BL/6 mice injected with B16F10 cells. Zn-DIGP therefore inhibits cancer growth by both light-dependent and light-independent pathways. The anti-metastatic activities of Zn-DIGP possibly result from its ability to interfere with the signaling between chemokine CXCL10 and the G protein-coupled receptor CXCR3. Zn-DIGP is a competitive inhibitor of CXCR3 activation (IC50 = 3.8 μM) and selectively inhibits downstream events such as CXCL10-activated cell migration. Consistent with the presence of feedback regulation between CXCR3 binding and CXCL10 expression, Zn-DIGP causes overexpression of CXCL10. Interestingly, Zn-DIGP binds to CXCR3 without activating the receptor yet is able to cause endocytosis and degradation of this GPCR. To the best of our knowledge, Zn-DIGP is the first PDT agent that can facilitate the photodynamic treatment of primary tumors while simultaneously inhibiting the formation of metastatic tumor colonies by a light-independent mode of action.
Collapse
Affiliation(s)
- Balayeshwanth R. Vummidi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057
Zurich, Switzerland
| | - Faiza Noreen
- Institute
of Medical Virology, University of Zurich, Gloriastrasse 30, CH-8006 Zurich,
Switzerland
| | - Jawad Alzeer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057
Zurich, Switzerland
| | - Karin Moelling
- Institute
of Medical Virology, University of Zurich, Gloriastrasse 30, CH-8006 Zurich,
Switzerland
| | - Nathan W. Luedtke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057
Zurich, Switzerland
| |
Collapse
|
29
|
Mantareva V, Kril A, Dimitrov R, Wöhrle D, Angelov I. Selective photodynamic therapy induced by preirradiation of galactopyranosyl Zn(II) phthalocyanines with UV and red lights. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613500466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The challenging task in the photodynamic therapy is the optimization of the procedure in a way to reach maximal selectivity of the phototoxic effect to tumor vs. non-neoplastic cells. The present study explores the impact of the light exposure with harmless UV 365 nm and low intensity visible red 637 nm light during incubation period on the uptake, primary localization, re-localization and photocytotoxic effect of tetra-galactopyranosyl substituted Zn ( II ) phthalocyanines. The studies were carried out on cancer cells (MDA-MB-231) and on non-tumorigenic cells (Balb/c 3T3, clone 31). The experimentals suggested that in addition to the favorable chemical structure of the applied amphiphilic protected galactose Zn ( II ) phthalocyanines, the pretreatment with UV 365 nm and visible red 637 nm light applied prior therapeutic light, lead to selective phototoxic effects on tumor cells.
Collapse
Affiliation(s)
- Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, str. Bl. 9, 1113 Sofia, Bulgaria
| | - Anton Kril
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 25, 1113 Sofia, Bulgaria
| | - Rumen Dimitrov
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Dieter Wöhrle
- Institute of Organic and Macromolecular Chemistry, Bremen University, D-28 334 Bremen, Germany
| | - Ivan Angelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, str. Bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|