1
|
Abadie RB, Staples AA, Lauck LV, Dautel AD, Spillers NJ, Klapper RJ, Hirsch JD, Varrassi G, Ahmadzadeh S, Shekoohi S, Kaye AD. Vitamin A-Mediated Birth Defects: A Narrative Review. Cureus 2023; 15:e50513. [PMID: 38226115 PMCID: PMC10788247 DOI: 10.7759/cureus.50513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Vitamin A deficiency (VAD) or excess in expectant mothers can result in fetal abnormalities such as night blindness, bone anomalies, or epithelial cell problems. In contrast, excessive vitamin A in pregnancy can precipitate fetal central nervous system deformities. During pregnancy, a pregnant woman should monitor her vitamin A intake ensuring she gets the recommended dosage, but also ensuring she doesn't exceed the recommended dosage, because either one can result in teratogenicity in the fetus. The widespread and unregulated use of multivitamins and supplements makes consuming doses greater than the recommended quantity more common in developed countries. While vitamin A excess is more common in developed countries, deficiency is most prevalent in developing countries. With proper maintenance, regulation, and education about VAD and excess, a pregnant mother can diminish potential harm to her fetus and potential teratogenic risks.
Collapse
Affiliation(s)
- Raegan B Abadie
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Abigail A Staples
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Lillian V Lauck
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alexandra D Dautel
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Noah J Spillers
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Rachel J Klapper
- Radiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Jon D Hirsch
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | | | - Shahab Ahmadzadeh
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alan D Kaye
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| |
Collapse
|
2
|
Song C, Li T, Zhang C, Li S, Lu S, Zou Y. RA-induced prominence-specific response resulted in distinctive regulation of Wnt and osteogenesis. Life Sci Alliance 2023; 6:e202302013. [PMID: 37541848 PMCID: PMC10403638 DOI: 10.26508/lsa.202302013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023] Open
Abstract
Proper retinoic acid (RA) signaling is essential for normal craniofacial development. Both excessive RA and RA deficiency in early embryonic stage may lead to a variety of craniofacial malformations, for example, cleft palate, which have been investigated extensively. Dysregulated Wnt and Shh signaling were shown to underlie the pathogenesis of RA-induced craniofacial defects. In our present study, we showed a spatiotemporal-specific effect of RA signaling in regulating early development of facial prominences. Although inhibited Wnt activities was observed in E12.5/E13.5 mouse palatal shelves, early exposure of excessive RA induced Wnt signaling and Wnt-related gene expression in E11.5/E12.5 mouse embryonic frontonasal/maxillary processes. A conserved regulatory network of miR-484-Fzd5 was identified to play critical roles in RA-regulated craniofacial development using RNA-seq. In addition, subsequent osteogenic/chondrogenic differentiation were differentially regulated in discrete mouse embryonic facial prominences in response to early RA induction, demonstrated using both in vitro and in vivo analyses.
Collapse
Affiliation(s)
- Chao Song
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Ting Li
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Chunlei Zhang
- First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shufang Li
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Songhui Lu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yi Zou
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Yu Z, Song S, Wang G, Zhang Y, Zhang Y, Wu Y, Liu H, Zhang Y, Liu X. The mechanisms governing mouse embryonic palate mesenchymal cells' proliferation associated with atRA-induced cleft palate in mice: insights from integrated transcriptomic and metabolomic analyses. Arch Toxicol 2023; 97:2143-2153. [PMID: 37278767 DOI: 10.1007/s00204-023-03534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
While exposure to high levels of all-trans retinoic acid (atRA) during pregnancy is known to suppress murine embryonic palate mesenchymal (MEPM) cells proliferation and to result in cleft palate (CP) development, the underlying mechanisms are poorly understood. Accordingly, this study was designed with the goal of clarifying the etiological basis for atRA-induced CP. A murine model of CP was established via the oral administration of atRA to pregnant mice on gestational day (GD) 10.5, after which transcriptomic and metabolomic analyses were performed with the goal of clarifying the critical genes and metabolites associated with CP development through an integrated multi-omics approach. MEPM cells proliferation was altered by atRA exposure as expected, contributing to CP incidence. In total, 110 genes were differentially expressed in the atRA treatment groups, suggesting that atRA may influence key biological processes including stimulus, adhesion, and signaling-related activities. In addition, 133 differentially abundant metabolites were identified including molecules associated with ABC transporters, protein digestion and absorption, mTOR signaling pathway, and the TCA cycle, suggesting a link between these mechanisms and CP. Overall, combined analyses of these transcriptomic and metabolomic results suggested that the MAPK, calcium, PI3K-Akt, Wnt, and mTOR signaling pathways are particularly important pathways enriched in the palatal cleft under conditions of atRA exposure. Together, these integrated transcriptomic and metabolomic approaches provided new evidence with respect to the mechanisms underlying altered MEPM cells proliferation and signal transduction associated with atRA-induced CP, revealing a possible link between oxidative stress and these pathological changes.
Collapse
Affiliation(s)
- Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuaixing Song
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Guoxu Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yujing Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yaxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Hongyan Liu
- Department of Medical Genetics, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
4
|
Liu C, Wang D, Jin L, Zhang J, Meng W, Jin L, Shang X. The relationship between maternal periconceptional micronutrient supplementation and non-syndromic cleft lip/palate in offspring. Birth Defects Res 2023; 115:545-554. [PMID: 36595654 DOI: 10.1002/bdr2.2146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND This study aimed to explore the relationship between maternal periconceptional supplementation with folic acid only (FAO) or with multiple micronutrients containing folic acid (MMFA) and non-syndromic cleft lip/palate in offspring. METHOD The data came from a prenatal health care system and a birth defects surveillance system in Beijing, China, from 2013 to 2018. Information on maternal FAO/MMFA supplementation was collected by questionnaire in the first trimester, and data on cleft lip/palate were collected at delivery or termination of pregnancy. Inverse probability weighting (IPW) by the propensity score to adjust for the confounders and Poisson regression model was used to estimate risk ratios (RRs) and their 95% confidence intervals (CIs). RESULTS A total of 63,969 participants were included in the study. Compared to the no-supplementation group, the adjusted RR for the supplementation group was 0.51 (95% CI: 0.40, 0.64). And the adjusted RRs for FAO and MMFA compared to the no-supplementation group were 0.56 (95% CI: 0.40, 0.76) and 0.48 (95% CI: 0.35, 0.65), respectively. Compared to supplement FAO and MMFA with less than 8 days out of 10 days, the adjusted RRs for FAO and MMFA with 8 or more days out of 10 days were 1.17 (95% CI: 0.78, 1.75), and 2.05 (95% CI: 1.37, 3.31), respectively. CONCLUSION Maternal supplementation with micronutrients, either FAO or MMFA, during the periconceptional period can reduce the risk for non-syndromic cleft lip/palate in offspring. However, women should be more cautious with MMFA supplementation.
Collapse
Affiliation(s)
- Chunyi Liu
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Di Wang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Lei Jin
- Tongzhou Maternal and Child Health Hospital of Beijing, Beijing, China
| | - Jie Zhang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Wenying Meng
- Tongzhou Maternal and Child Health Hospital of Beijing, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Nanjing School of Clinical Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
5
|
Is the Tradeoff between Folic Acid or/and Multivitamin Supplementation against Birth Defects in Early Pregnancy Reconsidered? Evidence Based on a Chinese Birth Cohort Study. Nutrients 2023; 15:nu15020279. [PMID: 36678149 PMCID: PMC9865336 DOI: 10.3390/nu15020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Several studies have reported conflicting results on the association between maternal exposure to folic acid (FA) and/or multivitamin (MV) supplements and the risk of birth defects (BDs), especially for different subtypes of BDs. The present study aimed to identify the association between maternal exposure to FA or/and MV and BDs in offspring. METHODS In the Chinese Birth Cohort Study initiated from 20 November 2017, 120,652 pregnant women completed follow-up until 20 August 2021. The participants were classified into four groups: without exposure to FA and MV, exposure to only FA, exposure to only MV, and exposure to FA and MV. Birth defects were coded by the International Classification of Diseases (ICD)-10. In order to explore the structural relationship between maternal FA or MV supplements and BDs, directed acyclic graphs were drawn. Then, an inverse probability treatment weighting was utilized to reduce the systematic differences in the baseline characteristics among the different groups. Lastly, a two-level mixed-effect log binomial regression analysis was used to estimate the relative risk (RR) value of the different subtypes of BDs under different exposures to FA and/or MV. RESULTS Compared with the maternal group without exposure to FA and MV, the RR values of nervous system defects, face, ear, and neck defects, limb defects, and CHDs in the maternal group with only FA supplementation were less than 1.0, but they were not statistically significant. The RR values of genitourinary defects, abnormal chromosomes, and oral clefts were more than 1.0, and they were also not statistically significant. However, the risk of genitourinary defects (RR: 3.22, 95% CI: 1.42-7.29) and chromosomal abnormalities (RR: 2.57, 95% CI: 1.16-5.73) in the maternal group with only MV supplementation increased more than those in the maternal group without exposure to FA and MV. In addition, the RR values of all subtypes of BDs in the maternal group with exposure to FA and MV were closer to 1.0 than those in maternal group with exposure to only MV, but they were not statistically significant. CONCLUSIONS It was indicated that the simultaneous supplementation of FA and MV in early pregnancy may have an interaction for the prevention of BDs and may have inconsistent effects for different subtypes of BDs. At the same time, excessive FA supplementation in pregnant women may increase the risk of BDs in their offspring. Although the mechanism is not clear, this evidence reminded us that more trade-offs are necessary for formulating strategies for the prevention of BDs with FA and/or MV supplementation in early pregnancy.
Collapse
|
6
|
Liu X, Liu H, Wu Y, He Z, Shen L, Zhang H, Wan Z, Chen Y, Yue H, Zhang T, Gao S, Yu Z. The role of lncRNA Meg3 in the proliferation of all-trans retinoic acid-treated mouse embryonic palate mesenchymal cells involves the Smad pathway. Reprod Toxicol 2021; 104:1-7. [PMID: 34166781 DOI: 10.1016/j.reprotox.2021.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 11/27/2022]
Abstract
Mesenchymal cell proliferation is critical for the growth of the palate shelf. All-trans retinoic acid (atRA), as well as pathways associated with TGF-β/Smad signaling, play crucial roles in the proliferation of mouse embryonic palate mesenchymal (MEPM) cells. We have found that MEPM-cell proliferation was regulated by atRA and exogenous TGF-β3 could significantly antagonize the atRA-mediated suppression of MEPM cell proliferation, which is closely associated with the regulation of TGF-β/Smad signaling pathway. The long non-coding RNA (lncRNA) MEG3 has been reported to activate TGF-β/Smad signaling, thereby regulating cellular proliferation, differentiation, and related processes. Here, we found that Meg3 expression increased significantly in atRA-treated MEPM cells while TGF-β3 treatment markedly inhibited Meg3 expression and antagonized the effect of atRA on Meg3. Moreover, Smad2 was found to interact directly with Meg3, and atRA treatment significantly enriched Meg3 in Smad2-immunoprecipitated samples. After Meg3 deletion, the effects of atRA on the proliferation of MEPM cells and TGF-β3-dependent protein expression were lost. Hence, we speculate that Meg3 has a role in the RA-induced suppression of MEPM cell proliferation by targeting Smad2 and thereby mediating TGF-β/Smad signaling inhibition.
Collapse
Affiliation(s)
- Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Hongyan Liu
- Department of Medical Genetics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Zhidong He
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Lijun Shen
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongxiao Wan
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yao Chen
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haodi Yue
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Tingting Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Suhua Gao
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China; School of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Liu X, Zhang Y, Shen L, He Z, Chen Y, Li N, Zhang X, Zhang T, Gao S, Yue H, Li Z, Yu Z. LncRNA Meg3-mediated regulation of the Smad pathway in atRA-induced cleft palate. Toxicol Lett 2021; 341:51-58. [PMID: 33493612 DOI: 10.1016/j.toxlet.2021.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022]
Abstract
Palatal mesenchymal cell proliferation is essential to the process of palatogenesis, and the proliferation of mouse embryonic palate mesenchymal (MEPM) cells is impacted by both all-trans retinoic acid (atRA) and the TGF-β/Smad signaling pathway. The long non-coding RNA (lncRNA) MEG3 has been shown to activate TGF-β/Smad signaling and to thereby regulate cell proliferation, differentiation, and related processes. Herein, we found that atRA treatment (100 mg/kg) promoted Meg3 upregulation in MEPM cells, and that such upregulation was linked to the suppression of MEPM cell proliferation in the context of secondary palate fusion on gestational day (GD) 13 and 14. Moreover, the demethylation of specific CpG sites within the lncRNA Meg3 promoter was detected in atRA-treated MEPM cells, likely explaining the observed upregulation of this lncRNA. Smad signaling was also suppressed by atRA treatment in these cells, and RNA immunoprecipitation analyses revealed that Smad2 can directly interact with Meg3 in MEPM cells following atRA treatment. Therefore, we propose a model wherein Meg3 is involved in the suppression of MEPM cell proliferation, functioning at least in part via interacting with the Smad2 protein and thereby suppressing Smad signaling in the context of atRA-induced cleft palate.
Collapse
Affiliation(s)
- Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijun Shen
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhidong He
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yao Chen
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ning Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiuli Zhang
- Division of Blood Vessel Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tingting Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Suhua Gao
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haodi Yue
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhitao Li
- Medical College of Henan University of Science and Technology, Luoyang, Henan, China
| | - Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China; School of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Raterman ST, Metz JR, Wagener FADTG, Von den Hoff JW. Zebrafish Models of Craniofacial Malformations: Interactions of Environmental Factors. Front Cell Dev Biol 2020; 8:600926. [PMID: 33304906 PMCID: PMC7701217 DOI: 10.3389/fcell.2020.600926] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
The zebrafish is an appealing model organism for investigating the genetic (G) and environmental (E) factors, as well as their interactions (GxE), which contribute to craniofacial malformations. Here, we review zebrafish studies on environmental factors involved in the etiology of craniofacial malformations in humans including maternal smoking, alcohol consumption, nutrition and drug use. As an example, we focus on the (cleft) palate, for which the zebrafish ethmoid plate is a good model. This review highlights the importance of investigating ExE interactions and discusses the variable effects of exposure to environmental factors on craniofacial development depending on dosage, exposure time and developmental stage. Zebrafish also promise to be a good tool to study novel craniofacial teratogens and toxin mixtures. Lastly, we discuss the handful of studies on gene–alcohol interactions using mutant sensitivity screens and reverse genetic techniques. We expect that studies addressing complex interactions (ExE and GxE) in craniofacial malformations will increase in the coming years. These are likely to uncover currently unknown mechanisms with implications for the prevention of craniofacial malformations. The zebrafish appears to be an excellent complementary model with high translational value to study these complex interactions.
Collapse
Affiliation(s)
- S T Raterman
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - J R Metz
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Frank A D T G Wagener
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes W Von den Hoff
- Radboud Institute of Molecular Life Sciences, Nijmegen, Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
9
|
Martinelli M, Palmieri A, Carinci F, Scapoli L. Non-syndromic Cleft Palate: An Overview on Human Genetic and Environmental Risk Factors. Front Cell Dev Biol 2020; 8:592271. [PMID: 33195260 PMCID: PMC7606870 DOI: 10.3389/fcell.2020.592271] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022] Open
Abstract
The epithelial and mesenchymal cells involved in early embryonic facial development are guided by complex regulatory mechanisms. Any factor perturbing the growth, approach and fusion of the frontonasal and maxillary processes could result in orofacial clefts that represent the most common craniofacial malformations in humans. The rarest and, probably for this reason, the least studied form of cleft involves only the secondary palate, which is posterior to the incisive foramen. The etiology of cleft palate only is multifactorial and involves both genetic and environmental risk factors. The intention of this review is to give the reader an overview of the efforts made by researchers to shed light on the underlying causes of this birth defect. Most of the scientific papers suggesting potential environmental and genetic causes of non-syndromic cleft palate are summarized in this review, including genome-wide association and gene–environment interaction studies.
Collapse
Affiliation(s)
- Marcella Martinelli
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Annalisa Palmieri
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Francesco Carinci
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca Scapoli
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Garland MA, Sun B, Zhang S, Reynolds K, Ji Y, Zhou CJ. Role of epigenetics and miRNAs in orofacial clefts. Birth Defects Res 2020; 112:1635-1659. [PMID: 32926553 DOI: 10.1002/bdr2.1802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/17/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Orofacial clefts (OFCs) have multiple etiologies and likely result from an interplay between genetic and environmental factors. Within the last decade, studies have implicated specific epigenetic modifications and noncoding RNAs as additional facets of OFC etiology. Altered gene expression through DNA methylation and histone modification offer novel insights into how specific genes contribute to distinct OFC subtypes. Epigenetics research has also provided further evidence that cleft lip only (CLO) is a cleft subtype with distinct etiology. Polymorphisms or misexpression of genes encoding microRNAs, as well as their targets, contribute to OFC risk. The ability to experimentally manipulate epigenetic changes and noncoding RNAs in animal models, such as zebrafish, Xenopus, mice, and rats, has offered novel insights into the mechanisms of various OFC subtypes. Although much remains to be understood, recent advancements in our understanding of OFC etiology may advise future strategies of research and preventive care.
Collapse
Affiliation(s)
- Michael A Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| |
Collapse
|
11
|
Yoshida S, Takeuchi M, Kawakami C, Kawakami K, Ito S. Maternal multivitamin intake and orofacial clefts in offspring: Japan Environment and Children's Study (JECS) cohort study. BMJ Open 2020; 10:e035817. [PMID: 32234746 PMCID: PMC7170615 DOI: 10.1136/bmjopen-2019-035817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Orofacial clefts are common birth defects with a lack of strong evidence regarding their association with maternal nutrition. We aimed to determine whether a relationship exists between maternal nutrient or multivitamin intake and orofacial clefts. DESIGN This is a prospective, population-based nationwide cohort study. SETTING The study was conducted in 15 regional centres, consisting of local administrative units and study areas. PARTICIPANTS A total of 98 787 eligible mother-child pairs of the Japan Environment and Children's Study were included. INTERVENTION Exposures were maternal nutrition and the use of supplemental multivitamins in mothers. PRIMARY AND SECONDARY OUTCOME MEASURES Outcomes were the occurrence of any orofacial cleft at birth. Multinomial logistic regression analyses were used to evaluate the association between maternal multivitamin intake and the incidence of orofacial clefts. RESULTS Of the 98 787 children, 69 (0.07%) were diagnosed with cleft lip alone, 113 (0.11%) were diagnosed with cleft lip and palate, and 52 (0.05%) were diagnosed with cleft palate within 1 month after birth. Regarding the total orofacial cleft outcome, statistically significant point estimates of relative risk ratios (RR) were determined for multivitamin intake before pregnancy (RR=1.71; 95% CI 1.06 to 2.77) and during the first trimester (RR=2.00; 95% CI 1.18 to 3.37), but the association was not significant for multivitamin intake after the first trimester (RR=1.34; 95% CI 0.59 to 3.01). Maternal micronutrient intake via food was not associated with the incidence of orofacial clefts in offspring. CONCLUSIONS Intake of multivitamin supplements shortly before conception or during the first trimester of pregnancy was found to be associated with an increased incidence of orofacial clefts at birth. Pregnant women and those intending to become pregnant should be advised of the potential risks of multivitamin supplementation.
Collapse
Affiliation(s)
- Satomi Yoshida
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan
| | - Masato Takeuchi
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan
| | - Chihiro Kawakami
- Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Koji Kawakami
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan
| | - Shuichi Ito
- Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
12
|
Wang Q, Kurosaka H, Kikuchi M, Nakaya A, Trainor PA, Yamashiro T. Perturbed development of cranial neural crest cells in association with reduced sonic hedgehog signaling underlies the pathogenesis of retinoic-acid-induced cleft palate. Dis Model Mech 2019; 12:dmm040279. [PMID: 31591086 PMCID: PMC6826016 DOI: 10.1242/dmm.040279] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Cleft palate (CP) is one of the most common congenital craniofacial anomalies in humans and can be caused by either single or multiple genetic and environmental factor(s). With respect to environmental factors, excessive intake of vitamin A during early pregnancy is associated with increased incidence of CP in offspring both in humans and in animal models. Vitamin A is metabolized to retinoic acid (RA); however, the pathogenetic mechanism of CP caused by altered RA signaling during early embryogenesis is not fully understood. To investigate the detailed cellular and molecular mechanism of RA-induced CP, we administered all-trans RA to pregnant mice at embryonic day (E)8.5. In the RA-treated group, we observed altered expression of Sox10, which marks cranial neural crest cells (CNCCs). Disruption of Sox10 expression was also observed at E10.5 in the maxillary component of the first branchial arch, which gives rise to secondary palatal shelves. Moreover, we found significant elevation of CNCC apoptosis in RA-treated embryos. RNA-sequencing comparisons of RA-treated embryos compared to controls revealed alterations in Sonic hedgehog (Shh) signaling. More specifically, the expression of Shh and its downstream genes Ptch1 and Gli1 was spatiotemporally downregulated in the developing face of RA-treated embryos. Consistent with these findings, the incidence of CP in association with excessive RA signaling was reduced by administration of the Shh signaling agonist SAG (Smoothened agonist). Altogether, our results uncovered a novel mechanistic association between RA-induced CP with decreased Shh signaling and elevated CNCC apoptosis.
Collapse
Affiliation(s)
- Qi Wang
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita 565-0871, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita 565-0871, Japan
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Akihiro Nakaya
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
13
|
Seelan RS, Pisano M, Greene RM. Nucleic acid methylation and orofacial morphogenesis. Birth Defects Res 2019; 111:1593-1610. [PMID: 31385455 DOI: 10.1002/bdr2.1564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
Abstract
In this review, we highlight the current state of knowledge of the diverse roles nucleic acid methylation plays in the embryonic development of the orofacial region and how aberrant methylation may contribute to orofacial clefts. We also consider the role of methylation in the regulation of neural crest cell function as it pertains to orofacial ontogeny. Changes in DNA methylation, as a consequence of environmental effects, have been observed in the regulatory regions of several genes, potentially identifying new candidate genes for orofacial clefting and opening promising new avenues for further research. While the focus of this review is primarily on the nonsyndromic forms of orofacial clefting, syndromic forms are briefly discussed in the context of aberrant nucleic acid methylation.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, Kentucky
| |
Collapse
|
14
|
Tao J, Han Q, Zhou H, Diao X. Transcriptomic responses of regenerating earthworms (Eisenia foetida) to retinoic acid reveals the role of pluripotency genes. CHEMOSPHERE 2019; 226:47-59. [PMID: 30913427 DOI: 10.1016/j.chemosphere.2019.03.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/16/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Exogenous retinoic acid (RA) delays and disturbs the regeneration of Eisenia foetida and inhibits the expression of pluripotent gene Sox2. However, studies of E. foetida conducted at the molecular level have been unable to elucidate its regeneration and mechanisms of RA effects on its regeneration. We merged existing transcriptomic data for E. foetida to generate a high-confidence set of transcriptomes. The de novo assembly of transcriptomes was performed by using the Trinity method, and functional annotations were analysed. We performed RNA-seq on four samples of regenerating tail fragments, three across a time-course (0, 3 and 7 days post amputation) and the fourth sample exposed to RA (7 days post amputation). E. foetida regeneration genes underwent significant upregulation and downregulation over the examined time periods, which may have been caused by a shared regulatory programme controlled by multiple gene families. The inhibition of RA against earthworm regeneration is likely related to the expression of these genes. Using annotation data and clustering, we also identified specific transcripts of 6 gene superfamilies enriched among genes exhibiting differential expression during regeneration periods and exhibiting the same expression patterns as those of the Sox2 gene. The regeneration transcriptome of tail fragment regeneration serves as a strong resource for investigating global expression changes that occur during regeneration and the toxicity of RA. This study offers insight for better understanding the regeneration of lower animals and molecular mechanisms of RA toxicity in invertebrates.
Collapse
Affiliation(s)
- Jing Tao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; College of Life Sciences and Pharmacy, Hainan University, Haikou, 570228, China; State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Qian Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; College of Life Sciences and Pharmacy, Hainan University, Haikou, 570228, China.
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; College of Life Sciences and Pharmacy, Hainan University, Haikou, 570228, China.
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; College of Life Science, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
15
|
Shu X, Dong Z, Shu S. AMBRA1-mediated autophagy and apoptosis associated with an epithelial-mesenchymal transition in the development of cleft palate induced by all-trans retinoic acid. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:128. [PMID: 31157249 PMCID: PMC6511560 DOI: 10.21037/atm.2019.02.22] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/31/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Autophagy and apoptosis are involved in embryogenesis. However, little is known about the regulatory mechanism of AMBRA1-mediated autophagy and apoptosis associated with epithelial-mesenchymal transition (EMT) in the development of cleft palate (CP). This study is aimed to elucidate a novel regulatory mechanism by which AMBRA1 regulates autophagy and apoptosis associated with EMT during palatal fusion. METHODS We performed lncRNA and mRNA co-expression profile analysis on embryonic gestation day 14.5 (E14.5) mouse embryos from control (n=3) and all-trans retinoic acid-treated (to induce cleft palate, n=3) C57BL/6J mice. Functional prediction for transcription factor (TF)-target gene relationship, which was obtained using Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analyses (GO/KEGG) pathway analysis, identified the regulatory "lncRNA-TF-target gene" using the trans model. RESULTS The trans analysis revealed that some TFs (e.g., LEF1, SMAD4, and FOXD3) regulate lncRNA and gene expression. Finally, we identified a NONMMUT034790.2-LEF1-AMBRA1 trans-regulatory network associated with CP. Our results indicate that AMBRA1 might be a novel epigenetic biomarker in palatogenesis. CONCLUSIONS AMBRA1-mediated autophagy and apoptosis associated with EMT by a NONMMUT034790.2-LEF1-AMBRA1 trans-regulatory network might be an important mechanism underlying dysfunctional palatal fusion.
Collapse
Affiliation(s)
- Xuan Shu
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Zejun Dong
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Shenyou Shu
- The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
16
|
Shu X, Shu S, Cheng H. Genome-Wide mRNA-Seq Profiling Reveals that LEF1 and SMAD3 Regulate Epithelial-Mesenchymal Transition Through the Hippo Signaling Pathway During Palatal Fusion. Genet Test Mol Biomarkers 2019; 23:197-203. [PMID: 30767676 DOI: 10.1089/gtmb.2018.0221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) of the medial edge epithelium (MEE) occurs through fusion of the palatal shelves and is a crucial step in palatogenesis. The key genes, however, and the related signaling pathway of EMT are not yet fully understood. Therefore, the aim of this study was to reveal the key genes and the related signaling pathway of EMT during palatal fusion. MATERIALS AND METHODS C57BL/6J mice at embryonic gestation day 14.5 (E14.5; n = 6) were used to establish the cleft palate model for mRNA-Seq (HiSeq X Ten). The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed for functional annotations of the differentially expressed genes. Quantitative polymerase chain reaction (qPCR) assays were used to validate the RNAseq data. RESULTS A total of 936 differentially expressed genes, including 558 upregulated and 378 downregulated genes were identified in cases versus controls, respectively. Among these genes, the GO analysis showed that Lymphoid Enhancer-Binding Factor 1 (LEF1) and SMAD Family Member 3 (SMAD3) significantly enriched biological processes, which were EMT related. The KEGG analysis showed that these genes regulated EMT through the Hippo signaling pathway. LEF1 and SMAD3 were downregulated, and the qPCR results corroborated the RNA-seq data. CONCLUSIONS These results demonstrate that LEF1 and SMAD3 inhibits EMT at the MEE through the Hippo signaling pathway; and that this could contribute to cleft palate formation in embryonic palatal fusion at E 14.5.
Collapse
Affiliation(s)
- Xuan Shu
- 1 The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shenyou Shu
- 1 The Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongqiu Cheng
- 2 Department of Infectious Diseases, Second Affiliated Hospital of Shantou University Medical College, Shantou, Shantou, Guangdong, China
| |
Collapse
|
17
|
Shu X, Shu S, Cheng H. A novel lncRNA-mediated trans-regulatory mechanism in the development of cleft palate in mouse. Mol Genet Genomic Med 2019; 7:e00522. [PMID: 30548829 PMCID: PMC6393661 DOI: 10.1002/mgg3.522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/24/2018] [Accepted: 11/03/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Increasing evidence indicates that long non-coding RNAs (lncRNAs) play crucial regulatory roles in epithelial-mesenchymal transition (EMT). However, the regulatory mechanisms during EMT of the medial edge epithelium (MEE) remain elusive. The aim of this work is to reveal a novel lncRNA-regulated dysfunction of EMT involved in the development of cleft palate (CP). METHODS C57BL/6 J mice at embryonic gestation day 14.5 (n = 6, 3 case samples vs. 3 control samples) were used to establish the CP model for lncRNA-mRNA co-expression profile analysis after high-throughput sequencing. Functional predictions for the differentially expressed lncRNA-mRNA co-expression with transcription factor (TF)-target gene relationship Gene Ontology/Kyoto Encyclopedia of Genes and Genomes pathway (GO/KEGG) analyses identified the regulatory "lncRNA-TF-target gene" trans model. RESULTS A total of 583 differentially expressed lncRNAs and 703 differentially expressed mRNAs were identified. The results of trans analysis revealed that some TFs (LEF1, SMAD4, and FOXD3) regulate lncRNAs and gene expression. Finally, we identified the NONMMUT034790.2-LEF1-SMAD7 co-expression trans-regulatory network that might be associated with CP. CONCLUSIONS Our results revealed that NONMMUT034790.2 might be a novel epigenetic biomarker in CP. The integration of lncRNA modulators into trans-regulatory networks will further enhance our understanding of lncRNA functions and regulatory mechanisms during palatal fusion in ATRA-induced mouse CP.
Collapse
Affiliation(s)
- Xuan Shu
- The Cleft Lip and Palate Treatment CenterSecond Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Shenyou Shu
- The Cleft Lip and Palate Treatment CenterSecond Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Hongqiu Cheng
- Department of Infectious DiseasesSecond Affiliated Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
18
|
Shu X, Dong Z, Cheng L, Shu S. DNA hypermethylation of Fgf16 and Tbx22 associated with cleft palate during palatal fusion. J Appl Oral Sci 2019; 27:e20180649. [PMID: 31596367 PMCID: PMC6768118 DOI: 10.1590/1678-7757-2018-0649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Cleft palate (CP) is a congenital birth defect caused by the failure of palatal fusion. Little is known about the potential role of DNA methylation in the pathogenesis of CP. This study aimed to explore the potential role of DNA methylation in the mechanism of CP. METHODOLOGY We established an all-trans retinoic acid (ATRA)-induced CP model in C57BL/6J mice and used methylation-dependent restriction enzymes (MethylRAD, FspEI) combined with high-throughput sequencing (HiSeq X Ten) to compare genome-wide DNA methylation profiles of embryonic mouse palatal tissues, between embryos from ATRA-treated vs. untreated mice, at embryonic gestation day 14.5 (E14.5) (n=3 per group). To confirm differentially methylated levels of susceptible genes, real-time quantitative PCR (qPCR) was used to correlate expression of differentially methylated genes related to CP. RESULTS We identified 196 differentially methylated genes, including 17,298 differentially methylated CCGG sites between ATRA-treated vs. untreated embryonic mouse palatal tissues (P<0.05, log2FC>1). The CP-related genes Fgf16 (P=0.008, log2FC=1.13) and Tbx22 (P=0.011, log2FC=1.64,) were hypermethylated. Analysis of Fgf16 and Tbx22, using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), identified 3 GO terms and 1 KEGG pathway functionally related to palatal fusion. The qPCR showed that changes in expression level negatively correlated with methylation levels. CONCLUSIONS Taken together, these results suggest that hypermethylation of Fgf16 and Tbx22 is associated with decreased gene expression, which might be responsible for developmental failure of palatal fusion, eventually resulting in the formation of CP.
Collapse
Affiliation(s)
- Xuan Shu
- Second Affiliated Hospital of Shantou University Medical College, Cleft Lip and Palate Treatment Center, Shantou, Guangdong, China
| | - Zejun Dong
- Second Affiliated Hospital of Shantou University Medical College, Cleft Lip and Palate Treatment Center, Shantou, Guangdong, China
| | - Liuhanghang Cheng
- Second Affiliated Hospital of Shantou University Medical College, Cleft Lip and Palate Treatment Center, Shantou, Guangdong, China
| | - Shenyou Shu
- Second Affiliated Hospital of Shantou University Medical College, Cleft Lip and Palate Treatment Center, Shantou, Guangdong, China
- Corresponding address: Shenyou Shu Cleft Lip and Palate Treatment Center, Second Affiliated Hospital of Shantou University Medical College 69 Dongxia North Road, Jinping District, Shantou 515041 - China. Phone: +86-18023235288 - Fax: +86-0754-83141156 e-mail:
| |
Collapse
|
19
|
Machine Learning Models for Genetic Risk Assessment of Infants with Non-syndromic Orofacial Cleft. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:354-364. [PMID: 30578914 PMCID: PMC6364041 DOI: 10.1016/j.gpb.2018.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/19/2018] [Accepted: 07/17/2018] [Indexed: 11/30/2022]
Abstract
The isolated type of orofacial cleft, termed non-syndromic cleft lip with or without cleft palate (NSCL/P), is the second most common birth defect in China, with Asians having the highest incidence in the world. NSCL/P involves multiple genes and complex interactions between genetic and environmental factors, imposing difficulty for the genetic assessment of the unborn fetus carrying multiple NSCL/P-susceptible variants. Although genome-wide association studies (GWAS) have uncovered dozens of single nucleotide polymorphism (SNP) loci in different ethnic populations, the genetic diagnostic effectiveness of these SNPs requires further experimental validation in Chinese populations before a diagnostic panel or a predictive model covering multiple SNPs can be built. In this study, we collected blood samples from control and NSCL/P infants in Han and Uyghur Chinese populations to validate the diagnostic effectiveness of 43 candidate SNPs previously detected using GWAS. We then built predictive models with the validated SNPs using different machine learning algorithms and evaluated their prediction performance. Our results showed that logistic regression had the best performance for risk assessment according to the area under curve. Notably, defective variants in MTHFR and RBP4, two genes involved in folic acid and vitamin A biosynthesis, were found to have high contributions to NSCL/P incidence based on feature importance evaluation with logistic regression. This is consistent with the notion that folic acid and vitamin A are both essential nutritional supplements for pregnant women to reduce the risk of conceiving an NSCL/P baby. Moreover, we observed a lower predictive power in Uyghur than in Han cases, likely due to differences in genetic background between these two ethnic populations. Thus, our study highlights the urgency to generate the HapMap for Uyghur population and perform resequencing-based screening of Uyghur-specific NSCL/P markers.
Collapse
|
20
|
Martin LJ, Meng Q, Blencowe M, Lagarrigue S, Xiao S, Pan C, Wier J, Temple WC, Devaskar SU, Lusis AJ, Yang X. Maternal High-Protein and Low-Protein Diets Perturb Hypothalamus and Liver Transcriptome and Metabolic Homeostasis in Adult Mouse Offspring. Front Genet 2018; 9:642. [PMID: 30619467 PMCID: PMC6297185 DOI: 10.3389/fgene.2018.00642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/27/2018] [Indexed: 01/21/2023] Open
Abstract
Early life nutritional imbalances are risk factors for metabolic dysfunctions in adulthood, but the long term effects of perinatal exposure to high versus low protein diets are not completely understood. We exposed C57BL/6J offspring to a high protein/low carbohydrate (HP/LC) or low protein/high carbohydrate (LP/HC) diet during gestation and lactation, and measured metabolic phenotypes between birth and 10 months of age in male offspring. Perinatal HP/LC and LP/HC exposures resulted in a decreased ability to clear glucose in the offspring, with reduced baseline insulin and glucose concentrations in the LP/HC group and a reduced insulin response post-glucose challenge in the HP/LC group. The LP/HC diet group also showed reduced birth and weanling weights, whereas the HP/LC offspring displayed increased weanling weight with increased adiposity beyond 5 months of age. Gene expression profiling of hypothalamus and liver revealed alterations in diverse molecular pathways by both diets. Specifically, hypothalamic transcriptome and pathway analyses demonstrated perturbations of MAPK and hedgehog signaling, processes associated with neural restructuring and transmission, and phosphate metabolism by perinatal protein imbalances. Liver transcriptomics revealed changes in purine and phosphate metabolism, hedgehog signaling, and circadian rhythm pathways. Our results indicate maternal protein imbalances perturbing molecular pathways in central and peripheral metabolic tissues, thereby predisposing the male offspring to metabolic dysfunctions.
Collapse
Affiliation(s)
- Lisa J Martin
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Qingying Meng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Sheila Xiao
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Julian Wier
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - William C Temple
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sherin U Devaskar
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
21
|
Wang S, Huang W, Castillo HA, Kane MA, Xavier-Neto J, Trainor PA, Moise AR. Alterations in retinoic acid signaling affect the development of the mouse coronary vasculature. Dev Dyn 2018; 247:976-991. [PMID: 29806219 DOI: 10.1002/dvdy.24639] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND During the final stages of heart development the myocardium grows and becomes vascularized by means of paracrine factors and cell progenitors derived from the epicardium. There is evidence to suggest that retinoic acid (RA), a metabolite of vitamin A, plays an important role in epicardial-based developmental programming. However, the consequences of altered RA-signaling in coronary development have not been systematically investigated. RESULTS We explored the developmental consequences of altered RA-signaling in late cardiogenic events that involve the epicardium. For this, we used a model of embryonic RA excess based on mouse embryos deficient in the retinaldehyde reductase DHRS3, and a complementary model of embryonic RA deficiency based on pharmacological inhibition of RA synthesis. We found that alterations in embryonic RA signaling led to a thin myocardium and aberrant coronary vessel formation and remodeling. Both excess, and deficient RA-signaling are associated with reductions in ventricular coverage and density of coronary vessels, altered vessel morphology, and impaired recruitment of epicardial-derived mural cells. Using a combined transcriptome and proteome profiling approach, we found that RA treatment of epicardial cells influenced key signaling pathways relevant for cardiac development. CONCLUSIONS Epicardial RA-signaling plays critical roles in the development of the coronary vasculature needed to support myocardial growth. Developmental Dynamics 247:976-991, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Suya Wang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Hozana A Castillo
- Brazilian Biosciences National Laboratory, LNBio, Rua Giuseppe Máximo Scolfaro, Polo II de Alta Tecnologia de Campinas, Campinas, SP, Brazil
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - José Xavier-Neto
- Conselho Nacional do Desenvolvimnto Científico e Tecnológico (Cnpq) CEP 01414000 Cerqueira Cesar Sao Paulo, Sao Paulo, Brazil
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Alexander R Moise
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas.,Northern Ontario School of Medicine, Biomolecular Sciences Program and Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
22
|
Transcriptome analysis of Xenopus orofacial tissues deficient in retinoic acid receptor function. BMC Genomics 2018; 19:795. [PMID: 30390632 PMCID: PMC6215681 DOI: 10.1186/s12864-018-5186-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Development of the face and mouth is orchestrated by a large number of transcription factors, signaling pathways and epigenetic regulators. While we know many of these regulators, our understanding of how they interact with each other and implement changes in gene expression during orofacial development is still in its infancy. Therefore, this study focuses on uncovering potential cooperation between transcriptional regulators and one important signaling pathway, retinoic acid, during development of the midface. RESULTS Transcriptome analyses was performed on facial tissues deficient for retinoic acid receptor function at two time points in development; early (35 hpf) just after the neural crest migrates and facial tissues are specified and later (60 hpf) when the mouth has formed and facial structures begin to differentiate. Functional and network analyses revealed that retinoic acid signaling could cooperate with novel epigenetic factors and calcium-NFAT signaling during early orofacial development. At the later stage, retinoic acid may work with WNT and BMP and regulate homeobox containing transcription factors. Finally, there is an overlap in genes dysregulated in Xenopus embryos with median clefts with human genes associated with similar orofacial defects. CONCLUSIONS This study uncovers novel signaling pathways required for orofacial development as well as pathways that could interact with retinoic acid signaling during the formation of the face. We show that frog faces are an important tool for studying orofacial development and birth defects.
Collapse
|
23
|
Shu X, Shu S, Zhai Y, Zhu L, Ouyang Z. Genome-Wide DNA Methylation Profile of Gene cis-Acting Element Methylations in All-trans Retinoic Acid-Induced Mouse Cleft Palate. DNA Cell Biol 2018; 37:993-1002. [PMID: 30277813 DOI: 10.1089/dna.2018.4369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
DNA methylation epigenetically regulates gene expression. This study is aimed to investigate genome-wide DNA methylations involved in the regulation of palatal fusion in the all-trans retinoic acid-induced mouse cleft palate model. There were 4,718,556 differentially CCGG methylated sites and 367,504 CCWGG methylated sites for 1497 genes between case and control embryonic mouse palatal tissues. The enhancers (HDAC4 and SMAD3) and promoter (MID1) of these three genes had cis-acting element methylation. HDAC4 is localized within the CCWGG, while MID1 and SMAD3 are localized within the CCGG of the gene intron. The methylation-specific polymerase chain reaction data confirmed the MethylRAD-seq results, while the quantitative reverse transcriptase-polymerase chain reaction result showed that changes in gene expression inversely were associated with the cis-acting element methylation of the gene during retinoic acid-induced palatal fusion. The GO and KEGG data showed that these three genes could regulate cell proliferation, skeletal muscle fiber development, and development-related gene signaling or activity. The cis-acting element methylation of HDAC4, SMAD3, and MID1 may play a regulatory role during palatal fusion. Further research is needed to verify these novel epigenetic biomarkers for cleft palate.
Collapse
Affiliation(s)
- Xuan Shu
- The Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Shenyou Shu
- The Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Yuxia Zhai
- The Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Lin Zhu
- The Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Zhan Ouyang
- The Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College , Shantou, China
| |
Collapse
|
24
|
Shu X, Shu S, Cheng H, Tang S, Yang L, Li H, Zhang M, Zhu Z, Liu D, Li K, Dong Z, Cheng L, Ding J. Genome-Wide DNA Methylation Analysis During Palatal Fusion Reveals the Potential Mechanism of Enhancer Methylation Regulating Epithelial Mesenchyme Transformation. DNA Cell Biol 2018; 37:560-573. [PMID: 29608334 DOI: 10.1089/dna.2018.4141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Epithelial mesenchyme transformation (EMT) of the medial edge epithelium (MEE) is the crucial process during palatal fusion. This work is aimed to elucidate the enhancer regulatory mechanism by genome-wide DNA methylation analysis of EMT during palatal fusion. Over 800 million clean reads, 325 million enzyme reads, and 234 million mapping reads were generated. The mapping rate was 68.85-74.32%, which included differentially methylated 17299 CCGG sites and 2363 CCWGG sites (p < 0.05, log2FC >1). Methylated sites in intron and intergenic regions were more compared to other regions of all DNA elements. GO and KEGG analysis indicated that differential methylation sites related to embryonic palatal fusion genes (HDAC4, TCF7L2, and PDGFRB) at the enhancer were located on CCWGG region of non-CpG islands. In addition, the results showed that the enhancer for HDAC4 was hypermethylated, whereas the enhancers for TCF7L2 and PDGFRB were hypomethylated. The methylation status of enhancer regions of HDAC4, PDGFRB, and TCF7L2, involved in the regulation of the EMT during palatal fusion, may enlighten the development of novel epigenetic biomarkers in the treatment of cleft palate.
Collapse
Affiliation(s)
- Xuan Shu
- 1 Department of Burn and Plastic Surgery, 2nd Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Shenyou Shu
- 1 Department of Burn and Plastic Surgery, 2nd Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Hongqiu Cheng
- 2 Department of Infectious Diseases, 2nd Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Shijie Tang
- 1 Department of Burn and Plastic Surgery, 2nd Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Lujun Yang
- 3 Department of Translational Medicine Center, 2nd Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Haihong Li
- 1 Department of Burn and Plastic Surgery, 2nd Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Mingjun Zhang
- 1 Department of Burn and Plastic Surgery, 2nd Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Zhensen Zhu
- 1 Department of Burn and Plastic Surgery, 2nd Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Dan Liu
- 1 Department of Burn and Plastic Surgery, 2nd Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Ke Li
- 1 Department of Burn and Plastic Surgery, 2nd Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Zejun Dong
- 1 Department of Burn and Plastic Surgery, 2nd Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Liuhanghang Cheng
- 1 Department of Burn and Plastic Surgery, 2nd Affiliated Hospital of Shantou University Medical College , Shantou, China
| | - Jialong Ding
- 1 Department of Burn and Plastic Surgery, 2nd Affiliated Hospital of Shantou University Medical College , Shantou, China
| |
Collapse
|
25
|
Suttorp CM, Cremers NA, van Rheden R, Regan RF, Helmich P, van Kempen S, Kuijpers-Jagtman AM, Wagener FADTG. Chemokine Signaling during Midline Epithelial Seam Disintegration Facilitates Palatal Fusion. Front Cell Dev Biol 2017; 5:94. [PMID: 29164113 PMCID: PMC5670099 DOI: 10.3389/fcell.2017.00094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
Disintegration of the midline epithelial seam (MES) is crucial for palatal fusion, and failure results in cleft palate. Palatal fusion and wound repair share many common signaling pathways related to epithelial-mesenchymal cross-talk. We postulate that chemokine CXCL11, its receptor CXCR3, and the cytoprotective enzyme heme oxygenase (HO), which are crucial during wound repair, also play a decisive role in MES disintegration. Fetal growth restriction and craniofacial abnormalities were present in HO-2 knockout (KO) mice without effects on palatal fusion. CXCL11 and CXCR3 were highly expressed in the disintegrating MES in both wild-type and HO-2 KO animals. Multiple apoptotic DNA fragments were present within the disintegrating MES and phagocytized by recruited CXCR3-positive wt and HO-2 KO macrophages. Macrophages located near the MES were HO-1-positive, and more HO-1-positive cells were present in HO-2 KO mice compared to wild-type. This study of embryonic and palatal development provided evidence that supports the hypothesis that the MES itself plays a prominent role in palatal fusion by orchestrating epithelial apoptosis and macrophage recruitment via CXCL11-CXCR3 signaling.
Collapse
Affiliation(s)
- Christiaan M Suttorp
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Niels A Cremers
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands.,Department of Rheumatology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - René van Rheden
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Pia Helmich
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Sven van Kempen
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Anne M Kuijpers-Jagtman
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
26
|
Zhang H, Liu X, Gao Z, Li Z, Yu Z, Yin J, Tao Y, Cui L. Excessive retinoic acid inhibit mouse embryonic palate mesenchymal cell growth through involvement of Smad signaling. Anim Cells Syst (Seoul) 2016; 21:31-36. [PMID: 30460049 DOI: 10.1080/19768354.2016.1165287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 10/20/2022] Open
Abstract
All-trans retinoic acid (atRA), the oxidative metabolite of retinoic acid (RA), is essential for palatogenesis. Overdose RA is capable of inducing cleft palate in mice and humans. Normal embryonic palatal mesenchymal (EPM) cell growth is crucial for shelf growth. Smad signaling is involved in many biological processes. However, it is not much clear if atRA could affect Smad signaling during EPM cells growth. In this study, the timed pregnant mice with maternal administration of 100 mg/kg body weight of RA by gastric intubation were cervical dislocation executed to evaluate growth changes of palatal shelves by hematoxylin and eosin (H&E) staining. At the same time, a primary mouse EPM (MEPM) cell culture model was also established. MEPM cells were treated with atRA (0.1, 0.5, 1, 5 and 10 μM) for 24, 48 and 72 h. The results indicated that the sizes of the shelves were smaller than those in control. AtRA inhibited MEPM cell growth with both increasing concentration and increasing incubation time, especially at 72 h in vitro. Moreover, atRA significantly increased the mRNA and protein expression levels of Smad7 (P < .05), but the mRNA and protein expression levels of PCNA were reduced (P < .05). We also found atRA inhibited phosphorylation of Smad2 compared with untreated group (P < .05). However, the protein and mRNA levels of Smad2 did not change both in atRA-treated and untreated group (P > .05). We demonstrated that RA induced inhibition of MEPM cell growth that could cause cleft palate partly by down-regulation of Smad pathway.
Collapse
Affiliation(s)
- Huanhuan Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaozhuan Liu
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China.,Medical College, Henan University of Science & Technology, Luoyang, People's Republic of China
| | - Zhan Gao
- The Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhitao Li
- Medical College, Henan University of Science & Technology, Luoyang, People's Republic of China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jun Yin
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuchang Tao
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lingling Cui
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
27
|
Wang H, Chen W. Dose-Dependent Antiteratogenic Effects of Folic Acid on All-Trans Retinoic Acid-Induced Cleft Palate in Fetal Mice. Cleft Palate Craniofac J 2016; 53:720-726. [PMID: 26575964 DOI: 10.1597/15-170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective Although numerous studies have confirmed that consumption of folic acid (FA) during early pregnancy reduces the risk of oral facial clefts in newborn infants, the optimal dose of FA for reducing this risk remains unknown. We evaluated various doses of FA for their ability to reduce the incidence of all-trans retinoic acid (ATRA)–induced cleft palate in mice. Methods Pregnant C57BL/6J mice were randomly assigned to eight groups dosed with corn oil (control group), ATRA (80 mg/kg), FA (40 mg/kg), or ATRA (80 mg/kg) + FA (2.5 mg, 5 mg, 10 mg, 20 mg, or 40 mg/kg body weight) on gestation day 11 (GD11), after which samples of maternal blood obtained on GD 11 were analyzed for serum folate levels. After receiving the doses, randomly selected mice in each dose group were sacrificed on GDs 13.5, 14.5, and 15.5, and the fetuses were removed for examination by light microscopy and scanning electron microscopy to detect the incidence of cleft palate. Results Among the pregnant mice dosed with ATRA+FA, those dosed with 5 mg/kg FA had fetuses with the lowest incidence of cleft palate. In addition, the eight groups of pregnant mice had significantly different serum folate concentrations ( P < .001). Conclusion When administered to pregnant mice at a specific dose and on the proper gestation day, FA showed an antiteratogenic effect by reducing the incidence of ATRA-induced cleft palate in fetal mice.
Collapse
Affiliation(s)
- Huijing Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiliang Chen
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Liu X, Qi J, Tao Y, Zhang H, Yin J, Ji M, Gao Z, Li Z, Li N, Yu Z. Correlation of proliferation, TGF-β3 promoter methylation, and Smad signaling in MEPM cells during the development of ATRA-induced cleft palate. Reprod Toxicol 2016; 61:1-9. [PMID: 26916447 DOI: 10.1016/j.reprotox.2016.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 01/03/2023]
Abstract
Mesenchymal cell proliferation is one of the processes in shelf outgrowth. Both all-trans retinoic acid (atRA) and transforming growth factor-β3 (TGF-β3) play an important role in mouse embryonic palate mesenchymal (MEPM) cell proliferation. The cellular effects of TGF-β are mediated by Smad-dependent or Smad-independent pathways. In the present study, we demonstrate that atRA promotes TGF-β3 promoter demethylation and protein expression, but can cause depression of mesenchymal cell proliferation, especially at embryonic day 14 (E14). Moreover, the inhibition of MEPM cell proliferation by atRA results in the downregulation of Smad signaling mediated by transforming growth interacting factor (TGIF). We speculate that the effects of atRA on MEPM cell proliferation may be mediated by Smad pathways, which are regulated by TGIF but are not related to TGF-β3 expression. Finally, the cellular effects of TGF-β3 on MEPM cell proliferation may be mediated by Smad-independent pathways.
Collapse
Affiliation(s)
- Xiaozhuan Liu
- Public Health College, Zhengzhou University, China; Medical College, Henan University of Science & Technology, China
| | - Jingjiao Qi
- Medical College, Henan University of Science & Technology, China
| | - Yuchang Tao
- Public Health College, Zhengzhou University, China
| | | | - Jun Yin
- Public Health College, Zhengzhou University, China
| | - Mengmeng Ji
- Public Health College, Zhengzhou University, China
| | - Zhan Gao
- The Fifth Affiliated Hospital, Zhengzhou University, China
| | - Zhitao Li
- Medical College, Henan University of Science & Technology, China
| | - Ning Li
- Institute of Food Science and Technology, Henan Agricultural University, China
| | - Zengli Yu
- Public Health College, Zhengzhou University, China.
| |
Collapse
|
29
|
Hao Y, Tian S, Jiao X, Mi N, Zhang B, Song T, An L, Zheng X, Zhuang D. Association of Parental Environmental Exposures and Supplementation Intake with Risk of Nonsyndromic Orofacial Clefts: A Case-Control Study in Heilongjiang Province, China. Nutrients 2015; 7:7172-84. [PMID: 26343712 PMCID: PMC4586523 DOI: 10.3390/nu7095328] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/11/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022] Open
Abstract
The aim of present study was to check the possible association of potential parental environmental exposures and maternal supplementation intake with the risk of nonsyndromic orofacial clefting (NSOC). A retrospective study comprised 499 cases and 480 controls was conducted in Heilongjiang Province. Chi-square analysis and unconditional multiple logistic regression were used in the study. The results showed that maternal history of fever and the common cold without fever (ORCL/P = 3.11 and 5.56, 95%CI: 1.67-5.82 and 2.96-10.47, ORCPO = 3.31 and 8.23, 95%CI: 1.58-6.94 and 4.08-16.95), paternal smoking and alcohol consumption (ORCL/P = 2.15 and 5.04, 95%CI: 1.37-3.38 and 3.00-8.46, ORCPO = 1.82 and 4.40, 95%CI: 1.06-3.13 and 2.50-7.74), maternal exposure to organic solvents, heavy metals, or pesticides (ORCL/P = 6.07, 5.67 and 5.97, 95%CI: 1.49-24.76, 1.34-24.09 and 2.10-16.98, ORCPO = 10.65, 7.28 and 3.48, 95%CI: 2.54-44.67, 1.41-37.63 and 1.06-11.46) and multivitamin use during the preconception period (ORCL/P = 0.06, 95%CI: 0.02-0.23, ORCPO = 0.06, 95%CI: 0.01-0.30) were associated with cleft lip or without cleft palate (CL/P) and cleft palate only (CPO). Maternal history of skin disease and negative life events (ORCL/P = 12.07 and 1.67, 95%CI: 1.81-80.05 and 1.95-2.67) were associated with CL/P. Some potential parental hazardous exposures during the periconception period and maternal use of multivitamins during the preconception period were associated with risk of NSOC.
Collapse
Affiliation(s)
- Yanru Hao
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, 122 Youzheng Street, Nangang District, Harbin 150000, China.
| | - Subao Tian
- Department of Stomatology, Harbin Children's Hospital, 57 Youyi Road, Daoli District, Harbin 150000, China.
| | - Xiaohui Jiao
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, 122 Youzheng Street, Nangang District, Harbin 150000, China.
| | - Na Mi
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, 122 Youzheng Street, Nangang District, Harbin 150000, China.
| | - Bing Zhang
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, 122 Youzheng Street, Nangang District, Harbin 150000, China.
| | - Tao Song
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, 122 Youzheng Street, Nangang District, Harbin 150000, China.
| | - Le An
- Department of Oral Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, 122 Youzheng Street, Nangang District, Harbin 150000, China.
| | - Xudong Zheng
- Department of Medical Administration, The Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin 150000, China.
| | - Deshu Zhuang
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, 37 Yiyuan Street, Nangang District, Harbin 150000, China.
| |
Collapse
|
30
|
Liu S, Higashihori N, Yahiro K, Moriyama K. Retinoic acid inhibits histone methyltransferase Whsc1 during palatogenesis. Biochem Biophys Res Commun 2015; 458:525-530. [DOI: 10.1016/j.bbrc.2015.01.148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/30/2015] [Indexed: 12/29/2022]
|
31
|
Liu X, Zhang H, Gao L, Yin Y, Pan X, Li Z, Li N, Li H, Yu Z. Negative interplay of retinoic acid and TGF-β signaling mediated by TG-interacting factor to modulate mouse embryonic palate mesenchymal-cell proliferation. ACTA ACUST UNITED AC 2014; 101:403-9. [PMID: 25477235 DOI: 10.1002/bdrb.21130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/10/2014] [Indexed: 11/07/2022]
Abstract
Mesenchymal-cell proliferation is the main process in shelf outgrowth. Both all-trans-retinoic acid (atRA) and transforming growth factor-β3 (TGF-β3) play an important role in mouse embryonic palate mesenchymal (MEPM) cell proliferation. In the present study, we investigated the crosstalk between RA and TGF-β signaling in MEPM-cell proliferation. We found that atRA inhibited MEPM-cell proliferation by downregulating TGF-β/Smad signaling and that TGF-β3 treatment was able to antagonize RA signaling. Transforming growth-interacting factor (TGIF) is a transcriptional repressor that suppresses both TGF-β- and retinoid-driven gene transcription. Furthermore, we investigated the role of TGIF in the interaction between both TGF-β and RA signaling in MEPM-cell proliferation. The results showed that both atRA and TGF-β3 significantly increased the expression level of TGIF, and TGIF mediated the negative interaction between TGF-β and RA signaling pathways, which depended on TGIF binding to Smad2 or RARβ (RA receptor beta). Moreover, after deletion of TGIF, both the effects of atRA on TGF-β-dependent protein expression and the effects of TGF-β on RA-dependent protein expression were lost. So we conclude that there is a negative functional interplay of RA and TGF-β signaling mediated by TGIF to modulate MEPM-cell proliferation.
Collapse
Affiliation(s)
- Xiaozhuan Liu
- Public Health College, Zhengzhou University, Zhengzhou, China; Medical College, Henan University of Science & Technology, Luoyang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Geake J, Tay G, Callaway L, Bell SC. Pregnancy and cystic fibrosis: Approach to contemporary management. Obstet Med 2014; 7:147-55. [PMID: 27512443 PMCID: PMC4934991 DOI: 10.1177/1753495x14554022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over the previous 50 years survival of patients with cystic fibrosis has progressively increased. As a result of improvements in health care, increasing numbers of patients with cystic fibrosis are now considering starting families of their own. For the health care professionals who look after these patients, the assessment of the potential risks, and the process of guiding prospective parents through pregnancy and beyond can be both challenging and rewarding. To facilitate appropriate discussions about pregnancy, health care workers must have a detailed understanding of the various important issues that will ultimately need to be considered for any patient with cystic fibrosis considering parenthood. This review will address these issues. In particular, it will outline pregnancy outcomes for mothers with cystic fibrosis, issues that need to be taken into account when planning a pregnancy and the management of pregnancy for mothers with cystic fibrosis or mothers who have undergone organ transplantation as a result of cystic fibrosis.
Collapse
Affiliation(s)
- James Geake
- Adult Cystic Fibrosis Centre, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| | - George Tay
- Adult Cystic Fibrosis Centre, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| | - Leonie Callaway
- School of Medicine, The University of Queensland, Brisbane, Australia
- The Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Scott C Bell
- Adult Cystic Fibrosis Centre, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
- School of Medicine, The University of Queensland, Brisbane, Australia
- Queensland Children’s Medical Research Institute, Brisbane, Australia
| |
Collapse
|
33
|
Retinoic acid remodels extracellular matrix (ECM) of cultured human fetal palate mesenchymal cells (hFPMCs) through down-regulation of TGF-β/Smad signaling. Toxicol Lett 2014; 225:208-15. [DOI: 10.1016/j.toxlet.2013.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 01/28/2023]
|
34
|
Mammadova A, Ackermans MM, Bloemen M, Oostendorp C, Zhou H, Carels CE, Von den Hoff JW. Effects of retinoic acid on proliferation and gene expression of cleft and non-cleft palatal keratinocytes. Eur J Orthod 2014; 36:727-34. [DOI: 10.1093/ejo/cjt104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
Kennedy AE, Dickinson AJ. Quantitative analysis of orofacial development and median clefts in Xenopus laevis. Anat Rec (Hoboken) 2014; 297:834-55. [PMID: 24443252 DOI: 10.1002/ar.22864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/06/2013] [Accepted: 11/25/2013] [Indexed: 01/01/2023]
Abstract
Xenopus has become a useful tool to study the molecular mechanisms underlying orofacial development. However, few quantitative analyses exist to describe the anatomy of this region. In this study we combine traditional facial measurements with geometric morphometrics to describe anatomical changes in the orofacial region during normal and abnormal development. Facial measurements and principal component (PC) analysis indicate that during early tadpole development the face expands primarily in the midface region accounting for the development of the upper jaw and primary palate. The mouth opening correspondingly becomes flatter and wider as it incorporates the jaw elements. A canonical variate analysis of orofacial and mouth opening shape emphasized that changes in the orofacial shape occur gradually. Orofacial anatomy was quantified after altered levels of retinoic acid using all-trans retinoic acid or an inhibitor of retinoic acid receptors or by injecting antisense oligos targeting RALDH2. Such perturbations resulted in major decreases in the width of the midface and the mouth opening illustrated in facial measurements and a PC analysis. The mouth opening shape also had a gap in the primary palate resulting in a median cleft in the mouth opening that was only illustrated quantitatively in the morphometric analysis. Finally, canonical and discriminant function analysis statistically distinguished the orofacial and mouth opening shape changes among the different modes used to alter retinoic acid signaling levels. By combining quantitative analyses with molecular studies of orofacial development we will be better equipped to understand the complex morphogenetic processes involved in palate development and clefting.
Collapse
Affiliation(s)
- Allyson E Kennedy
- Department of Biology, Virginia Commonwealth University, 1000 West Cary Street, Richmond, Virginia
| | | |
Collapse
|
36
|
Qin F, Shen Z, Peng L, Wu R, Hu X, Zhang G, Tang S. Metabolic characterization of all-trans-retinoic acid (ATRA)-induced craniofacial development of murine embryos using in vivo proton magnetic resonance spectroscopy. PLoS One 2014; 9:e96010. [PMID: 24816763 PMCID: PMC4015972 DOI: 10.1371/journal.pone.0096010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/02/2014] [Indexed: 02/05/2023] Open
Abstract
AIM To characterize the abnormal metabolic profile of all-trans-retinoic acid (ATRA)-induced craniofacial development in mouse embryos using proton magnetic resonance spectroscopy (1H-MRS). METHODS Timed-pregnant mice were treated by oral gavage on the morning of embryonic gestation day 11 (E11) with all-trans-retinoic acid (ATRA). Dosing solutions were adjusted by maternal body weight to provide 30, 70, or 100 mg/kg RA. The control group was given an equivalent volume of the carrier alone. Using an Agilent 7.0 T MR system and a combination of surface coil coils, a 3 mm×3 mm×3 mm 1H-MRS voxel was selected along the embryonic craniofacial tissue. 1H-MRS was performed with a single-voxel method using PRESS sequence and analyzed using LCModel software. Hematoxylin and eosin was used to detect and confirm cleft palate. RESULT 1H-MRS revealed elevated choline levels in embryonic craniofacial tissue in the RA70 and RA100 groups compared to controls (P<0.05). Increased choline levels were also found in the RA70 and RA100 groups compared with the RA30 group (P<0.01). High intra-myocellular lipids at 1.30 ppm (IMCL13) in the RA100 group compared to the RA30 group were found (P<0.01). There were no significant changes in taurine, intra-myocellular lipids at 2.10 ppm (IMCL21), and extra-myocellular lipids at 2.30 ppm (EMCL23). Cleft palate formation was observed in all fetuses carried by mice administered 70 and 100 mg/kg RA. CONCLUSIONS This novel study suggests that the elevated choline and lipid levels found by 1H-MRS may represent early biomarkers of craniofacial defects. Further studies will determine performance of this test and pathogenetic mechanisms of craniofacial malformation.
Collapse
Affiliation(s)
- Feifei Qin
- Cleft Lip and Palate Treatment Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Zhiwei Shen
- Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Lihong Peng
- Cleft Lip and Palate Treatment Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Renhua Wu
- Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Xiao Hu
- Department of Plastic and Burn Surgery, Guangzhou Red Cross Hospital, Guangzhou, Guangdong Province, People's Republic of China
| | - Guishan Zhang
- Department of Medical Imaging, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Shijie Tang
- Cleft Lip and Palate Treatment Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
- * E-mail:
| |
Collapse
|
37
|
Chambers JE, Greim H, Kendall RJ, Segner H, Sharpe RM, Van Der Kraak G. Human and ecological risk assessment of a crop protection chemical: a case study with the azole fungicide epoxiconazole. Crit Rev Toxicol 2013; 44:176-210. [DOI: 10.3109/10408444.2013.855163] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
McKinney CM, Chowchuen B, Pitiphat W, Derouen T, Pisek A, Godfrey K. Micronutrients and oral clefts: a case-control study. J Dent Res 2013; 92:1089-94. [PMID: 24097855 DOI: 10.1177/0022034513507452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Little is known about oral clefts in developing countries. We aimed to identify micronutrient-related and environmental risk factors for oral clefts in Thailand. We tested hypotheses that maternal exposure during the periconceptional period to multivitamins or liver consumption would decrease cleft lip with or without cleft palate (CL ± P) risk and that menstrual regulation supplements would increase CL ± P risk. We conducted a multisite hospital-based case-control study in Thailand. We enrolled cases with CL ± P and 2 live births as controls at birth from the same hospital. Mothers completed a questionnaire. Conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Eighty-six cases and 172 controls were enrolled. Mothers who took a vitamin (adjusted OR, 0.39; 95% CI: 0.16, 0.94) or ate liver (adjusted OR, 0.26; 95% CI: 0.12, 0.57) were less likely than those who did not to have an affected child. Mothers who took a menstrual regulation supplement were more likely than mothers who did not to have an affected child. Findings did not differ for infants with a family history of other anomalies or with isolated CL ± P. If replicated, our finding that liver decreases CL ± P risk could offer a low-cost primary prevention strategy.
Collapse
|
39
|
Billings SE, Pierzchalski K, Butler Tjaden NE, Pang XY, Trainor PA, Kane MA, Moise AR. The retinaldehyde reductase DHRS3 is essential for preventing the formation of excess retinoic acid during embryonic development. FASEB J 2013; 27:4877-89. [PMID: 24005908 DOI: 10.1096/fj.13-227967] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Oxidation of retinol via retinaldehyde results in the formation of the essential morphogen all-trans-retinoic acid (ATRA). Previous studies have identified critical roles in the regulation of embryonic ATRA levels for retinol, retinaldehyde, and ATRA-oxidizing enzymes; however, the contribution of retinaldehyde reductases to ATRA metabolism is not completely understood. Herein, we investigate the role of the retinaldehyde reductase Dhrs3 in embryonic retinoid metabolism using a Dhrs3-deficient mouse. Lack of DHRS3 leads to a 40% increase in the levels of ATRA and a 60% and 55% decrease in the levels of retinol and retinyl esters, respectively, in Dhrs3(-/-) embryos compared to wild-type littermates. Furthermore, accumulation of excess ATRA is accompanied by a compensatory 30-50% reduction in the expression of ATRA synthetic genes and a 120% increase in the expression of the ATRA catabolic enzyme Cyp26a1 in Dhrs3(-/-) embryos vs. controls. Excess ATRA also leads to alterations (40-80%) in the expression of several developmentally important ATRA target genes. Consequently, Dhrs3(-/-) embryos die late in gestation and display defects in cardiac outflow tract formation, atrial and ventricular septation, skeletal development, and palatogenesis. These data demonstrate that the reduction of retinaldehyde by DHRS3 is critical for preventing formation of excess ATRA during embryonic development.
Collapse
Affiliation(s)
- Sara E Billings
- 1Department of Pharmacology and Toxicology, School of Pharmacy, 5060-Malott Hall, 1251 Wescoe Hall Dr., University of Kansas, Lawrence, KS 66045, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Okano J, Kimura W, Papaionnou VE, Miura N, Yamada G, Shiota K, Sakai Y. The regulation of endogenous retinoic acid level through CYP26B1 is required for elevation of palatal shelves. Dev Dyn 2012; 241:1744-56. [PMID: 22972661 DOI: 10.1002/dvdy.23862] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In previous studies, we investigated the effects of excess retinoic acid (RA) during palatogenesis by RA administration to pregnant mice. In the present study, we deleted Cyp26b1, one of the RA-degrading enzymes, to further study the effects of excess RA in the normal developing palate and to understand how endogenous levels of RA are regulated. RESULTS Excess RA, due to the absence of Cyp26b1, targets cells in the bend region of the palatal shelves and inhibits their horizontal elevation, leading to cleft palate. An organ culture of Cyp26b1-/- palatal shelves after tongue removal did not rescue the impaired elevation of the palatal shelves. The expression of Fgf10, Bmp2, and Tbx1, important molecules in palatal development, was down-regulated. Cell proliferation was decreased in the bend region of palatal shelves. Tongue muscles were hypoplastic and/or missing in Cyp26b1-/- mice. CONCLUSIONS We demonstrated that CYP26B1 is essential during palatogenesis. Excess RA due to the lack of Cyp26b1 suppresses the expression of key regulators of palate development in the bend region, resulting in a failure in the horizontal elevation of the palatal shelves. The regulation of RA signaling through CYP26B1 is also necessary for the development of tongue musculature and for tongue depression.
Collapse
Affiliation(s)
- Junko Okano
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Zohn IE, Sarkar AA. Does the cranial mesenchyme contribute to neural fold elevation during neurulation? ACTA ACUST UNITED AC 2012; 94:841-8. [PMID: 22945385 DOI: 10.1002/bdra.23073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 07/23/2012] [Accepted: 07/17/2012] [Indexed: 11/06/2022]
Abstract
The central nervous system is derived from the neural plate, which undergoes a series of complex morphogenetic events resulting in formation of the neural tube in a process known as neurulation. The cellular behaviors driving neurulation in the cranial region involve forces generated by the neural tissue itself as well as the surrounding epithelium and mesenchyme. Of interest, the cranial mesenchyme underlying the neural plate undergoes stereotypical rearrangements hypothesized to drive elevation of the neural folds. As the neural folds rise, the hyaluronate-rich extracellular matrix greatly expands resulting in increased space between individual cranial mesenchyme cells. Based on inhibitor studies, expansion of the extracellular matrix has been implicated in driving neural fold elevation; however, because the surrounding neural and epidermal ectoderm were also affected by inhibitor exposure, these studies are inconclusive. Similarly, treatment of neurulating embryos with teratogenic doses of retinoic acid results in altered organization of the cranial mesenchyme, but alterations in surrounding tissues are also observed. The strongest evidence for a critical role for the cranial mesenchyme in neural fold elevation comes from studies of genes expressed exclusively in the cranial mesenchyme that when mutated result in exencephaly associated with abnormal organization of the cranial mesenchyme. Twist is the best studied of these and is expressed in both the paraxial mesoderm and neural crest derived cranial mesenchyme. In this article, we review the evidence implicating the cranial mesenchyme in providing a driving force for neural fold elevation to evaluate whether there are sufficient data to support this hypothesis.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | | |
Collapse
|