1
|
Recio M, de la Torre J, Daddaoua A, Udaondo Z, Duque E, Gavira JA, López‐Sánchez C, Ramos JL. Characterization of an extremophile bacterial acid phosphatase derived from metagenomics analysis. Microb Biotechnol 2024; 17:e14404. [PMID: 38588312 PMCID: PMC11001196 DOI: 10.1111/1751-7915.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/10/2024] Open
Abstract
Acid phosphatases are enzymes that play a crucial role in the hydrolysis of various organophosphorous molecules. A putative acid phosphatase called FS6 was identified using genetic profiles and sequences from different environments. FS6 showed high sequence similarity to type C acid phosphatases and retained more than 30% of consensus residues in its protein sequence. A histidine-tagged recombinant FS6 produced in Escherichia coli exhibited extremophile properties, functioning effectively in a broad pH range between 3.5 and 8.5. The enzyme demonstrated optimal activity at temperatures between 25 and 50°C, with a melting temperature of 51.6°C. Kinetic parameters were determined using various substrates, and the reaction catalysed by FS6 with physiological substrates was at least 100-fold more efficient than with p-nitrophenyl phosphate. Furthermore, FS6 was found to be a decamer in solution, unlike the dimeric forms of crystallized proteins in its family.
Collapse
Affiliation(s)
- Maria‐Isabel Recio
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental ProtectionGranadaSpain
| | - Jesús de la Torre
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental ProtectionGranadaSpain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Pharmacy SchoolGranada UniversityGranadaSpain
| | - Zulema Udaondo
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Estrella Duque
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental ProtectionGranadaSpain
| | - José Antonio Gavira
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencias de la TierraGranadaSpain
| | - Carmen López‐Sánchez
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencias de la TierraGranadaSpain
| | - Juan L. Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental ProtectionGranadaSpain
| |
Collapse
|
2
|
Yu L, Cao Q, Chen W, Yang N, Yang CG, Ji Q, Wu M, Bae T, Lan L. A novel copper-sensing two-component system for inducing Dsb gene expression in bacteria. Sci Bull (Beijing) 2022; 67:198-212. [PMID: 36546013 DOI: 10.1016/j.scib.2021.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 01/06/2023]
Abstract
In nature, bacteria must sense copper and tightly regulate gene expression to evade copper toxicity. Here, we identify a new copper-responsive two-component system named DsbRS in the important human pathogen Pseudomonas aeruginosa; in this system, DsbS is a sensor histidine kinase, and DsbR, its cognate response regulator, directly induces the transcription of genes involved in protein disulfide bond formation (Dsb) (i.e., the dsbDEG operon and dsbB). In the absence of copper, DsbS acts as a phosphatase toward DsbR, thus blocking the transcription of Dsb genes. In the presence of copper, the metal ion directly binds to the sensor domain of DsbS, and the Cys82 residue plays a critical role in this process. The copper-binding behavior appears to inhibit the phosphatase activity of DsbS, leading to the activation of DsbR. The copper resistance of the dsbRS knock-out mutant is restored by the ectopic expression of the dsbDEG operon, which is a DsbRS major target. Strikingly, cognates of the dsbRS-dsbDEG pair are widely distributed across eubacteria. In addition, a DsbR-binding site, which contains the consensus sequence 5'-TTA-N8-TTAA-3', is detected in the promoter region of dsbDEG homologs in these species. These findings suggest that the regulation of Dsb genes by DsbRS represents a novel mechanism by which bacterial cells cope with copper stress.
Collapse
Affiliation(s)
- Liang Yu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiao Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weizhong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Nana Yang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cai-Guang Yang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks ND 58203-9037, USA
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary IN 46408, USA
| | - Lefu Lan
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China.
| |
Collapse
|
3
|
Measurements of Protein-DNA Complexes Interactions by Isothermal Titration Calorimetry (ITC) and Microscale Thermophoresis (MST). Methods Mol Biol 2021; 2247:125-143. [PMID: 33301115 DOI: 10.1007/978-1-0716-1126-5_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interactions between protein complexes and DNA are central regulators of the cell life. They control the activation and inactivation of a large set of nuclear processes including transcription, replication, recombination, repair, and chromosome structures. In the literature, protein-DNA interactions are characterized by highly complementary approaches including large-scale studies and analyses in cells. Biophysical approaches with purified materials help to evaluate if these interactions are direct or not. They provide quantitative information on the strength and specificity of the interactions between proteins or protein complexes and their DNA substrates. Isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) are widely used and are complementary methods to characterize nucleo-protein complexes and quantitatively measure protein-DNA interactions. We present here protocols to analyze the interactions between a DNA repair complex, Ku70-Ku80 (Ku) (154 kDa), and DNA substrates. ITC is a label-free method performed with both partners in solution. It serves to determine the dissociation constant (Kd), the enthalpy (ΔH), and the stoichiometry N of an interaction. MST is used to measure the Kd between the protein or the DNA labeled with a fluorescent probe. We report the data obtained on Ku-DNA interactions with ITC and MST and discuss advantages and drawbacks of both the methods.
Collapse
|
4
|
Matilla MA, Martín-Mora D, Krell T. The use of isothermal titration calorimetry to unravel chemotactic signalling mechanisms. Environ Microbiol 2020; 22:3005-3019. [PMID: 32329116 DOI: 10.1111/1462-2920.15035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Chemotaxis is based on the action of chemosensory pathways and is typically initiated by the recognition of chemoeffectors at chemoreceptor ligand-binding domains (LBD). Chemosensory signalling is highly complex; aspect that is not only reflected in the intricate interaction between many signalling proteins but also in the fact that bacteria frequently possess multiple chemosensory pathways and often a large number of chemoreceptors, which are mostly of unknown function. We review here the usefulness of isothermal titration calorimetry (ITC) to study this complexity. ITC is the gold standard for studying binding processes due to its precision and sensitivity, as well as its capability to determine simultaneously the association equilibrium constant, enthalpy change and stoichiometry of binding. There is now evidence that members of all major LBD families can be produced as individual recombinant proteins that maintain their ligand-binding properties. High-throughput screening of these proteins using thermal shift assays offer interesting initial information on chemoreceptor ligands, providing the basis for microcalorimetric analyses and microbiological experimentation. ITC has permitted the identification and characterization of many chemoreceptors with novel specificities. This ITC-based approach can also be used to identify signal molecules that stimulate members of other families of sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
5
|
Semenova MV, Gusakov AV, Telitsin VD, Rozhkova AM, Kondratyeva EG, Sinitsyn AP. Purification and characterization of two forms of the homologously expressed lytic polysaccharide monooxygenase (PvLPMO9A) from Penicillium verruculosum. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140297. [DOI: 10.1016/j.bbapap.2019.140297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/17/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
|
6
|
Martín-Mora D, Fernández M, Velando F, Ortega Á, Gavira JA, Matilla MA, Krell T. Functional Annotation of Bacterial Signal Transduction Systems: Progress and Challenges. Int J Mol Sci 2018; 19:ijms19123755. [PMID: 30486299 PMCID: PMC6321045 DOI: 10.3390/ijms19123755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023] Open
Abstract
Bacteria possess a large number of signal transduction systems that sense and respond to different environmental cues. Most frequently these are transcriptional regulators, two-component systems and chemosensory pathways. A major bottleneck in the field of signal transduction is the lack of information on signal molecules that modulate the activity of the large majority of these systems. We review here the progress made in the functional annotation of sensor proteins using high-throughput ligand screening approaches of purified sensor proteins or individual ligand binding domains. In these assays, the alteration in protein thermal stability following ligand binding is monitored using Differential Scanning Fluorimetry. We illustrate on several examples how the identification of the sensor protein ligand has facilitated the elucidation of the molecular mechanism of the regulatory process. We will also discuss the use of virtual ligand screening approaches to identify sensor protein ligands. Both approaches have been successfully applied to functionally annotate a significant number of bacterial sensor proteins but can also be used to study proteins from other kingdoms. The major challenge consists in the study of sensor proteins that do not recognize signal molecules directly, but that are activated by signal molecule-loaded binding proteins.
Collapse
Affiliation(s)
- David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Murcia, Spain.
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, IACT, (CSIC-UGR), Avenida las Palmeras 4, 18100 Armilla, Spain.
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
7
|
The activity of the C4-dicarboxylic acid chemoreceptor of Pseudomonas aeruginosa is controlled by chemoattractants and antagonists. Sci Rep 2018; 8:2102. [PMID: 29391435 PMCID: PMC5795001 DOI: 10.1038/s41598-018-20283-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/15/2018] [Indexed: 11/10/2022] Open
Abstract
Chemotaxis toward organic acids has been associated with colonization fitness and virulence and the opportunistic pathogen Pseudomonas aeruginosa exhibits taxis toward several tricarboxylic acid intermediates. In this study, we used high-throughput ligand screening and isothermal titration calorimetry to demonstrate that the ligand binding domain (LBD) of the chemoreceptor PA2652 directly recognizes five C4-dicarboxylic acids with KD values ranging from 23 µM to 1.24 mM. In vivo experimentation showed that three of the identified ligands act as chemoattractants whereas two of them behave as antagonists by inhibiting the downstream chemotaxis signalling cascade. In vitro and in vivo competition assays showed that antagonists compete with chemoattractants for binding to PA2652-LBD, thereby decreasing the affinity for chemoattractants and the subsequent chemotactic response. Two chemosensory pathways encoded in the genome of P. aeruginosa, che and che2, have been associated to chemotaxis but we found that only the che pathway is involved in PA2652-mediated taxis. The receptor PA2652 is predicted to contain a sCACHE LBD and analytical ultracentrifugation analyses showed that PA2652-LBD is dimeric in the presence and the absence of ligands. Our results indicate the feasibility of using antagonists to interfere specifically with chemotaxis, which may be an alternative strategy to fight bacterial pathogens.
Collapse
|
8
|
Wang G, Bondarenko PV, Kaltashov IA. Multi-step conformational transitions in heat-treated protein therapeutics can be monitored in real time with temperature-controlled electrospray ionization mass spectrometry. Analyst 2018; 143:670-677. [PMID: 29303166 DOI: 10.1039/c7an01655g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heat-induced conformational transitions are frequently used to probe the free energy landscapes of proteins. However, the extraction of information from thermal denaturation profiles pertaining to non-native protein conformations remains challenging due to their transient nature and significant conformational heterogeneity. Previously we developed a temperature-controlled electrospray ionization (ESI) source that allowed unfolding and association of biopolymers to be monitored by mass spectrometry (MS) in real time as a function of temperature. The scope of this technique is now extended to systems that undergo multi-step denaturation upon heat stress, as well as relatively small-scale conformational changes that are precursors to protein aggregation. The behavior of two therapeutic proteins (human antithrombin and an IgG1 monoclonal antibody) under heat-stress conditions is monitored in real time, providing evidence that relatively small-scale conformational changes in each system lead to protein oligomerization, followed by aggregation. Temperature-controlled ESI MS is particularly useful for the studies of heat-stressed multi-domain proteins such as IgG, where it allows distinct transitions to be observed. The ability of native temperature-controlled ESI MS to monitor both the conformational changes and oligomerization/degradation with high selectivity complements the classic calorimetric methods, lending itself as a powerful experimental tool for the thermostability studies of protein therapeutics.
Collapse
Affiliation(s)
- Guanbo Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, China.
| | - Pavel V Bondarenko
- Attribute Sciences, Process Development, Amgen, Inc., Thousand Oaks, CA, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| |
Collapse
|
9
|
Fernández M, Ortega Á, Rico-Jiménez M, Martín-Mora D, Daddaoua A, Matilla MA, Krell T. High-Throughput Screening to Identify Chemoreceptor Ligands. Methods Mol Biol 2018; 1729:291-301. [PMID: 29429099 DOI: 10.1007/978-1-4939-7577-8_23] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The majority of bacterial chemoreceptors remain functionally un-annotated. The knowledge of chemoreceptor function, however, is indispensable to understanding the evolution of the chemotaxis system in bacteria with different lifestyles. Significant progress in the annotation of chemoreceptor function has been made using experimental strategies that are based on the individual, genetically engineered ligand binding domain (LBD) of chemoreceptors. There is now evidence that all major classes of LBDs can be produced as individual domains that retain their ligand binding activity. Here, we provide a protocol for the combined use of high-throughput ligand screening using Differential Scanning Fluorimetry followed by Isothermal Titration Calorimetry to identify and characterize ligands that bind to recombinant chemoreceptor LBDs. This approach has been shown to be very efficient for determining the function of novel chemoreceptors.
Collapse
Affiliation(s)
- Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Álvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miriam Rico-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Abdelali Daddaoua
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
10
|
Matilla MA, Krell T. Chemoreceptor-based signal sensing. Curr Opin Biotechnol 2017; 45:8-14. [PMID: 28088095 DOI: 10.1016/j.copbio.2016.11.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/03/2016] [Accepted: 11/10/2016] [Indexed: 01/02/2023]
Abstract
Chemoreceptors are at the beginning of chemosensory signaling cascades that correspond to a major signal transduction mechanism. Chemoreceptors show a significant structural diversity of their ligand binding domains which present either a mono-modular or bi-modular arrangement. Although the majority of chemoreceptors are of unknown function, significant progress has been made in recent years in their functional annotation, which is reviewed here. In vitro ligand binding studies to recombinant ligand binding domains proved to be an efficient strategy to identify chemoreceptor functions. Obtained information is consistent with the view that a major driving force for the evolution of chemotaxis is to access carbon and nitrogen sources. The use of the newly generated information for the construction of biosensors is discussed.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008 Granada, Spain.
| |
Collapse
|
11
|
Bararunyeretse P, Yao J, Dai Y, Bigawa S, Guo Z, Zhu M. Toxic effect of two kinds of mineral collectors on soil microbial richness and activity: analysis by microcalorimetry, microbial count, and enzyme activity assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1565-1577. [PMID: 27785723 DOI: 10.1007/s11356-016-7905-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Flotation reagents are hugely and increasingly used in mining and other industrial and economic activities from which an important part is discharged into the environment. China could be the most affected country by the resulting pollution. However, their ecotoxicological dimension is still less addressed and understood. This study aimed to analyze the toxic effect of sodium isobutyl xanthate (SIBX) and sodium isopropyl xanthate (SIPX) to soil microbial richness and activity and to make a comparison between the two compounds in regard to their effects on soil microbial and enzymes activities. Different methods, including microcalorimetry, viable cell counts, cell density, and catalase and fluorescein diacetate (FDA) hydrololase activities measurement, were applied. The two chemicals exhibited a significant inhibitory effect (P < 0.05 or P < 0.01) to all parameters, SIPX being more adverse than SIBX. As the doses of SIBX and SIPX increased from 5 to 300 μg g-1 soil, their inhibitory ratio ranged from 4.84 to 45.16 % and from 16.13 to 69.68 %, respectively. All parameters fluctuated with the incubation time (10-day period). FDA hydrolysis was more directly affected but was relatively more resilient than catalase activity. Potential changes of those chemicals in the experimental media and complementarity between experimental techniques were justified.
Collapse
Affiliation(s)
- Prudence Bararunyeretse
- School of Energy and Environmental Engineering and National International Cooperation Base on Environmental and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, People's Republic of China
| | - Jun Yao
- School of Energy and Environmental Engineering and National International Cooperation Base on Environmental and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, People's Republic of China.
- School of water resource and Environment Engineering, Sino-Hungarian Joint laboratory of Environmental Science and Health, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Yunrong Dai
- School of water resource and Environment Engineering, Sino-Hungarian Joint laboratory of Environmental Science and Health, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Samuel Bigawa
- Faculty of Sciences, Biology Department, University of Burundi, Bujumbura, Burundi
| | - Zunwei Guo
- School of Energy and Environmental Engineering and National International Cooperation Base on Environmental and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, People's Republic of China
| | - Mijia Zhu
- School of Energy and Environmental Engineering and National International Cooperation Base on Environmental and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, People's Republic of China
| |
Collapse
|
12
|
Martín-Mora D, Ortega A, Reyes-Darias JA, García V, López-Farfán D, Matilla MA, Krell T. Identification of a Chemoreceptor in Pseudomonas aeruginosa That Specifically Mediates Chemotaxis Toward α-Ketoglutarate. Front Microbiol 2016; 7:1937. [PMID: 27965656 PMCID: PMC5126104 DOI: 10.3389/fmicb.2016.01937] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an ubiquitous pathogen able to infect humans, animals, and plants. Chemotaxis was found to be associated with the virulence of this and other pathogens. Although established as a model for chemotaxis research, the majority of the 26 P. aeruginosa chemoreceptors remain functionally un-annotated. We report here the identification of PA5072 (named McpK) as chemoreceptor for α-ketoglutarate (αKG). High-throughput thermal shift assays and isothermal titration calorimetry studies (ITC) of the recombinant McpK ligand binding domain (LBD) showed that it recognizes exclusively α-ketoglutarate. The ITC analysis indicated that the ligand bound with positive cooperativity (Kd1 = 301 μM, Kd2 = 81 μM). McpK is predicted to possess a helical bimodular (HBM) type of LBD and this and other studies suggest that this domain type may be associated with the recognition of organic acids. Analytical ultracentrifugation (AUC) studies revealed that McpK-LBD is present in monomer-dimer equilibrium. Alpha-KG binding stabilized the dimer and dimer self-dissociation constants of 55 μM and 5.9 μM were derived for ligand-free and αKG-bound forms of McpK-LBD, respectively. Ligand-induced LBD dimer stabilization has been observed for other HBM domain containing receptors and may correspond to a general mechanism of this protein family. Quantitative capillary chemotaxis assays demonstrated that P. aeruginosa showed chemotaxis to a broad range of αKG concentrations with maximal responses at 500 μM. Deletion of the mcpK gene reduced chemotaxis over the entire concentration range to close to background levels and wild type like chemotaxis was recovered following complementation. Real-time PCR studies indicated that the presence of αKG does not modulate mcpK expression. Since αKG is present in plant root exudates it was investigated whether the deletion of mcpK altered maize root colonization. However, no significant changes with respect to the wild type strain were observed. The existence of a chemoreceptor specific for αKG may be due to its central metabolic role as well as to its function as signaling molecule. This work expands the range of known chemoreceptor types and underlines the important physiological role of chemotaxis toward tricarboxylic acid cycle intermediates.
Collapse
Affiliation(s)
- David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Alvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - José A Reyes-Darias
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Vanina García
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Diana López-Farfán
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| |
Collapse
|
13
|
Zhang K, Wu G, Tang H, Hu C, Shi T, Xu P. Structural basis for the transcriptional repressor NicR2 in nicotine degradation from Pseudomonas. Mol Microbiol 2016; 103:165-180. [PMID: 27741553 DOI: 10.1111/mmi.13548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2016] [Indexed: 01/03/2023]
Abstract
Nicotine is an environmental toxicant in tobacco wastes, imposing severe hazards for the health of human and other mammalians. NicR2, a TetR-like repressor from Pseudomonas putida S16, plays a critical role in regulating nicotine degradation. Here, we determined the crystal structures of NicR2 and its complex with the inducer 6-hydroxy-3-succinoyl-pyridine (HSP). The N-terminal domain of NicR2 contains a conserved helix-turn-helix (HTH) DNA-binding motif, while the C-terminal domain contains a cleft for its selective recognition for HSP. Residues R91, Y114 and Q118 of NicR2 form hydrogen bonds with HSP, their indispensable roles in NicR2's recognition with HSP were confirmed by structure-based mutagenesis combined with isothermal titration calorimetry analysis. Based on sequence alignment and structure comparison, Tyr67, Tyr68 and Lys72 of HTH motif were corroborated to take the major responsibility for DNA-binding using site-directed mutants. The 30-residue N-terminal extension of NicR2, especially residues 21-30 in the TFR arm, is required for the association with the operator DNA. Finally, we proposed that either NicR2 or the DNA would undergo a conformational change upon their association. Altogether, our structural and biochemical investigations unravel how NicR2 selectively recognizes HSP and DNA, and provide new insights into the TetR family of repressors.
Collapse
Affiliation(s)
- Kunzhi Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Chuanming Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
14
|
Corral Lugo A, Daddaoua A, Ortega A, Morel B, Díez Peña AI, Espinosa-Urgel M, Krell T. Purification and characterization of Pseudomonas aeruginosa LasR expressed in acyl-homoserine lactone free Escherichia coli cultures. Protein Expr Purif 2016; 130:107-114. [PMID: 27756565 DOI: 10.1016/j.pep.2016.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/06/2016] [Accepted: 10/14/2016] [Indexed: 11/25/2022]
Abstract
Quorum sensing systems are essential for bacterial communication. We report here the purification and characterization of the Pseudomonas aeruginosa LasR quorum sensing regulator purified from lysates of E. coli cultures grown in the absence of added acyl-homoserine lactones (AHL). We show by isothermal titration calorimetry that LasR recognizes different AHLs with an affinity of approximately 1 μM. The affinity of LasR for its cognate 3-Oxo-C12-AHL was similar to that of other AHLs, indicating that this regulator has not evolved to preferentially recognize its cognate AHL. The α-helical content as determined by CD spectroscopy was found to be in agreement with the corresponding value derived from the homology model. Analytical ultracentrifugation studies show that LasR is a mixture of monomers and dimers and that AHL binding does not alter its oligomeric state. Thermal unfolding studies indicate that LasR has a significant thermal stability and that AHL binding does not significantly alter the unfolding temperature. Two LasR-DNA complexes were observed in electrophoretic mobility shift assays using the hcnABC promoter that has two lux boxes. Taken together, data indicate that the presence of AHLs is not a requisite for correct LasR protein folding. The protein is able to bind AHL ligands in a reversible manner, revising initial concepts of this regulator. The availability of AHL-free protein will permit further studies to determine more precisely its mode of action.
Collapse
Affiliation(s)
- Andrés Corral Lugo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Abdelali Daddaoua
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Alvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Bertrand Morel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Ana Isabel Díez Peña
- Department of Physical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30071 Murcia, Spain
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain.
| |
Collapse
|
15
|
Paralogous Regulators ArsR1 and ArsR2 of Pseudomonas putida KT2440 as a Basis for Arsenic Biosensor Development. Appl Environ Microbiol 2016; 82:4133-4144. [PMID: 27208139 DOI: 10.1128/aem.00606-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The remarkable metal resistance of many microorganisms is related to the presence of multiple metal resistance operons. Pseudomonas putida KT2440 can be considered a model for these microorganisms since its arsenic resistance is due to the action of proteins encoded by the two paralogous arsenic resistance operons ARS1 and ARS2. Both operons contain the genes encoding the transcriptional regulators ArsR1 and ArsR2 that control operon expression. We show here that purified ArsR1 and ArsR2 bind the trivalent salt of arsenic (arsenite) with similar affinities (~30 μM), whereas no binding is observed for the pentavalent salt (arsenate). Furthermore, trivalent salts of bismuth and antimony showed binding to both paralogues. The positions of cysteines, found to bind arsenic in other homologues, indicate that ArsR1 and ArsR2 employ different modes of arsenite recognition. Both paralogues are dimeric and possess significant thermal stability. Both proteins were used to construct whole-cell, lacZ-based biosensors. Whereas responses to bismuth were negligible, significant responses were observed for arsenite, arsenate, and antimony. Biosensors based on the P. putida arsB1 arsB2 arsenic efflux pump double mutant were significantly more sensitive than biosensors based on the wild-type strain. This sensitivity enhancement by pump mutation may be a convenient strategy for the construction of other biosensors. A frequent limitation found for other arsenic biosensors was their elevated background signal and interference by inorganic phosphate. The constructed biosensors show no interference by inorganic phosphate, are characterized by a very low background signal, and were found to be suitable to analyze environmental samples. IMPORTANCE Arsenic is at the top of the priority list of hazardous compounds issued by the U.S. Agency for Toxic Substances and Disease. The reason for the stunning arsenic resistance of many microorganisms is the existence of paralogous arsenic resistance operons. Pseudomonas putida KT2440 is a model organism for such bacteria, and their duplicated ars operons and in particular their ArsR transcription regulators have been studied in depth by in vivo approaches. Here we present an analysis of both purified ArsR paralogues by different biophysical techniques, and data obtained provide valuable insight into their structure and function. Particularly insightful was the comparison of ArsR effector profiles determined by in vitro and in vivo experimentation. We also report the use of both paralogues to construct robust and highly sensitive arsenic biosensors. Our finding that the deletion of both arsenic efflux pumps significantly increases biosensor sensitivity is of general relevance in the biosensor field.
Collapse
|
16
|
Huang Z, Ni B, Jiang CY, Wu YF, He YZ, Parales RE, Liu SJ. Direct sensing and signal transduction during bacterial chemotaxis toward aromatic compounds inComamonas testosteroni. Mol Microbiol 2016; 101:224-37. [DOI: 10.1111/mmi.13385] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Zhou Huang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Bin Ni
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- IMCAS-RCEECAS Joint Laboratory for Environmental Microbial Technology; Beijing China
| | - Yu-Fan Wu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yun-Zhe He
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Rebecca E. Parales
- Department of Microbiology and Molecular Genetics; University of California; Davis CA 95616 USA
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
- IMCAS-RCEECAS Joint Laboratory for Environmental Microbial Technology; Beijing China
| |
Collapse
|
17
|
Guo Z, Yao J, Wang F, Yuan Z, Bararunyeretse P, Zhao Y. Effect of three typical sulfide mineral flotation collectors on soil microbial activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7425-7436. [PMID: 26695417 DOI: 10.1007/s11356-015-5899-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
The sulfide mineral flotation collectors are wildly used in China, whereas their toxic effect on soil microbial activity remains largely unexplored. In this study, isothermal microcalorimetric technique and soil enzyme assay techniques were employed to investigate the toxic effect of typical sulfide mineral flotation collectors on soil microbial activity. Soil samples were treated with different concentrations (0-100 μg•g - 1 soil) of butyl xanthate, butyl dithiophosphate, and sodium diethyldithiocarbamate. Results showed a significant adverse effect of butyl xanthate (p < 0.05), butyl dithiophosphate, and sodium diethyldithiocarbamate (p < 0.01) on soil microbial activity. The growth rate constants k decreased along with the increase of flotation collectors concentration from 20.0 to 100.0 μg•g(-1). However, the adverse effects of these three floatation collectors showed significant difference. The IC 20 of the investigated flotation reagents followed such an order: IC 20 (butyl xanthate) > IC 20 (sodium diethyldithiocarbamate) > IC 20 (butyl dithiophosphate) with their respective inhibitory concentration as 47.03, 38.36, and 33.34 μg•g(-1). Besides, soil enzyme activities revealed that these three flotation collectors had an obvious effect on fluorescein diacetate hydrolysis (FDA) enzyme and catalase (CAT) enzyme. The proposed methods can provide meaningful toxicological information of flotation reagents to soil microbes in the view of metabolism and biochemistry, which are consistent and correlated to each other.
Collapse
Affiliation(s)
- Zunwei Guo
- School of Civil and Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, People's Republic of China
| | - Jun Yao
- School of Civil and Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, People's Republic of China.
| | - Fei Wang
- School of Civil and Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, People's Republic of China
| | - Zhimin Yuan
- School of Civil and Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, People's Republic of China
| | - P Bararunyeretse
- School of Civil and Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, People's Republic of China
| | - Yue Zhao
- School of Civil and Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, People's Republic of China
| |
Collapse
|
18
|
Corral-Lugo A, De la Torre J, Matilla MA, Fernández M, Morel B, Espinosa-Urgel M, Krell T. Assessment of the contribution of chemoreceptor-based signalling to biofilm formation. Environ Microbiol 2016; 18:3355-3372. [PMID: 26662997 DOI: 10.1111/1462-2920.13170] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/30/2015] [Indexed: 12/01/2022]
Abstract
Although it is well established that one- and two-component regulatory systems participate in regulating biofilm formation, there also exists evidence suggesting that chemosensory pathways are also involved. However, little information exists about which chemoreceptors and signals modulate this process. Here we report the generation of the complete set of chemoreceptor mutants of Pseudomonas putida KT2440 and the identification of four mutants with significantly altered biofilm phenotypes. These receptors are a WspA homologue of Pseudomonas aeruginosa, previously identified to control biofilm formation by regulating c-di-GMP levels, and three uncharacterized chemoreceptors. One of these receptors, named McpU, was found to mediate chemotaxis towards different polyamines. The functional annotation of McpU was initiated by high-throughput thermal shift assays of the receptor ligand binding domain (LBD). Isothermal titration calorimetry showed that McpU-LBD specifically binds putrescine, cadaverine and spermidine, indicating that McpU represents a novel chemoreceptor type. Another uncharacterized receptor, named McpA, specifically binds 12 different proteinogenic amino acids and mediates chemotaxis towards these compounds. We also show that mutants in McpU and WspA-Pp have a significantly reduced ability to colonize plant roots. Data agree with other reports showing that polyamines are signal molecules involved in the regulation of bacteria-plant communication and biofilm formation.
Collapse
Affiliation(s)
- Andrés Corral-Lugo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Jesús De la Torre
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Bertrand Morel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
19
|
Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ. Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods. Int J Mol Sci 2016; 17:ijms17020144. [PMID: 26821017 PMCID: PMC4783878 DOI: 10.3390/ijms17020144] [Citation(s) in RCA: 742] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 01/16/2023] Open
Abstract
Molecular recognition, which is the process of biological macromolecules interacting with each other or various small molecules with a high specificity and affinity to form a specific complex, constitutes the basis of all processes in living organisms. Proteins, an important class of biological macromolecules, realize their functions through binding to themselves or other molecules. A detailed understanding of the protein–ligand interactions is therefore central to understanding biology at the molecular level. Moreover, knowledge of the mechanisms responsible for the protein-ligand recognition and binding will also facilitate the discovery, design, and development of drugs. In the present review, first, the physicochemical mechanisms underlying protein–ligand binding, including the binding kinetics, thermodynamic concepts and relationships, and binding driving forces, are introduced and rationalized. Next, three currently existing protein-ligand binding models—the “lock-and-key”, “induced fit”, and “conformational selection”—are described and their underlying thermodynamic mechanisms are discussed. Finally, the methods available for investigating protein–ligand binding affinity, including experimental and theoretical/computational approaches, are introduced, and their advantages, disadvantages, and challenges are discussed.
Collapse
Affiliation(s)
- Xing Du
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
| | - Yi Li
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
| | - Yuan-Ling Xia
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
| | - Shi-Meng Ai
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
- Department of Applied Mathematics, Yunnan Agricultural University, Kunming 650201, China.
| | - Jing Liang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
| | - Peng Sang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Xing-Lai Ji
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
- Key Laboratory for Tumor molecular biology of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming 650091, China.
| | - Shu-Qun Liu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China.
- Key Laboratory for Tumor molecular biology of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
20
|
Study of rabies virus by Differential Scanning Calorimetry. Biochem Biophys Rep 2015; 4:329-336. [PMID: 29124221 PMCID: PMC5669403 DOI: 10.1016/j.bbrep.2015.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/25/2022] Open
Abstract
Differential Scanning Calorimetry (DSC) has been used in the past to study the thermal unfolding of many different viruses. Here we present the first DSC analysis of rabies virus. We show that non-inactivated, purified rabies virus unfolds cooperatively in two events centered at approximately 62 and 73 °C. Beta-propiolactone (BPL) treatment does not alter significantly viral unfolding behavior, indicating that viral inactivation does not alter protein structure significantly. The first unfolding event was absent in bromelain treated samples, causing an elimination of the G-protein ectodomain, suggesting that this event corresponds to G-protein unfolding. This hypothesis was confirmed by the observation that this first event was shifted to higher temperatures in the presence of three monoclonal, G-protein specific antibodies. We show that dithiothreitol treatment of the virus abolishes the first unfolding event, indicating that the reduction of G-protein disulfide bonds causes dramatic alterations to protein structure. Inactivated virus samples heated up to 70 °C also showed abolished recognition of conformational G-protein specific antibodies by Surface Plasmon Resonance analysis. The sharpness of unfolding transitions and the low standard deviations of the Tm values as derived from multiple analysis offers the possibility of using this analytical tool for efficient monitoring of the vaccine production process and lot to lot consistency. Differential Scanning Calorimetry analysis of rabies virus. Rabies virus unfolds in two thermal events. The first event corresponds to G-protein.
Collapse
|
21
|
Martín-Mora D, Reyes-Darias JA, Ortega Á, Corral-Lugo A, Matilla MA, Krell T. McpQ is a specific citrate chemoreceptor that responds preferentially to citrate/metal ion complexes. Environ Microbiol 2015; 18:3284-3295. [DOI: 10.1111/1462-2920.13030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 08/11/2015] [Accepted: 08/15/2015] [Indexed: 02/05/2023]
Affiliation(s)
- David Martín-Mora
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| | - Jose-Antonio Reyes-Darias
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| | - Álvaro Ortega
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| | - Andrés Corral-Lugo
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| | - Miguel A. Matilla
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| | - Tino Krell
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 18008 Granada Spain
| |
Collapse
|
22
|
Identification of a Chemoreceptor for C2 and C3 Carboxylic Acids. Appl Environ Microbiol 2015; 81:5449-57. [PMID: 26048936 DOI: 10.1128/aem.01529-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/27/2015] [Indexed: 12/13/2022] Open
Abstract
Chemoreceptors are at the beginnings of chemosensory signaling cascades that mediate chemotaxis. Most bacterial chemoreceptors are functionally unannotated and are characterized by a diversity in the structure of their ligand binding domains (LBDs). The data available indicate that there are two major chemoreceptor families at the functional level, namely, those that respond to amino acids or to Krebs cycle intermediates. Since pseudomonads show chemotaxis to many different compounds and possess different types of chemoreceptors, they are model organisms to establish relationships between chemoreceptor structure and function. Here, we identify PP2861 (termed McpP) of Pseudomonas putida KT2440 as a chemoreceptor with a novel ligand profile. We show that the recombinant McpP LBD recognizes acetate, pyruvate, propionate, and l-lactate, with KD (equilibrium dissociation constant) values ranging from 34 to 107 μM. Deletion of the mcpP gene resulted in a dramatic reduction in chemotaxis toward these ligands, and complementation restored a native-like phenotype, indicating that McpP is the major chemoreceptor for these compounds. McpP has a CACHE-type LBD, and we present data indicating that CACHE-containing chemoreceptors of other species also mediate taxis to C2 and C3 carboxylic acids. In addition, the LBD of NbaY of Pseudomonas fluorescens, an McpP homologue mediating chemotaxis to 2-nitrobenzoate, bound neither nitrobenzoates nor the McpP ligands. This work provides further insight into receptor structure-function relationships and will be helpful to annotate chemoreceptors of other bacteria.
Collapse
|
23
|
Reyes-Darias JA, García V, Rico-Jiménez M, Corral-Lugo A, Lesouhaitier O, Juárez-Hernández D, Yang Y, Bi S, Feuilloley M, Muñoz-Rojas J, Sourjik V, Krell T. Specific gamma-aminobutyrate chemotaxis in pseudomonads with different lifestyle. Mol Microbiol 2015; 97:488-501. [PMID: 25921834 DOI: 10.1111/mmi.13045] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2015] [Indexed: 02/02/2023]
Abstract
The PctC chemoreceptor of Pseudomonas aeruginosa mediates chemotaxis with high specificity to gamma-aminobutyric acid (GABA). This compound is present everywhere in nature and has multiple functions, including being a human neurotransmitter or plant signaling compound. Because P. aeruginosa is ubiquitously distributed in nature and able to infect and colonize different hosts, the physiological relevance of GABA taxis is unclear, but it has been suggested that bacterial attraction to neurotransmitters may enhance virulence. We report the identification of McpG as a specific GABA chemoreceptor in non-pathogenic Pseudomonas putida KT2440. As with PctC, GABA was found to bind McpG tightly. The analysis of chimeras comprising the PctC and McpG ligand-binding domains fused to the Tar signaling domain showed very high GABA sensitivities. We also show that PctC inactivation does not alter virulence in Caenorhabditis elegans. Significant amounts of GABA were detected in tomato root exudates, and deletion of mcpG reduced root colonization that requires chemotaxis through agar. The C. elegans data and the detection of a GABA receptor in non-pathogenic species indicate that GABA taxis may not be related to virulence in animal systems but may be of importance in the context of colonization and infection of plant roots by soil-dwelling pseudomonads.
Collapse
Affiliation(s)
- Jose Antonio Reyes-Darias
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008, Granada, Spain
| | - Vanina García
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008, Granada, Spain
| | - Miriam Rico-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008, Granada, Spain
| | - Andrés Corral-Lugo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008, Granada, Spain
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironnement LMSM, EA 4312, Normandie Université, Université Rouen, 55 rue Saint Germain, 27000, Evreux, France
| | - Dalia Juárez-Hernández
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570, Puebla, Mexico
| | - Yiling Yang
- Max Planck Institute for Terrestrial Microbiology & LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 10, D-35043, Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany
| | - Shuangyu Bi
- Max Planck Institute for Terrestrial Microbiology & LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 10, D-35043, Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany
| | - Marc Feuilloley
- Laboratory of Microbiology Signals and Microenvironnement LMSM, EA 4312, Normandie Université, Université Rouen, 55 rue Saint Germain, 27000, Evreux, France
| | - Jesús Muñoz-Rojas
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570, Puebla, Mexico
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 10, D-35043, Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120, Heidelberg, Germany
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda, 1, 18008, Granada, Spain
| |
Collapse
|
24
|
Liu Z, García-Díaz B, Catacchio B, Chiancone E, Vogel HJ. Protecting Gram-negative bacterial cell envelopes from human lysozyme: Interactions with Ivy inhibitor proteins from Escherichia coli and Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3032-46. [PMID: 25838125 DOI: 10.1016/j.bbamem.2015.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 11/15/2022]
Abstract
Lysozymes play an important role in host defense by degrading peptidoglycan in the cell envelopes of pathogenic bacteria. Several Gram-negative bacteria can evade this mechanism by producing periplasmic proteins that inhibit the enzymatic activity of lysozyme. The Escherichia coli inhibitor of vertebrate lysozyme, Ivyc and its Pseudomonas aeruginosa homolog, Ivyp1 have been shown to be potent inhibitors of hen egg white lysozyme (HEWL). Since human lysozyme (HL) plays an important role in the innate immune response, we have examined the binding of HL to Ivyc and Ivyp1. Our results show that Ivyp1 is a weaker inhibitor of HL than Ivyc even though they inhibit HEWL with similar potency. Calorimetry experiments confirm that Ivyp1 interacts more weakly with HL than HEWL. Analytical ultracentrifugation studies revealed that Ivyp1 in solution is a monomer and forms a 30kDa heterodimer with both HL and HEWL, while Ivyc is a homodimer that forms a tetramer with both enzymes. The interaction of Ivyp1 with HL was further characterized by NMR chemical shift perturbation experiments. In addition to the characteristic His-containing Ivy inhibitory loop that binds into the active site of lysozyme, an extended loop (P2) between the final two beta-strands also participates in forming protein-protein interactions. The P2 loop is not conserved in Ivyc and it constitutes a flexible region in Ivyp1 that becomes more rigid in the complex with HL. We conclude that differences in the electrostatic interactions at the binding interface between Ivy inhibitors and distinct lysozymes determine the strength of this interaction. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Zhihong Liu
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Beatriz García-Díaz
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Bruno Catacchio
- Dipartimento di Scienze Biochimiche, Istituto di Biologia e Patologia Molecolari CNR, Università Sapienza, P.le A. Moro, 5-00185 Roma, Italy
| | - Emilia Chiancone
- Dipartimento di Scienze Biochimiche, Istituto di Biologia e Patologia Molecolari CNR, Università Sapienza, P.le A. Moro, 5-00185 Roma, Italy
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
25
|
Reyes-Darias JA, Yang Y, Sourjik V, Krell T. Correlation between signal input and output in PctA and PctB amino acid chemoreceptor ofPseudomonas aeruginosa. Mol Microbiol 2015; 96:513-25. [DOI: 10.1111/mmi.12953] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2015] [Indexed: 11/30/2022]
Affiliation(s)
- José A. Reyes-Darias
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 Granada 18008 Spain
| | - Yiling Yang
- Max Planck Institute for Terrestrial Microbiology & LOEWE Research Center for Synthetic Microbiology (SYNMIKRO); Karl-von-Frisch Strasse 10 Marburg D-35043 Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & LOEWE Research Center for Synthetic Microbiology (SYNMIKRO); Karl-von-Frisch Strasse 10 Marburg D-35043 Germany
| | - Tino Krell
- Department of Environmental Protection; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; C/ Prof. Albareda, 1 Granada 18008 Spain
| |
Collapse
|
26
|
Silva-Jiménez H, Ortega Á, García-Fontana C, Ramos JL, Krell T. Multiple signals modulate the activity of the complex sensor kinase TodS. Microb Biotechnol 2014; 8:103-15. [PMID: 24986263 PMCID: PMC4321377 DOI: 10.1111/1751-7915.12142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/22/2014] [Accepted: 06/07/2014] [Indexed: 11/28/2022] Open
Abstract
The reason for the existence of complex sensor kinases is little understood but thought to lie in the capacity to respond to multiple signals. The complex, seven-domain sensor kinase TodS controls in concert with the TodT response regulator the expression of the toluene dioxygenase pathway in Pseudomonas putida F1 and DOT-T1E. We have previously shown that some aromatic hydrocarbons stimulate TodS activity whereas others behave as antagonists. We show here that TodS responds in addition to the oxidative agent menadione. Menadione but no other oxidative agent tested inhibited TodS activity in vitro and reduced PtodX expression in vivo. The menadione signal is incorporated by a cysteine-dependent mechanism. The mutation of the sole conserved cysteine of TodS (C320) rendered the protein insensitive to menadione. We evaluated the mutual opposing effects of toluene and menadione on TodS autophosphorylation. In the presence of toluene, menadione reduced TodS activity whereas toluene did not stimulate activity in the presence of menadione. It was shown by others that menadione increases expression of glucose metabolism genes. The opposing effects of menadione on glucose and toluene metabolism may be partially responsible for the interwoven regulation of both catabolic pathways. This work provides mechanistic detail on how complex sensor kinases integrate different types of signal molecules.
Collapse
Affiliation(s)
- Hortencia Silva-Jiménez
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, C/ Prof. Albareda 1, Granada, 18008, Spain
| | | | | | | | | |
Collapse
|
27
|
Daddaoua A, Molina-Santiago C, de la Torre J, Krell T, Ramos JL. GtrS and GltR form a two-component system: the central role of 2-ketogluconate in the expression of exotoxin A and glucose catabolic enzymes in Pseudomonas aeruginosa. Nucleic Acids Res 2014; 42:7654-63. [PMID: 24920832 PMCID: PMC4081096 DOI: 10.1093/nar/gku496] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/06/2014] [Accepted: 05/17/2014] [Indexed: 11/13/2022] Open
Abstract
In the human pathogen Pseudomonas aeruginosa, the GltR regulator is required for glucose transport, whereas GtrS is a sensor kinase that plays a key role in mediating bacteria-host interaction and pathogen dissemination in the host. We show that GtrS and GltR form a two-component system that regulates the expression from the promoters Pedd/gap-1, PoprB and Pglk, which control the expression of genes involved in glucose metabolism and transport. In addition, the GtrS/GltR pair regulates the expression of toxA that encodes exotoxin A, the primary virulence factor. Microcalorimetry-based ligand screening of the recombinant GtrS ligand-binding domain revealed specific binding of 2-ketogluconate (2-KG) (KD=5 μM) and 6-phosphogluconate (KD=98 μM). These effectors accelerate GtrS autophosphorylation, with concomitant transphosphorylation of GltR leading to a three-fold increase in transcription. Surprisingly, in vivo a similar increase in expression from the above promoters was observed for the mutant deficient in GltR regardless of the presence of effectors. The GltR operator site was found to contain the consensus sequence 5'-tgGTTTTTc-3'. We propose that 2-KG is a key metabolite in the stringent transcriptional control of genes involved in virulence and glucose metabolism. We show that GltR is a transcriptional repressor that is released from DNA upon phosphorylation.
Collapse
Affiliation(s)
- Abdelali Daddaoua
- Department of Environmental Protection, CSIC-EEZ, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - Carlos Molina-Santiago
- Department of Environmental Protection, CSIC-EEZ, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - Jesús de la Torre
- Department of Environmental Protection, CSIC-EEZ, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, CSIC-EEZ, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - Juan-Luis Ramos
- Department of Environmental Protection, CSIC-EEZ, C/Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
28
|
Identification of new residues involved in intramolecular signal transmission in a prokaryotic transcriptional repressor. J Bacteriol 2013; 196:588-94. [PMID: 24244009 DOI: 10.1128/jb.00589-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TtgV is a member of the IclR family of transcriptional regulators. This regulator controls its own expression and that of the ttgGHI operon, which encodes an RND efflux pump. TtgV has two domains: a GAF-like domain harboring the effector-binding pocket and a helix-turn-helix (HTH) DNA-binding domain, which are linked by a long extended helix. When TtgV is bound to DNA, a kink at residue 86 in the extended helix gives rise to 2 helices. TtgV contacts DNA mainly through a canonical recognition helix, but its three-dimensional structure bound to DNA revealed that two residues, R19 and S35, outside the HTH motif, directly contact DNA. Effector binding to TtgV releases it from DNA; when this occurs, the kink at Q86 is lost and residues R19 and S35 are displaced due to the reorganization of the turn involving residues G44 and P46. Mutants of TtgV were generated at positions 19, 35, 44, 46, and 86 by site-directed mutagenesis to further analyze their role. Mutant proteins were purified to homogeneity, and differential scanning calorimetry (DSC) studies revealed that all mutants, except the Q86N mutant, unfold in a single event, suggesting conservation of the three-dimensional organization. All mutant variants bound effectors with an affinity similar to that of the parental protein. R19A, S35A, G44A, Q86N, and Q86E mutants did not bind DNA. The Q86A mutant was able to bind to DNA but was only partially released from its target operator in response to effectors. These results are discussed in the context of intramolecular signal transmission from the effector binding pocket to the DNA binding domain.
Collapse
|
29
|
Daddaoua A, Krell T, Ramos JL. Transcriptional control by two interacting regulatory proteins: identification of the PtxS binding site at PtxR. Nucleic Acids Res 2013; 41:10150-6. [PMID: 24019239 PMCID: PMC3905896 DOI: 10.1093/nar/gkt773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The PtxS and PtxR regulators control the expression of the glucose dehydrogenase genes from the Pgad promoter in Pseudomonas aeruginosa. These regulators bind to their cognate operators, that are separated by ∼50 nt, within the promoter region and interact with each other creating a DNA-loop that prevents RNA polymerase promoter access. Binding of the 2-ketogluconate effector to PtxS caused PtxS/PtxR complex dissociation and led to the dissolution of the repression loop facilitating the entry of the RNA polymerase and enabling the transcription of the gad gene. We have identified a hydrophobic surface patch on the PtxR putative surface that was hypothesized to correspond to the binding site for PtxS. Two surface-exposed residues in this patch, V173 and W269, were replaced by alanine. Isothermal titration calorimetry assays showed that PtxS does not interact with the mutant variants of PtxR. Electrophoretic mobility shift assay and DNAase I footprinting assays proved that both regulators bind to their target operators and that failure to interact with each other prevented the formation of the DNA-loop. In vitro transcription showed that PtxS per se is sufficient to inhibit transcription from the Pgad promoter, but that affinity of PtxS for its effector is modulated by PtxR.
Collapse
Affiliation(s)
- Abdelali Daddaoua
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Calle Profesor Albareda 1, E-18008 Granada, Spain
| | | | | |
Collapse
|
30
|
Rico-Jiménez M, Muñoz-Martínez F, García-Fontana C, Fernandez M, Morel B, Ortega A, Ramos JL, Krell T. Paralogous chemoreceptors mediate chemotaxis towards protein amino acids and the non-protein amino acid gamma-aminobutyrate (GABA). Mol Microbiol 2013; 88:1230-43. [PMID: 23650915 DOI: 10.1111/mmi.12255] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2013] [Indexed: 01/31/2023]
Abstract
The paralogous receptors PctA, PctB and PctC of Pseudomonas aeruginosa were reported to mediate chemotaxis to amino acids, intermediates of amino acid metabolism and chlorinated hydrocarbons. We show that the recombinant ligand binding regions (LBRs) of PctA, PctB and PctC bind 17, 5 and 2 l-amino acids respectively. In addition, PctC-LBR recognized GABA but not any other structurally related compound. l-Gln, one of the three amino acids that is not recognized by PctA-LBR, was the most tightly binding ligand to PctB suggesting that PctB has evolved to mediate chemotaxis primarily towards l-Gln. Bacteria were efficiently attracted to l-Gln and GABA, but mutation of pctB and pctC, respectively, abolished chemoattraction. The physiological relevance of taxis towards GABA is proposed to reside in an interaction with plants. LBRs were predicted to adopt double PDC (PhoQ/DcuS/CitA) like structures and site-directed mutagenesis studies showed that ligands bind to the membrane-distal module. Analytical ultracentrifugation studies have shown that PctA-LBR and PctB-LBR are monomeric in the absence and presence of ligands, which is in contrast to the enterobacterial receptors that require sensor domain dimers for ligand recognition.
Collapse
Affiliation(s)
- Miriam Rico-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
31
|
García-Fontana C, Reyes-Darias JA, Muñoz-Martínez F, Alfonso C, Morel B, Ramos JL, Krell T. High specificity in CheR methyltransferase function: CheR2 of Pseudomonas putida is essential for chemotaxis, whereas CheR1 is involved in biofilm formation. J Biol Chem 2013; 288:18987-99. [PMID: 23677992 DOI: 10.1074/jbc.m113.472605] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chemosensory pathways are a major signal transduction mechanism in bacteria. CheR methyltransferases catalyze the methylation of the cytosolic signaling domain of chemoreceptors and are among the core proteins of chemosensory cascades. These enzymes have primarily been studied Escherichia coli and Salmonella typhimurium, which possess a single CheR involved in chemotaxis. Many other bacteria possess multiple cheR genes. Because the sequences of chemoreceptor signaling domains are highly conserved, it remains to be established with what degree of specificity CheR paralogues exert their activity. We report here a comparative analysis of the three CheR paralogues of Pseudomonas putida. Isothermal titration calorimetry studies show that these paralogues bind the product of the methylation reaction, S-adenosylhomocysteine, with much higher affinity (KD of 0.14-2.2 μM) than the substrate S-adenosylmethionine (KD of 22-43 μM), which indicates product feedback inhibition. Product binding was particularly tight for CheR2. Analytical ultracentrifugation experiments demonstrate that CheR2 is monomeric in the absence and presence of S-adenosylmethionine or S-adenosylhomocysteine. Methylation assays show that CheR2, but not the other paralogues, methylates the McpS and McpT chemotaxis receptors. The mutant in CheR2 was deficient in chemotaxis, whereas mutation of CheR1 and CheR3 had either no or little effect on chemotaxis. In contrast, biofilm formation of the CheR1 mutant was largely impaired but not affected in the other mutants. We conclude that CheR2 forms part of a chemotaxis pathway, and CheR1 forms part of a chemosensory route that controls biofilm formation. Data suggest that CheR methyltransferases act with high specificity on their cognate chemoreceptors.
Collapse
Affiliation(s)
- Cristina García-Fontana
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhao Y, Jia L, Wang J, Gong M, Zhang P, Li J, Liu H, Wang L, Li Y, Liu S, Xiao X. Microcalorimetry with correspondence analysis for studying the antibacterial effect of ephedrine on Escherichia coli. THERMOCHIMICA ACTA 2013; 557:50-54. [DOI: 10.1016/j.tca.2013.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
|
33
|
Manin C, Naville S, Gueugnon M, Dupuy M, Bravo de Alba Y, Adam O. Method for the simultaneous assay of the different poliovirus types using surface plasmon resonance technology. Vaccine 2013; 31:1034-9. [DOI: 10.1016/j.vaccine.2012.12.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 11/19/2012] [Accepted: 12/15/2012] [Indexed: 01/12/2023]
|
34
|
Muñoz-Martínez F, García-Fontana C, Rico-Jiménez M, Alfonso C, Krell T. Genes encoding Cher-TPR fusion proteins are predominantly found in gene clusters encoding chemosensory pathways with alternative cellular functions. PLoS One 2012; 7:e45810. [PMID: 23029255 PMCID: PMC3447774 DOI: 10.1371/journal.pone.0045810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/24/2012] [Indexed: 12/14/2022] Open
Abstract
Chemosensory pathways correspond to major signal transduction mechanisms and can be classified into the functional families flagellum-mediated taxis, type four pili-mediated taxis or pathways with alternative cellular functions (ACF). CheR methyltransferases are core enzymes in all of these families. CheR proteins fused to tetratricopeptide repeat (TPR) domains have been reported and we present an analysis of this uncharacterized family. We show that CheR-TPRs are widely distributed in GRAM-negative but almost absent from GRAM-positive bacteria. Most strains contain a single CheR-TPR and its abundance does not correlate with the number of chemoreceptors. The TPR domain fused to CheR is comparatively short and frequently composed of 2 repeats. The majority of CheR-TPR genes were found in gene clusters that harbor multidomain response regulators in which the REC domain is fused to different output domains like HK, GGDEF, EAL, HPT, AAA, PAS, GAF, additional REC, HTH, phosphatase or combinations thereof. The response regulator architectures coincide with those reported for the ACF family of pathways. Since the presence of multidomain response regulators is a distinctive feature of this pathway family, we conclude that CheR-TPR proteins form part of ACF type pathways. The diversity of response regulator output domains suggests that the ACF pathways form a superfamily which regroups many different regulatory mechanisms, in which all CheR-TPR proteins appear to participate. In the second part we characterize WspC of Pseudomonas putida, a representative example of CheR-TPR. The affinities of WspC-Pp for S-adenosylmethionine and S-adenosylhomocysteine were comparable to those of prototypal CheR, indicating that WspC-Pp activity is in analogy to prototypal CheRs controlled by product feed-back inhibition. The removal of the TPR domain did not impact significantly on the binding constants and consequently not on the product feed-back inhibition. WspC-Pp was found to be monomeric, which rules out a role of the TPR domain in self-association.
Collapse
Affiliation(s)
- Francisco Muñoz-Martínez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Cristina García-Fontana
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miriam Rico-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
- * E-mail:
| |
Collapse
|
35
|
Daddaoua A, Fillet S, Fernández M, Udaondo Z, Krell T, Ramos JL. Genes for carbon metabolism and the ToxA virulence factor in Pseudomonas aeruginosa are regulated through molecular interactions of PtxR and PtxS. PLoS One 2012; 7:e39390. [PMID: 22844393 PMCID: PMC3402500 DOI: 10.1371/journal.pone.0039390] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/21/2012] [Indexed: 11/19/2022] Open
Abstract
Homologs of the transcriptional regulator PtxS are omnipresent in Pseudomonas, whereas PtxR homologues are exclusively found in human pathogenic Pseudomonas species. In all Pseudomonas sp., PtxS with 2-ketogluconate is the regulator of the gluconate degradation pathway and controls expression from its own promoter and also from the P(gad) and P(kgu) for the catabolic operons. There is evidence that PtxS and PtxR play a central role in the regulation of exotoxin A expression, a relevant primary virulence factor of Pseudomonas aeruginosa. We show using DNaseI-footprint analysis that in P. aeruginosa PtxR binds to the -35 region of the P(toxA) promoter in front of the exotoxin A gene, whereas PtxS does not bind to this promoter. Bioinformatic and DNaseI-footprint analysis identified a PtxR binding site in the P(kgu) and P(gad) promoters that overlaps the -35 region, while the PtxS operator site is located 50 bp downstream from the PtxR site. In vitro, PtxS recognises PtxR with nanomolar affinity, but this interaction does not occur in the presence of 2-ketogluconate, the specific effector of PtxS. DNAaseI footprint assays of P(kgu) and P(gad) promoters with PtxS and PtxR showed a strong region of hyper-reactivity between both regulator binding sites, indicative of DNA distortion when both proteins are bound; however in the presence of 2-ketogluconate no protection was observed. We conclude that PtxS modulates PtxR activity in response to 2-ketogluconate by complex formation in solution in the case of the P(toxA) promoter, or via the formation of a DNA loop as in the regulation of gluconate catabolic genes. Data suggest two different mechanisms of control exerted by the same regulator.
Collapse
Affiliation(s)
| | - Sandy Fillet
- Department of Environmental Protection, CSIC-EEZ, Granada, Spain
| | | | - Zulema Udaondo
- Department of Environmental Protection, CSIC-EEZ, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, CSIC-EEZ, Granada, Spain
| | - Juan L. Ramos
- Department of Environmental Protection, CSIC-EEZ, Granada, Spain
| |
Collapse
|
36
|
Santamaría-Hernando S, Krell T, Ramos-González MI. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins. PLoS One 2012; 7:e40698. [PMID: 22808235 PMCID: PMC3396595 DOI: 10.1371/journal.pone.0040698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/12/2012] [Indexed: 11/19/2022] Open
Abstract
Proteins of the animal heme peroxidase (ANP) superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20), where it was found to be involved in Ca2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33–79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca2+ binding with a KD of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821) is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of life.
Collapse
Affiliation(s)
- Saray Santamaría-Hernando
- Department of Environmental Protection, Estación Experimental de Zaidín-Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental de Zaidín-Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María-Isabel Ramos-González
- Department of Environmental Protection, Estación Experimental de Zaidín-Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
- * E-mail:
| |
Collapse
|
37
|
Krell T, Lacal J, Guazzaroni ME, Busch A, Silva-Jiménez H, Fillet S, Reyes-Darías JA, Muñoz-Martínez F, Rico-Jiménez M, García-Fontana C, Duque E, Segura A, Ramos JL. Responses of Pseudomonas putida to toxic aromatic carbon sources. J Biotechnol 2012; 160:25-32. [DOI: 10.1016/j.jbiotec.2012.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/16/2012] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
|
38
|
Volkova N, Ibrahim V, Hatti-Kaul R. Laccase catalysed oxidation of syringic acid: Calorimetric determination of kinetic parameters. Enzyme Microb Technol 2012; 50:233-7. [DOI: 10.1016/j.enzmictec.2012.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 12/23/2011] [Accepted: 01/14/2012] [Indexed: 11/27/2022]
|
39
|
|
40
|
Moreno N, Chevalier M, Ronzon F, Manin C, Dupuy M, Krell T, Rieu JP. Unbinding forces of single pertussis toxin-antibody complexes measured by atomic force spectroscopy correlate with their dissociation rates determined by surface plasmon resonance. J Mol Recognit 2012; 24:1105-14. [PMID: 22038817 DOI: 10.1002/jmr.1159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An inactivated form of pertussis toxin (PTX) is the primary component of currently available acellular vaccines against Bordetella pertussis, the causative agent of whooping cough. The PTX analyzed here is purified at industrial scale and is subsequently inactivated using glutaraldehyde. The influence of this treatment on antibody recognition is of crucial importance and is analyzed in this study. Surface plasmon resonance (SPR) experiments using PTX and its inactivated form (toxoid) with 10 different monoclonal antibodies were conducted. PTX was found to recognize the antibodies with an average affinity of 1.34 ± 0.50 nM, and chemical inactivation caused only a modest decrease in affinity by a factor of approximately 4.5. However, glutaraldehyde treatment had contrary effects on the kinetic association constant k(a) and the dissociation constant k(d) . A significant reduction in k(a) was observed, whereas the dissociation of the toxoid from the bound antibody occurred slower than PTX. These data indicate that the chemical inactivation of PTX not only reduces the velocity of antibody recognition but also stabilizes the interaction with antibodies as shown by a reduction in k(d) . The same interactions were also studied by dynamic force spectroscopy (DFS). Data reveal a correlation between the k(d) values determined by SPR and the mean unbinding force as measured by DFS. The unbinding forces of one complex were determined as a function of the loading rate to directly estimate the k(d) value. Several interactions were impossible to be analyzed using SPR because of ultratight binding. Using DFS, the unbinding forces of these interactions were determined, which in turn could be used to estimate k(d) values. The use of DFS as a technique to study ultratight binding is discussed.
Collapse
Affiliation(s)
- Nadège Moreno
- Sanofi Pasteur, Bâtiment X3, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Silva-Jiménez H, Ramos JL, Krell T. Construction of a prototype two-component system from the phosphorelay system TodS/TodT. Protein Eng Des Sel 2012; 25:159-69. [PMID: 22308529 DOI: 10.1093/protein/gzs001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two-component systems (TCSs) play key roles in the adaptation of bacteria to environmental changes. In prototype TCSs a single phosphoryl transfer between the sensor kinase and response regulator occurs, whereas phosphorelay TCSs are characterised by a His1-Asp1-His2-Asp2 phosphorylation cascade. The TodS/TodT TCS controls the expression of a toluene degradation pathway and the TodS sensor kinase operates by a three-step internal phosphorelay. Based on TodS we report the construction of a minimal form of TodS, termed as Min-TodS, that contains only three of the seven TodS domains. Min-TodS is composed of the N-terminal PAS sensor domain as well as the C-terminal dimerisation/phosphotransfer domain and catalytic domain of TodS. We have conducted a comparative analysis of the phosphorelay TCS with its prototypal derivative. We demonstrate that Min-TodS binds effector molecules with affinities comparable with those observed for TodS. Min-TodS forms a TCS with TodT and toluene increases the amount of TodT-P. In contrast to TodS, toluene does not stimulate Min-TodS autophosphorylation. The half-life of Min-TodS-P was significantly increased as compared with TodS. Analysis of TodSD500A revealed that the hydrolysis of the acylphosphate of the receiver domain is responsible for the reduced half-life of TodS. The regulation of P(todX) expression by Min-TodS/TodT and TodS/TodT in response to different effectors are compared. The Min-TodS/TodT system was characterized by a higher basal activity but a lower magnitude of response. Data will be discussed in the context that the phosphorelay system appears to be better suited for the control of a degradation pathway for toxic compounds.
Collapse
Affiliation(s)
- Hortencia Silva-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | | | | |
Collapse
|
42
|
Silva-Jiménez H, García-Fontana C, Cadirci BH, Ramos-González MI, Ramos JL, Krell T. Study of the TmoS/TmoT two-component system: towards the functional characterization of the family of TodS/TodT like systems. Microb Biotechnol 2011; 5:489-500. [PMID: 22212183 PMCID: PMC3815326 DOI: 10.1111/j.1751-7915.2011.00322.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The two‐component system TmoS/TmoT controls the expression of the toluene‐4‐monooxygenase pathway in Pseudomonas mendocina RK1 via modulation of PtmoX activity. The TmoS/TmoT system belongs to the family of TodS/TodT like proteins. The sensor kinase TmoS is a 108 kDa protein composed of seven different domains. Using isothermal titration calorimetry we show that purified TmoS binds a wide range of aromatic compounds with high affinities. Tightest ligand binding was observed for toluene (KD = 150 nM), which corresponds to the highest affinity measured between an effector and a sensor kinase. Other compounds with affinities in the nanomolar range include benzene, the 3 xylene isomers, styrene, nitrobenzene or p‐chlorotoluene. We demonstrate that only part of the ligands that bind to TmoS increase protein autophosphorylation in vitro and consequently pathway expression in vivo. These compounds are referred to as agonists. Other TmoS ligands, termed antagonists, failed to increase TmoS autophosphorylation, which resulted in their incapacity to stimulate gene expression in vivo. We also show that TmoS saturated with different agonists differs in their autokinase activities. The effector screening of gene expression showed that promoter activity of PtmoX and PtodX (controlled by the TodS/TodT system) is mediated by the same set of 22 compounds. The common structural feature of these compounds is the presence of a single aromatic ring. Among these ligands, toluene was the most potent inducer of both promoter activities. Information on the TmoS/TmoT and TodS/TodT system combined with a sequence analysis of family members permits to identify distinct features that define this protein family.
Collapse
Affiliation(s)
- Hortencia Silva-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda 1, Granada, Spain.
| | | | | | | | | | | |
Collapse
|
43
|
Arce-Rodríguez A, Durante-Rodríguez G, Platero R, Krell T, Calles B, de Lorenzo V. The Crp regulator of Pseudomonas putida: evidence of an unusually high affinity for its physiological effector, cAMP. Environ Microbiol 2011; 14:702-13. [PMID: 22040086 DOI: 10.1111/j.1462-2920.2011.02622.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the genome of Pseudomonas putida KT2440 encodes an orthologue of the crp gene of Escherichia coli (encoding the cAMP receptor protein), the regulatory scope of this factor seems to be predominantly co-opted in this bacterium for controlling non-metabolic functions. In order to investigate the reasons for such a functional divergence in otherwise nearly identical proteins, the Crp regulator of P. putida (Crp(P. putida)) was purified to apparent homogeneity and subject to a battery of in vitro assays aimed at determining its principal physicochemical properties. Analytical ultracentrifugation indicated effector-free Crp(P. putida) to be a dimer in solution that undergoes a significant change in its hydrodynamic shape in the presence of cAMP. Such a conformational transition was confirmed by limited proteolysis of the protein in the absence or presence of the inducer. Thermodynamic parameters calculated by isothermal titration calorimetry revealed a tight cAMP-Crp(P. putida) association with an apparent K(D) of 22.5 ± 2.8 nM, i.e. much greater affinity than that reported for the E. coli's counterpart. The regulator also bound cGMP, but with a K(D) = 2.6 ± 0.3 µM. An in vitro transcription system was then set up with purified P. putida's RNA polymerase for examining the preservation of the correct protein-protein architecture that makes Crp to activate target promoters. These results, along with cognate gel retardation assays indicated that all basic features of the reference Crp(E. coli) protein are kept in the P. putida's counterpart, albeit operating under a different set of parameters, the extraordinarily high affinity for cAMP being the most noticeable.
Collapse
Affiliation(s)
- Alejandro Arce-Rodríguez
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Lacal J, García-Fontana C, Callejo-García C, Ramos JL, Krell T. Physiologically relevant divalent cations modulate citrate recognition by the McpS chemoreceptor. J Mol Recognit 2011; 24:378-85. [PMID: 21360620 DOI: 10.1002/jmr.1101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The McpS chemoreceptor of Pseudomonas putida KT2440 recognizes six different tricarboxylic acid (TCA) cycle intermediates. However, the magnitude of the chemotactic response towards these compounds differs largely, which has led to distinguish between strong attractants (malate, succinate, fumarate, oxaloacetate) and weak attractants (citrate, isocitrate). Citrate is abundantly present in plant tissues and root exudates and can serve as the only carbon source for growth. Citrate is known to form complexes with divalent cations which are also abundantly present in natural habitats of this bacterium. We have used isothermal titration calorimetry to study the formation of citrate-metal ion complexes. In all cases binding was entropy driven but significant differences in affinity were observed ranging from K(D)=157 µM (for Mg(2+)) to 3 µM (for Ni(2+)). Complex formation occurred over a range of pH and ionic strength. The ligand binding domain of McpS (McpS-LBD) was found to bind free citrate, but not complexes with physiologically relevant Mg(2+) and Ca(2+). In contrast, complexes with divalent cations which are present as trace elements (Co(2+), Cd(2+) and Ni(2+)) were recognized by McpS-LBD. This discrimination differs from other citrate sensing proteins. These results are discussed in the context of the three dimensional structure of free citrate and its complex with Mg(2+). Chemotaxis assays using P. putida revealed that taxis towards the strong attractant malate is strongly reduced in the presence of free citrate. However, this reduction is much less important in the presence of citrate-Mg(2+) complexes. The physiological relevance of these findings is discussed.
Collapse
Affiliation(s)
- Jesús Lacal
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda, 1, Granada 18008, Spain
| | | | | | | | | |
Collapse
|
45
|
Toda M, Inomata N, Ono T. Bimorph Cantilevers Actuated by Focused Laser from the Side. ACTA ACUST UNITED AC 2011. [DOI: 10.1541/ieejsmas.131.327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Masaya Toda
- Graduate School of Engineering, Tohoku University
| | | | - Takahito Ono
- Graduate School of Engineering, Tohoku University
| |
Collapse
|
46
|
Krell T, Lacal J, Muñoz-Martínez F, Reyes-Darias JA, Cadirci BH, García-Fontana C, Ramos JL. Diversity at its best: bacterial taxis. Environ Microbiol 2010; 13:1115-24. [PMID: 21087385 DOI: 10.1111/j.1462-2920.2010.02383.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial taxis is one of the most investigated signal transduction mechanisms. Studies of taxis have primarily used Escherichia coli and Salmonella as model organism. However, more recent studies of other bacterial species revealed a significant diversity in the chemotaxis mechanisms which are reviewed here. Differences include the genomic abundance, size and topology of chemoreceptors, the mode of signal binding, the presence of additional cytoplasmic signal transduction proteins or the motor mechanism. This diversity of chemotactic mechanisms is partly due to the diverse nature of input signals. However, the physiological reasons for the majority of differences in the taxis systems are poorly understood and its elucidation represents a major research need.
Collapse
Affiliation(s)
- Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
47
|
Lacal J, Alfonso C, Liu X, Parales RE, Morel B, Conejero-Lara F, Rivas G, Duque E, Ramos JL, Krell T. Identification of a chemoreceptor for tricarboxylic acid cycle intermediates: differential chemotactic response towards receptor ligands. J Biol Chem 2010; 285:23126-36. [PMID: 20498372 PMCID: PMC2906306 DOI: 10.1074/jbc.m110.110403] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 05/12/2010] [Indexed: 11/06/2022] Open
Abstract
We report the identification of McpS as the specific chemoreceptor for 6 tricarboxylic acid (TCA) cycle intermediates and butyrate in Pseudomonas putida. The analysis of the bacterial mutant deficient in mcpS and complementation assays demonstrate that McpS is the only chemoreceptor of TCA cycle intermediates in the strain under study. TCA cycle intermediates are abundantly present in root exudates, and taxis toward these compounds is proposed to facilitate the access to carbon sources. McpS has an unusually large ligand-binding domain (LBD) that is un-annotated in InterPro and is predicted to contain 6 helices. The ligand profile of McpS was determined by isothermal titration calorimetry of purified recombinant LBD (McpS-LBD). McpS recognizes TCA cycle intermediates but does not bind very close structural homologues and derivatives like maleate, aspartate, or tricarballylate. This implies that functional similarity of ligands, such as being part of the same pathway, and not structural similarity is the primary element, which has driven the evolution of receptor specificity. The magnitude of chemotactic responses toward these 7 chemoattractants, as determined by qualitative and quantitative chemotaxis assays, differed largely. Ligands that cause a strong chemotactic response (malate, succinate, and fumarate) were found by differential scanning calorimetry to increase significantly the midpoint of protein unfolding (T(m)) and unfolding enthalpy (DeltaH) of McpS-LBD. Equilibrium sedimentation studies show that malate, the chemoattractant that causes the strongest chemotactic response, stabilizes the dimeric state of McpS-LBD. In this respect clear parallels exist to the Tar receptor and other eukaryotic receptors, which are discussed.
Collapse
Affiliation(s)
- Jesús Lacal
- From the
Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Carlos Alfonso
- the
Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Xianxian Liu
- the
Department of Microbiology, University of California, Davis, California 95616, and
| | - Rebecca E. Parales
- the
Department of Microbiology, University of California, Davis, California 95616, and
| | - Bertrand Morel
- the
Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Francisco Conejero-Lara
- the
Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Germán Rivas
- the
Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Estrella Duque
- From the
Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Juan L. Ramos
- From the
Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Tino Krell
- From the
Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
48
|
Compartmentalized glucose metabolism in Pseudomonas putida is controlled by the PtxS repressor. J Bacteriol 2010; 192:4357-66. [PMID: 20581202 DOI: 10.1128/jb.00520-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Metabolic flux analysis revealed that in Pseudomonas putida KT2440 about 50% of glucose taken up by the cells is channeled through the 2-ketogluconate peripheral pathway. This pathway is characterized by being compartmentalized in the cells. In fact, initial metabolism of glucose to 2-ketogluconate takes place in the periplasm through a set of reactions catalyzed by glucose dehydrogenase and gluconate dehydrogenase to yield 2-ketogluconate. This metabolite is subsequently transported to the cytoplasm, where two reactions are carried out, giving rise to 6-phosphogluconate, which enters the Entner-Doudoroff pathway. The genes for the periplasmic and cytoplasmic set of reactions are clustered in the host chromosome and grouped within two independent operons that are under the control of the PtxS regulator, which also modulates its own synthesis. Here, we show that although the two catabolic operons are induced in vivo by glucose, ketogluconate, and 2-ketogluconate, in vitro we found that only 2-ketogluconate binds to the regulator with an apparent K(D) (equilibrium dissociation constant) of 15 muM, as determined using isothermal titration calorimetry assays. PtxS is made of two domains, a helix-turn-helix DNA-binding domain located at the N terminus and a C-terminal domain that binds the effector. Differential scanning calorimetry assays revealed that PtxS unfolds via two events characterized by melting points of 48.1 degrees C and 57.6 degrees C and that, in the presence of 2-ketogluconate, the unfolding of the effector binding domain occurs at a higher temperature, providing further evidence for 2-ketogluconate-PtxS interactions. Purified PtxS is a dimer that binds to the target promoters with affinities in the range of 1 to 3 muM. Footprint analysis revealed that PtxS binds to an almost perfect palindrome that is present within the three promoters and whose consensus sequence is 5'-TGAAACCGGTTTCA-3'. This palindrome overlaps with the RNA polymerase binding site.
Collapse
|
49
|
Chen H, Yao J, Wang F, Zhou Y, Chen K, Zhuang R, Choi MMF, Zaray G. Toxicity of three phenolic compounds and their mixtures on the gram-positive bacteria Bacillus subtilis in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:1043-1049. [PMID: 20006374 DOI: 10.1016/j.scitotenv.2009.11.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 11/16/2009] [Accepted: 11/24/2009] [Indexed: 05/28/2023]
Abstract
Although phenolic compounds are intensively studied for their toxic effects on the environment, the toxicity of catechol, resorcinol and hydroquinone mixtures are still not well understood because most previous bioassays are conducted solely using single compound based on acute tests. In this work, the adverse effect of individual phenolic compounds (catechol, resorcinol and hydroquinone) and the interactive effect of the binary and tertiary mixtures on Bacillus subtilis (B. subtilis) using microcalorimetric method were examined. The toxicity of individual phenolic compounds follows the order catechol>resorcinol>hydroquinone with their respective half inhibitory concentration as 437, 728 and 934 microg mL(-)(1). The power-time curve of B. subtilis growth obtained by microcalorimetry is in complete agreement with the change in turbidity of B. subtilis against time, demonstrating that microcalorimetric method agrees well with the routine microbiological method. The toxicity data obtained from phenolic compound mixtures show that catechol and hydroquinone mixture possess synergistic effect while the other mixtures display additive joint actions. Furthermore, the concentration addition (CA) and independent action (IA) models were employed to predict the toxicities of the phenolic compounds. The experimental results of microcalorimetry show no significant difference on the toxicity of the phenolic compound mixtures from that predicted by CA. However, IA prediction underestimated the mixture effects in all the experiments.
Collapse
Affiliation(s)
- Huilun Chen
- Key Laboratory of Biogeology and Environmental Geology Laboratory of Chinese Ministry of Education & School of Environmental Studies & Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences, Wuhan 430074, PR China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hüttl R, Frank DC, Harmel J, Lißner DC, Winkelmann M. Einsatzmöglichkeiten thermophysikalischer Methoden zur Lösung biochemischer und biotechnologischer Fragestellungen. CHEM-ING-TECH 2010. [DOI: 10.1002/cite.200900111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|