1
|
Catheter-Based Radiofrequency Renal Sympathetic Denervation Decreases Left Ventricular Hypertrophy in Hypertensive Dogs. Mediators Inflamm 2021; 2021:9938486. [PMID: 33986629 PMCID: PMC8093032 DOI: 10.1155/2021/9938486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/19/2023] Open
Abstract
This study explored the effects of renal sympathetic denervation (RDN) on hyperlipidity-induced cardiac hypertrophy in beagle dogs. Sixty beagles were randomly assigned to the control group, RDN group, or sham-operated group. The control group was fed with a basal diet, while the other two groups were given a high-fat diet to induce model hypertension. The RDN group underwent an RDN procedure, and the sham-operated group underwent only renal arteriography. At 1, 3, and 6 months after the RDN procedure, the diastolic blood pressure (DBP) and systolic blood pressure (SBP) levels were markedly decreased in the RDN group relative to the sham group (P < 0.05). After 6 months, serum norepinephrine (NE) and angiotensin II (AngII), as well as left ventricular levels, in the RDN group were statistically lower than those in the sham group (P < 0.05). Also, the left ventricular mass (LVM) and left ventricular mass index (LVMI) were significantly decreased, while the E/A peak ratio was drastically elevated (P < 0.05). Pathological examination showed that the degree of left ventricular hypertrophy and fibrosis in the RDN group was statistically decreased relative to those of the sham group and that the collagen volume fraction (CVF) and perivascular circumferential collagen area (PVCA) were also significantly reduced (P < 0.05). Renal sympathetic denervation not only effectively reduced blood pressure levels in hypertensive dogs but also reduced left ventricular hypertrophy and myocardial fibrosis and improved left ventricular diastolic function. The underlying mechanisms may involve a reduction of NE and AngII levels in the circulation and myocardial tissues, which would lead to the delayed occurrence of left ventricular remodeling.
Collapse
|
2
|
Bernardes N, Ayyappan P, De Angelis K, Bagchi A, Akolkar G, da Silva Dias D, Belló-Klein A, Singal PK. Excessive consumption of fructose causes cardiometabolic dysfunctions through oxidative stress and inflammation. Can J Physiol Pharmacol 2017; 95:1078-1090. [PMID: 28187269 DOI: 10.1139/cjpp-2016-0663] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A rapid rise in obesity, as well as physical inactivity, in industrialized countries is associated with fructose-consumption-mediated metabolic syndrome having a strong association with cardiovascular disease. Although insulin resistance is thought to be at the core, visceral obesity, hypertension, and hypertriglyceridemia are also considered important components of this metabolic disorder. In addition, various other abnormalities such as inflammation, oxidative stress, and elevated levels of uric acid are also part of this syndrome. Lifestyle changes through improved physical activity, as well as nutrition, are important approaches to minimize metabolic syndrome and its deleterious effects.
Collapse
Affiliation(s)
- Nathalia Bernardes
- a Universidade Nove de Julho, Diretoria de Mestrado, Av. Francisco Matatazzo, 612, 10 andar, Centro de Pos Graduacao Stricto Sensu, Barra Funda, Sao Paulo, Brazil
| | - Prathapan Ayyappan
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Katia De Angelis
- a Universidade Nove de Julho, Diretoria de Mestrado, Av. Francisco Matatazzo, 612, 10 andar, Centro de Pos Graduacao Stricto Sensu, Barra Funda, Sao Paulo, Brazil
| | - Ashim Bagchi
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Gauri Akolkar
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Danielle da Silva Dias
- a Universidade Nove de Julho, Diretoria de Mestrado, Av. Francisco Matatazzo, 612, 10 andar, Centro de Pos Graduacao Stricto Sensu, Barra Funda, Sao Paulo, Brazil
| | - Adriane Belló-Klein
- c Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Pawan K Singal
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
3
|
Bellows J, Colitz CMH, Daristotle L, Ingram DK, Lepine A, Marks SL, Sanderson SL, Tomlinson J, Zhang J. Defining healthy aging in older dogs and differentiating healthy aging from disease. J Am Vet Med Assoc 2016; 246:77-89. [PMID: 25517329 DOI: 10.2460/javma.246.1.77] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jan Bellows
- Pets Dental, 17100 Royal Palm, Weston, FL 33326
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Broussard JL, Nelson MD, Kolka CM, Bediako IA, Paszkiewicz RL, Smith L, Szczepaniak EW, Stefanovski D, Szczepaniak LS, Bergman RN. Rapid development of cardiac dysfunction in a canine model of insulin resistance and moderate obesity. Diabetologia 2016; 59:197-207. [PMID: 26376797 PMCID: PMC5310691 DOI: 10.1007/s00125-015-3767-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/26/2015] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS The worldwide incidence of obesity and diabetes continues to rise at an alarming rate. A major cause of the morbidity and mortality associated with obesity and diabetes is heart disease, yet the mechanisms that lead to cardiovascular complications remain unclear. METHODS We performed cardiac MRI to assess left ventricular morphology and function during the development of moderate obesity and insulin resistance in a well-established canine model (n = 26). To assess the influence of dietary fat composition, we randomised animals to a traditional lard diet (rich in saturated and monounsaturated fat; n = 12), a salmon oil diet (rich in polyunsaturated fat; n = 8) or a control diet (n = 6). RESULTS High-fat feeding with lard increased body weight and fasting insulin and markedly reduced insulin sensitivity. Lard feeding also significantly reduced left ventricular function, evidenced by a worsening of circumferential strain and impairment in left ventricular torsion. High-fat feeding with salmon oil increased body weight; however, salmon oil feeding did not impair insulin sensitivity or cardiac function. CONCLUSIONS/INTERPRETATION These data emphasise the importance of dietary fat composition on both metabolic and cardiac function, and have important implications for the relationship between diet and health.
Collapse
Affiliation(s)
- Josiane L Broussard
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Michael D Nelson
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cathryn M Kolka
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Isaac Asare Bediako
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Rebecca L Paszkiewicz
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Laura Smith
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edward W Szczepaniak
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Darko Stefanovski
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Lidia S Szczepaniak
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| |
Collapse
|
5
|
Early developmental exposure to high fructose intake in rats with NaCl stimulation causes cardiac damage. Eur J Nutr 2015; 55:83-91. [DOI: 10.1007/s00394-014-0826-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 12/17/2014] [Indexed: 12/18/2022]
|
6
|
Moraes-Silva IC, Mostarda C, Moreira ED, Silva KAS, dos Santos F, de Angelis K, Farah VDMA, Irigoyen MC. Preventive role of exercise training in autonomic, hemodynamic, and metabolic parameters in rats under high risk of metabolic syndrome development. J Appl Physiol (1985) 2013; 114:786-91. [PMID: 23329818 DOI: 10.1152/japplphysiol.00586.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High fructose consumption contributes to metabolic syndrome incidence, whereas exercise training promotes several beneficial adaptations. In this study, we demonstrated the preventive role of exercise training in the metabolic syndrome derangements in a rat model. Wistar rats receiving fructose overload in drinking water (100 g/l) were concomitantly trained on a treadmill (FT) or kept sedentary (F) for 10 wk. Control rats treated with normal water were also submitted to exercise training (CT) or sedentarism (C). Metabolic evaluations consisted of the Lee index and glycemia and insulin tolerance test (kITT). Blood pressure (BP) was directly measured, whereas heart rate (HR) and BP variabilities were evaluated in time and frequency domains. Renal sympathetic nerve activity was also recorded. F rats presented significant alterations compared with all the other groups in insulin resistance (in mg · dl(-1) · min(-1): F: 3.4 ± 0.2; C: 4.7 ± 0.2; CT: 5.0 ± 0.5 FT: 4.6 ± 0.4), mean BP (in mmHG: F: 117 ± 2; C: 100 ± 2; CT: 98 ± 2; FT: 105 ± 2), and Lee index (in g/mm: F = 0.31 ± 0.001; C = 0.29 ± 0.001; CT = 0.27 ± 0.002; FT = 0.28 ± 0.002), confirming the metabolic syndrome diagnosis. Exercise training blunted all these derangements. Additionally, FS group presented autonomic dysfunction in relation to the others, as seen by an ≈ 50% decrease in baroreflex sensitivity and 24% in HR variability, and increases in sympathovagal balance (140%) and in renal sympathetic nerve activity (45%). These impairments were not observed in FT group, as well as in C and CT. Correlation analysis showed that both Lee index and kITT were associated with vagal impairment caused by fructose. Therefore, exercise training plays a preventive role in both autonomic and hemodynamic alterations related to the excessive fructose consumption.
Collapse
|