1
|
Mahal HF, Barber-Cross T, Brown C, Spaner D, Cahill JF. Changes in the Amount and Distribution of Soil Nutrients and Neighbours Have Differential Impacts on Root and Shoot Architecture in Wheat ( Triticum aestivum). PLANTS (BASEL, SWITZERLAND) 2023; 12:2527. [PMID: 37447087 DOI: 10.3390/plants12132527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
Plants exhibit differential behaviours through changes in biomass development and distribution in response to environmental cues, which may impact crops uniquely. We conducted a mesocosm experiment in pots to determine the root and shoot behavioural responses of wheat, T. aestivum. Plants were grown in homogeneous or heterogeneous and heavily or lightly fertilized soil, and alone or with a neighbour of the same or different genetic identity (cultivars: CDC Titanium, Carberry, Glenn, Go Early, and Lillian). Contrary to predictions, wheat did not alter relative reproductive effort in the presence of neighbours, more nutrients, or homogenous soil. Above and below ground, the plants' tendency to use potentially shared space exhibited high levels of plasticity. Above ground, they generally avoided shared, central aerial space when grown with neighbours. Unexpectedly, nutrient amount and distribution also impacted shoots; plants that grew in fertile or homogenous environments increased shared space use. Below ground, plants grown with related neighbours indicated no difference in neighbour avoidance. Those in homogenous soil produced relatively even roots, and plants in heterogeneous treatments produced more roots in nutrient patches. Additionally, less fertile soil resulted in pot-level decreases in root foraging precision. Our findings illustrate that explicit coordination between above- and belowground biomass in wheat may not exist.
Collapse
Affiliation(s)
- Habba F Mahal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Tianna Barber-Cross
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Charlotte Brown
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Dean Spaner
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
2
|
Anten NPR, Chen BJW. Kin discrimination in allelopathy and consequences for agricultural weed control. PLANT, CELL & ENVIRONMENT 2021; 44:3475-3478. [PMID: 34449084 PMCID: PMC9290514 DOI: 10.1111/pce.14173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 06/08/2023]
Affiliation(s)
- Niels P. R. Anten
- Crop & Weed Ecology Group, Centre for Crop Systems AnalysisWageningen UniversityWageningenThe Netherlands
| | - Bin J. W. Chen
- College of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| |
Collapse
|
3
|
Mauger S, Ricono C, Mony C, Chable V, Serpolay E, Biget M, Vandenkoornhuyse P. Differentiation of endospheric microbiota in ancient and modern wheat cultivar roots. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:235-248. [PMID: 37284513 PMCID: PMC10168034 DOI: 10.1002/pei3.10062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 06/08/2023]
Abstract
Modern plant breeding and agrosystems artificialization could have altered plants' ability to filter and recruit beneficial microorganisms in its microbiota. Thus, compared to modern cultivars, we hypothesized that root-endosphere microbiota in modern wheat cultivars are less resistant to colonization by fungi and bacteria and thus more susceptible to also recruit more pathogens. We used an in-field experimental design including six wheat varieties (three ancient vs. three modern) grown in monoculture and in mixture (three replicates each). Endospheric microbiota of wheat roots were analyzed on four individuals sampled randomly in each plot. Composition-based clustering of sequences was then characterized from amplicon mass-sequencing. We show that the bacterial and fungal microbiota composition in wheat roots differed between ancient and modern wheat cultivar categories. However, the responses observed varied with the group considered. Modern cultivars harbored higher richness of bacterial and fungal pathogens than ancient cultivars. Both cultivar types displayed specific indicator species. A synergistic effect was identified in mixtures of modern cultivars with a higher root endospheric mycobiota richness than expected from a null model. The present study shows the effect of plant breeding on the microbiota associated plant roots. The results call for making a diagnosis of the cultivar's endospheric-microbiota composition. These new results also suggest the importance of a holobiont-vision while considering plant selection in crops and call for better integration of symbiosis in the development of next-generation agricultural practices.
Collapse
Affiliation(s)
- Solène Mauger
- Université de Rennes 1CNRSUMR6553 ECOBIORennes CedexFrance
| | - Claire Ricono
- Université de Rennes 1CNRSUMR6553 ECOBIORennes CedexFrance
| | - Cendrine Mony
- Université de Rennes 1CNRSUMR6553 ECOBIORennes CedexFrance
| | | | | | - Marine Biget
- Université de Rennes 1CNRSUMR6553 ECOBIORennes CedexFrance
| | | |
Collapse
|
4
|
Anten NPR, Chen BJW. Detect thy family: Mechanisms, ecology and agricultural aspects of kin recognition in plants. PLANT, CELL & ENVIRONMENT 2021; 44:1059-1071. [PMID: 33522615 PMCID: PMC8048686 DOI: 10.1111/pce.14011] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 05/21/2023]
Abstract
The phenomenon that organisms can distinguish genetically related individuals from strangers (i.e., kin recognition) and exhibit more cooperative behaviours towards their relatives (i.e., positive kin discrimination) has been documented in a wide variety of organisms. However, its occurrence in plants has been considered only recently. Despite the concerns about some methodologies used to document kin recognition, there is sufficient evidence to state that it exists in plants. Effects of kin recognition go well beyond reducing resource competition between related plants and involve interactions with symbionts (e.g., mycorrhizal networks). Kin recognition thus likely has important implications for evolution of plant traits, diversity of plant populations, ecological networks and community structures. Moreover, as kin selection may result in less competitive traits and thus greater population performance, it holds potential promise for crop breeding. Exploration of these evo-ecological and agricultural implications requires adequate control and measurements of relatedness, sufficient replication at genotypic level and comprehensive measurements of performance/fitness effects of kin discrimination. The primary questions that need to be answered are: when, where and by how much positive kin discrimination improves population performance.
Collapse
Affiliation(s)
- Niels P. R. Anten
- Centre for Crop Systems AnalysisWageningen UniversityWageningenThe Netherlands
| | - Bin J. W. Chen
- College of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| |
Collapse
|
5
|
Jørgensen PS, Folke C, Carroll SP. Evolution in the Anthropocene: Informing Governance and Policy. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024621] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Anthropocene biosphere constitutes an unprecedented phase in the evolution of life on Earth with one species, humans, exerting extensive control. The increasing intensity of anthropogenic forces in the twenty-first century has widespread implications for attempts to govern both human-dominated ecosystems and the last remaining wild ecosystems. Here, we review how evolutionary biology can inform governance and policies in the Anthropocene, focusing on five governance challenges that span biodiversity, environmental management, food and other biomass production, and human health. The five challenges are: ( a) evolutionary feedbacks, ( b) maintaining resilience, ( c) alleviating constraints, ( d) coevolutionary disruption, and ( e) biotechnology. Strategies for governing these dynamics will themselves have to be coevolutionary, as eco-evolutionary and social dynamics change in response to each other.
Collapse
Affiliation(s)
- Peter Søgaard Jørgensen
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, SE104-05 Stockholm, Sweden;,
- Stockholm Resilience Centre, Stockholm University, SE106-91 Stockholm, Sweden
| | - Carl Folke
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, SE104-05 Stockholm, Sweden;,
- Stockholm Resilience Centre, Stockholm University, SE106-91 Stockholm, Sweden
- Beijer Institute of Ecological Economics, Royal Swedish Academy of Sciences, SE104-05 Stockholm, Sweden
| | - Scott P. Carroll
- Institute for Contemporary Evolution, Davis, California 95616, USA
- Department of Entomology and Nematology, University of California, Davis, California 95616, USA
| |
Collapse
|
6
|
Weiner J. Looking in the Wrong Direction for Higher-Yielding Crop Genotypes. TRENDS IN PLANT SCIENCE 2019; 24:927-933. [PMID: 31358472 DOI: 10.1016/j.tplants.2019.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 05/06/2023]
Abstract
A misunderstanding of evolution via natural selection has led many plant physiologists and genetic engineers to look in the wrong direction for higher-yielding crop genotypes. Large investments in attempts to make 'better' plants by improving basic physiological processes are not likely to succeed because natural selection has been optimizing these for millions of years. Increases in yield from plant breeding have usually resulted from decreases, not increases, in plant fitness. Examples include reduced plant height and more vertical root growth in cereals. Plant scientists and breeders should generate hypotheses based on what evolutionary biologists call 'group selection', looking for attributes that increase yield in ways that decrease fitness, rather than attempting to improve upon the achievements of natural selection.
Collapse
Affiliation(s)
- Jacob Weiner
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark.
| |
Collapse
|
7
|
Karban R. Tradeoff between resistance induced by volatile communication and over-topping vertical growth. PLANT SIGNALING & BEHAVIOR 2017; 12:e1309491. [PMID: 28402157 PMCID: PMC5586358 DOI: 10.1080/15592324.2017.1309491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Plants commonly respond to reliable cues about herbivores by inducing greater defenses. Defenses are assumed to incur costs for plants when they are not needed. Sagebrush responds to volatile cues from experimentally clipped neighbors to induce resistance against chewing herbivores. Rather than experiencing costs, sagebrush seedlings that responded to dishonest cues were previously found to have increased survival and established plants that responded produced more inflorescences and new lateral branches. Here I report that young sagebrush plants that responded to cues added less vertical growth than controls that were not presented with volatile cues. This tradeoff between induced resistance and vertical, overtopping growth may allow agronomists to increase defense without sacrificing desirable traits. Overtopping growth is often beneficial for wild plants but often detrimental in agriculture.
Collapse
Affiliation(s)
- Richard Karban
- Department of Entomology and Nematology, University of California, Davis, CA, USA
- CONTACT Richard Karban Entomology, University of California, Davis, USA, One Shields Ave., Davis, CA, 95616, USA
| |
Collapse
|
8
|
Milla R, Matesanz S. Growing larger with domestication: a matter of physiology, morphology or allocation? PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:475-483. [PMID: 28075047 DOI: 10.1111/plb.12545] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Domestication might affect plant size. We investigated whether herbaceous crops are larger than their wild progenitors, and the traits that influence size variation. We grew six crop plants and their wild progenitors under common garden conditions. We measured the aboveground biomass gain by individual plants during the vegetative stage. We then tested whether photosynthesis rate, biomass allocation to leaves, leaf size and specific leaf area (SLA) accounted for variations in whole-plant photosynthesis, and ultimately in aboveground biomass. Despite variations among crops, domestication generally increased the aboveground biomass (average effect +1.38, Cohen's d effect size). Domesticated plants invested less in leaves and more in stems than their wild progenitors. Photosynthesis rates remained similar after domestication. Variations in whole-plant C gains could not be explained by changes in leaf photosynthesis. Leaves were larger after domestication, which provided the main contribution to increases in leaf area per plant and plant-level C gain, and ultimately to larger aboveground biomass. In general, cultivated plants have become larger since domestication. In our six crops, this occurred despite lower investment in leaves, comparable leaf-level photosynthesis and similar biomass costs of leaf area (i.e. SLA) than their wild progenitors. Increased leaf size was the main driver of increases in aboveground size. Thus, we suggest that large seeds, which are also typical of crops, might produce individuals with larger organs (i.e. leaves) via cascading effects throughout ontogeny. Larger leaves would then scale into larger whole plants, which might partly explain the increases in size that accompanied domestication.
Collapse
Affiliation(s)
- R Milla
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain
| | - S Matesanz
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
9
|
Anten NPR, Vermeulen PJ. Tragedies and Crops: Understanding Natural Selection To Improve Cropping Systems. Trends Ecol Evol 2016; 31:429-439. [PMID: 27012675 DOI: 10.1016/j.tree.2016.02.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 11/16/2022]
Abstract
Plant communities with traits that would maximize community performance can be invaded by plants that invest extra in acquiring resources at the expense of others, lowering the overall community performance, a so-called tragedy of the commons (TOC). By contrast, maximum community performance is usually the objective in agriculture. We first give an overview of the occurrence of TOCs in plants, and explore the extent to which past crop breeding has led to trait values that go against an unwanted TOC. We then show how linking evolutionary game theory (EGT) with mechanistic knowledge of the physiological processes that drive trait expression and the ecological aspects of biotic interactions in agro-ecosystems might contribute to increasing crop yields and resource-use efficiency.
Collapse
Affiliation(s)
- Niels P R Anten
- Centre for Crop Systems Analysis, Wageningen University, PO Box 430, AK 6700 Wageningen, The Netherlands.
| | - Peter J Vermeulen
- Centre for Crop Systems Analysis, Wageningen University, PO Box 430, AK 6700 Wageningen, The Netherlands
| |
Collapse
|
10
|
Carroll S, Kinnison MT, Bernatchez L. In light of evolution: interdisciplinary challenges in food, health, and the environment. Evol Appl 2015; 4:155-8. [PMID: 25567965 PMCID: PMC3352555 DOI: 10.1111/j.1752-4571.2011.00182.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Scott Carroll
- Institute for Contemporary Evolution, Davis, CA, USA and Department of Entomology, University of California Davis, CA, USA
| | | | | |
Collapse
|
11
|
Neve P, Busi R, Renton M, Vila-Aiub MM. Expanding the eco-evolutionary context of herbicide resistance research. PEST MANAGEMENT SCIENCE 2014; 70:1385-93. [PMID: 24723489 DOI: 10.1002/ps.3757] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 05/26/2023]
Abstract
The potential for human-driven evolution in economically and environmentally important organisms in medicine, agriculture and conservation management is now widely recognised. The evolution of herbicide resistance in weeds is a classic example of rapid adaptation in the face of human-mediated selection. Management strategies that aim to slow or prevent the evolution of herbicide resistance must be informed by an understanding of the ecological and evolutionary factors that drive selection in weed populations. Here, we argue for a greater focus on the ultimate causes of selection for resistance in herbicide resistance studies. The emerging fields of eco-evolutionary dynamics and applied evolutionary biology offer a means to achieve this goal and to consider herbicide resistance in a broader and sometimes novel context. Four relevant research questions are presented, which examine (i) the impact of herbicide dose on selection for resistance, (ii) plant fitness in herbicide resistance studies, (iii) the efficacy of herbicide rotations and mixtures and (iv) the impacts of gene flow on resistance evolution and spread. In all cases, fundamental ecology and evolution have the potential to offer new insights into herbicide resistance evolution and management.
Collapse
Affiliation(s)
- Paul Neve
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | | | | |
Collapse
|
12
|
Kitchen JL, Allaby RG. Systems Modeling at Multiple Levels of Regulation: Linking Systems and Genetic Networks to Spatially Explicit Plant Populations. PLANTS (BASEL, SWITZERLAND) 2013; 2:16-49. [PMID: 27137364 PMCID: PMC4844292 DOI: 10.3390/plants2010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/21/2012] [Accepted: 01/16/2013] [Indexed: 11/16/2022]
Abstract
Selection and adaptation of individuals to their underlying environments are highly dynamical processes, encompassing interactions between the individual and its seasonally changing environment, synergistic or antagonistic interactions between individuals and interactions amongst the regulatory genes within the individual. Plants are useful organisms to study within systems modeling because their sedentary nature simplifies interactions between individuals and the environment, and many important plant processes such as germination or flowering are dependent on annual cycles which can be disrupted by climate behavior. Sedentism makes plants relevant candidates for spatially explicit modeling that is tied in with dynamical environments. We propose that in order to fully understand the complexities behind plant adaptation, a system that couples aspects from systems biology with population and landscape genetics is required. A suitable system could be represented by spatially explicit individual-based models where the virtual individuals are located within time-variable heterogeneous environments and contain mutable regulatory gene networks. These networks could directly interact with the environment, and should provide a useful approach to studying plant adaptation.
Collapse
Affiliation(s)
- James L Kitchen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Robin G Allaby
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
13
|
Hendry AP, Kinnison MT, Heino M, Day T, Smith TB, Fitt G, Bergstrom CT, Oakeshott J, Jørgensen PS, Zalucki MP, Gilchrist G, Southerton S, Sih A, Strauss S, Denison RF, Carroll SP. Evolutionary principles and their practical application. Evol Appl 2011; 4:159-83. [PMID: 25567966 PMCID: PMC3352551 DOI: 10.1111/j.1752-4571.2010.00165.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 02/01/2023] Open
Abstract
Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.
Collapse
Affiliation(s)
- Andrew P Hendry
- Redpath Museum and Department of Biology, McGill University Montreal, QC, Canada
| | | | - Mikko Heino
- Department of Biology, University of Bergen Bergen, Norway ; International Institute for Applied Systems Analysis Laxenburg, Austria ; Institute of Marine Research Bergen, Norway
| | - Troy Day
- Departments of Mathematics and Statistics and Biology, Queen's University Kingston, ON, Canada
| | - Thomas B Smith
- Center for Tropical Research, Institute of the Environment, University of California Los Angeles, CA, USA ; Department of Ecology and Evolutionary Biology, University of California Los Angeles, CA, USA
| | - Gary Fitt
- CSIRO Entomology and Cotton Catchment Communities CRC, Long Pocket Laboratories Indooroopilly, Qld, Australia
| | - Carl T Bergstrom
- Department of Biology, University of Washington Seattle, WA, USA
| | - John Oakeshott
- CSIRO Entomology, Black Mountain Canberra, ACT, Australia
| | - Peter S Jørgensen
- Center for Macroecology, Evolution and Climate, Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland Brisbane, Qld, Australia
| | - George Gilchrist
- Division of Environmental Biology, National Science Foundation Arlington, VA, USA
| | | | - Andrew Sih
- Department of Environmental Science and Policy, University of California Davis, CA, USA
| | - Sharon Strauss
- Section of Evolution and Ecology, University of California Davis, CA, USA
| | - Robert F Denison
- Ecology Evolution and Behavior, University of Minnesota Saint Paul, MN, USA
| | - Scott P Carroll
- Institute for Contemporary Evolution Davis, CA, USA ; Department of Entomology, University of California Davis, CA, USA
| |
Collapse
|