1
|
Maniego J, Pesko B, Hincks P, Taylor P, Stewart G, Proudman C, Scarth J, Ryder E. Direct sequence confirmation of qPCR products for gene doping assay validation in horses. Drug Test Anal 2022; 14:1017-1025. [PMID: 34994083 DOI: 10.1002/dta.3219] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022]
Abstract
The misuse of gene therapy by the introduction of transgenes via plasmid or viral vectors as a doping agent is an increasing concern in human and animal sports, not only in consideration to fair competition but also potential detrimental effects to welfare. Doping events can be detected by PCR amplification of a transgene-specific region of DNA. The quantitative nature of real time qPCR makes it particularly suited to confirmatory investigations where precise limits of detection can be calculated. To fully validate a qPCR experiment, it is highly desirable to confirm the identity of the amplicon. Although post-PCR techniques such as melt curve and fragment size analysis can provide strong evidence that the amplicon is as expected, sequence identity confirmation may be beneficial as part of regulatory proceedings. We present here our investigation into two alternative processes for the direct assessment of qPCR products for five genes using next-generation sequencing: ligation of sequence-ready adapters to qPCR products, and qPCR assays performed with primers tailed with Illumina flow cell binding sites. To fully test the robustness of the techniques at concentrations required for gene doping detection, we also calculated a putative limit of detection for the assays. Both ligated adapters and tailed primers were successful in producing sequence data for the qPCR products without further amplification. Ligated adapters are preferred, however, as they do not require re-optimisation of existing qPCR assays.
Collapse
Affiliation(s)
- Jillian Maniego
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Bogusia Pesko
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Pamela Hincks
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Polly Taylor
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Graham Stewart
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey
| | | | - James Scarth
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Edward Ryder
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| |
Collapse
|
2
|
Farraha M, Barry MA, Lu J, Pouliopoulos J, Le TYL, Igoor S, Rao R, Kok C, Chong J, Kizana E. Analysis of recombinant adeno-associated viral vector shedding in sheep following intracoronary delivery. Gene Ther 2019; 26:399-406. [PMID: 31467408 DOI: 10.1038/s41434-019-0097-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/31/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
Differences between mouse and human hearts pose a significant limitation to the value of small animal models when predicting vector behavior following recombinant adeno-associated viral (rAAV) vector-mediated cardiac gene therapy. Hence, sheep have been adopted as a preclinical animal, as they better model the anatomy and cardiac physiological processes of humans. There is, however, no comprehensive data on the shedding profile of rAAV in sheep following intracoronary delivery, so as to understand biosafety risks in future preclinical and clinical applications. In this study, sheep received intracoronary delivery of rAAV serotypes 2/6 (2 × 1012 vg), 2/8, and 2/9 (1 × 1013 vg) at doses previously administered in preclinical and clinical trials. This was followed by assessment over 96 h to examine vector shedding in urine, feces, nasal mucus, and saliva samples. Vector genomes were detected via real-time quantitative PCR in urine and feces up to 48 and 72 h post vector delivery, respectively. Of these results, functional vector particles were only detected via a highly sensitive infectious replication assay in feces samples up to 48 h following vector delivery. We conclude that rAAV-mediated gene transfer into sheep hearts results in low-grade shedding of non-functional vector particles for all excreta samples, except in the case of feces, where functional vector particles are present up to 48 h following vector delivery. These results may be used to inform containment and decontamination guidelines for large animal dealings, and to understand the biosafety risks associated with future preclinical and clinical uses of rAAV.
Collapse
Affiliation(s)
- Melad Farraha
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Center for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Michael A Barry
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia
| | - Juntang Lu
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia
| | - Jim Pouliopoulos
- Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia
| | - Thi Y L Le
- Center for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Sindhu Igoor
- Center for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Renuka Rao
- Center for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Cindy Kok
- Center for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - James Chong
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Center for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia
| | - Eddy Kizana
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia. .,Center for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia. .,Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Furuta-Hanawa B, Yamaguchi T, Uchida E. Two-Dimensional Droplet Digital PCR as a Tool for Titration and Integrity Evaluation of Recombinant Adeno-Associated Viral Vectors. Hum Gene Ther Methods 2019; 30:127-136. [PMID: 31140327 PMCID: PMC6707039 DOI: 10.1089/hgtb.2019.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have recently been widely utilized for in in vivo gene therapy. The clinical dose definition of AAV vector requires the exact quantification as starting doses and for dose-escalation studies. Vector genome (vg) copies measured by quantitative PCR (qPCR) are commonly used for rAAV vector titration, and rAAV vector plasmids DNA is often used for qPCR standards, although the rAAV reference standard materials (RSMs) for serotypes 2 and 8 (rAAV2RSM and rAAV8RSM) are available from American Type Culture Collection. However, qPCR-based determination of the AAV vg is affected by the selection of the qPCR standard and the amplification target sites. In this study, we have developed a new PCR method, two-dimensional droplet digital PCR (2D ddPCR), for the absolute quantitation of target DNA and for evaluating the stability of the rAAV vector. The number of vg copies of rAAV2RSM determined by qPCR dramatically changed when standard plasmid DNAs with different conformations were treated with restriction enzymes, suggesting that qPCR amplification is significantly affected by the secondary structure of the standard. In contrast, the number of vg copies determined by ddPCR was unaffected by using primer probes for different positions of target sites or by the secondary structure conformation of the vg. Furthermore, the integrity of the AAV vg can be monitored using 2D ddPCR with fluorescein- and hexachloro-6-carboxy-fluorescine–labeled probes targeting different positions in the same rAAV genome. The titer of intact rAAV was highly correlated with rAAV activity in an accelerated (37°C) stability study. 2D ddPCR is a useful tool for rAAV vector quantitation and quality evaluation.
Collapse
Affiliation(s)
- Birei Furuta-Hanawa
- 1Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Teruhide Yamaguchi
- 2Nihon Pharmaceutical University, Saitama, Japan.,3Institute of Advanced Medical and Engineering Technology for Aging, Kanazawa Institute of Technology, Ishikawa, Japan
| | - Eriko Uchida
- 1Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kanagawa, Japan
| |
Collapse
|
4
|
Moulay G, Ohtani T, Ogut O, Guenzel A, Behfar A, Zakeri R, Haines P, Storlie J, Bowen L, Pham L, Kaye D, Sandhu G, O'Connor M, Russell S, Redfield M. Cardiac AAV9 Gene Delivery Strategies in Adult Canines: Assessment by Long-term Serial SPECT Imaging of Sodium Iodide Symporter Expression. Mol Ther 2015; 23:1211-1221. [PMID: 25915925 PMCID: PMC4817780 DOI: 10.1038/mt.2015.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/18/2015] [Indexed: 12/17/2022] Open
Abstract
Heart failure is a leading cause of morbidity and mortality, and cardiac gene delivery has the potential to provide novel therapeutic approaches. Adeno-associated virus serotype 9 (AAV9) transduces the rodent heart efficiently, but cardiotropism, immune tolerance, and optimal delivery strategies in large animals are unclear. In this study, an AAV9 vector encoding canine sodium iodide symporter (NIS) was administered to adult immunocompetent dogs via epicardial injection, coronary infusion without and with cardiac recirculation, or endocardial injection via a novel catheter with curved needle and both end- and side-holes. As NIS mediates cellular uptake of clinical radioisotopes, expression was tracked by single-photon emission computerized tomography (SPECT) imaging in addition to Western blot and immunohistochemistry. Direct epicardial or endocardial injection resulted in strong cardiac expression, whereas expression after intracoronary infusion or cardiac recirculation was undetectable. A threshold myocardial injection dose that provides robust nonimmunogenic expression was identified. The extent of transmural myocardial expression was greater with the novel catheter versus straight end-hole needle delivery. Furthermore, the authors demonstrate that cardiac NIS reporter gene expression and duration can be quantified using serial noninvasive SPECT imaging up to 1 year after vector administration. These data are relevant to efforts to develop cardiac gene delivery as heart failure therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Philip Haines
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Linh Pham
- Mayo Clinic, Rochester, Minnesota, USA
| | - David Kaye
- Baker Heart Research Institute, Melbourne, Australia
| | | | | | | | | |
Collapse
|
5
|
Katwal AB, Konkalmatt PR, Piras BA, Hazarika S, Li SS, John Lye R, Sanders JM, Ferrante EA, Yan Z, Annex BH, French BA. Adeno-associated virus serotype 9 efficiently targets ischemic skeletal muscle following systemic delivery. Gene Ther 2013; 20:930-8. [PMID: 23535898 PMCID: PMC3758463 DOI: 10.1038/gt.2013.16] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 01/22/2013] [Accepted: 02/20/2013] [Indexed: 02/07/2023]
Abstract
Targeting therapeutic gene expression to the skeletal muscle following intravenous (IV) administration is an attractive strategy for treating peripheral arterial disease (PAD), except that vector access to the ischemic limb could be a limiting factor. As adeno-associated virus serotype 9 (AAV-9) transduces skeletal muscle at high efficiency following systemic delivery, we employed AAV-9 vectors bearing luciferase or enhanced green fluorescent protein (eGFP) reporter genes to test the hypothesis that increased desialylation of cell-surface glycans secondary to hindlimb ischemia (HLI) might help offset the reduction in tissue perfusion that occurs in mouse models of PAD. The utility of the creatine kinase-based (CK6) promoter for restricting gene expression to the skeletal muscle was also examined by comparing it with the cytomegalovirus (CMV) promoter after systemic administration following surgically induced HLI. Despite reduced blood flow to the ischemic limbs, CK6 promoter-driven luciferase activities in the ischemic gastrocnemius (GA) muscles were ∼34-, ∼28- and ∼150-fold higher than in the fully perfused contralateral GA, heart and liver, respectively, 10 days after IV administration. Furthermore, luciferase activity from the CK6 promoter in the ischemic GA muscles was ∼twofold higher than with CMV, while in the liver CK6-driven activity was ∼42-fold lower than with CMV, demonstrating that the specificity of ischemic skeletal muscle transduction can be further improved with the muscle-specific promoters. Studies with Evans blue dye and fluorescently labeled lectins revealed that vascular permeability and desialylation of the cell-surface glycans were increased in the ischemic hindlimbs. Furthermore, AAV9/CK6/Luc vector genome copy numbers were ∼sixfold higher in the ischemic muscle compared with the non-ischemic muscle in the HLI model, whereas this trend was reversed when the same genome was packaged in the AAV-1 capsid (which binds sialylated, as opposed to desialylated glycans), further underscoring the importance of desialylation in the ischemic enhancement of transduction displayed by AAV-9. Taken together, these findings suggest two complementary mechanisms contributing to the preferential transduction of ischemic muscle by AAV-9: increased vascular permeability and desialylation. In conclusion, ischemic muscle is preferentially targeted following systemic administration of AAV-9 in a mouse model of HLI. Unmasking of the primary AAV-9 receptor as a result of ischemia may contribute importantly to this effect.
Collapse
Affiliation(s)
- A B Katwal
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Konkalmatt PR, Wang F, Piras BA, Xu Y, O’Connor DM, Beyers RJ, Epstein FH, Annex BH, Hossack JA, French BA. Adeno-associated virus serotype 9 administered systemically after reperfusion preferentially targets cardiomyocytes in the infarct border zone with pharmacodynamics suitable for the attenuation of left ventricular remodeling. J Gene Med 2012; 14:609-20. [PMID: 23065925 PMCID: PMC3729029 DOI: 10.1002/jgm.2673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Adeno-associated virus serotype 9 (AAV9) vectors provide efficient and uniform gene expression to normal myocardium following systemic administration, with kinetics that approach steady-state within 2-3 weeks. However, as a result of the delayed onset of gene expression, AAV vectors have not previously been administered intravenously after reperfusion for post-infarct gene therapy applications. The present study evaluated the therapeutic potential of post-myocardial infarction gene delivery using intravenous AAV9. METHODS AAV9 vectors expressing firefly luciferase, enhanced green fluorescent protein (eGFP) or extracellular superoxide dismutase genes from the cardiac troponin-T (cTnT) promoter (AcTnTLuc, AcTnTeGFP, AcTnTEcSOD) were employed. AcTnTLuc was administered intravenously at 10 min and at 1, 2 and 3 days post-ischemia/reperfusion (IR), and the kinetics of luciferase expression were assessed with bioluminescence imaging. AcTnTeGFP was used to evaluate the distribution of eGFP expression. High-resolution echocardiography was used to evaluate the effects of AcTnTEcSOD on left ventricular (LV) remodeling when injected 10 min post-IR. RESULTS Compared to sham animals, luciferase expression at 2 days after vector administration was elevated by four-, 24-, 210- and 213-fold in groups injected at 10 min, 1 day, 2 days and 3 days post-IR, respectively. The expression of cTnT-driven eGFP was strongest in cardiomyocytes bordering the infarct zone. In the efficacy study of EcSOD, post-infarct LV end-systolic and end-diastolic volumes at days 14 and 28 were significantly smaller in the EcSOD group compared to the control. CONCLUSIONS Systemic administration of AAV9 vectors after IR both elevates and accelerates gene expression that preferentially targets cardiomyocytes in the border zone with pharmacodynamics suitable for the attenuation of LV remodeling.
Collapse
Affiliation(s)
- Prasad R. Konkalmatt
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Feng Wang
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Bryan A. Piras
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Yaqin Xu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | | | - Ronald J. Beyers
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Frederick H. Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Brian H. Annex
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - John A. Hossack
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Brent A. French
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Radiology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|