1
|
Cheng Z, Liu Q, Huang X. Partial Correspondence between Host Plant-Related Differentiation and Symbiotic Bacterial Community in a Polyphagous Insect. Animals (Basel) 2024; 14:283. [PMID: 38254452 PMCID: PMC10812459 DOI: 10.3390/ani14020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Host plants play a vital role in insect population differentiation, while symbiotic associations between bacteria and insects are ubiquitous in nature. However, existing studies have given limited attention to the connection between host-related differentiation and symbiotic bacterial communities in phytophagous insects. In this study, we collected 58 samples of Aphis odinae from different host plants in southern China and constructed phylogenetic trees to investigate their differentiation in relation to host plants. We also selected aphid samples from the five most preferred host plants and analyzed their symbiotic bacterial composition using Illumina sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. The phylogeny and symbiotic bacterial community structure of A. odinae populations on different host plants showed that samples from Triadica sebifera (Euphorbiaceae) had a consistent presence of Wolbachia as the predominant secondary symbiont and suggested the possibility of undergoing differentiation. Conversely, although differentiation was observed in samples from Rhus chinensis (Anacardiaceae), no consistent presence of predominant secondary symbionts was found. Additionally, the samples from Heptapleurum heptaphyllum (Araliaceae) consistently carried Serratia, but no host differentiation was evident. In summary, this study reveals a partial correspondence between symbiotic bacterial communities and host-related differentiation in A. odinae. The findings contribute to our understanding of the microevolutionary influencing the macroevolutionary relationships between bacterial symbionts and phytophagous insects. The identification of specific symbionts associated with host-related differentiation provides valuable insights into the intricate dynamics of insect-bacteria interactions.
Collapse
Affiliation(s)
| | | | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.C.); (Q.L.)
| |
Collapse
|
2
|
Rozo-Lopez P, Brewer W, Käfer S, Martin MM, Parker BJ. Untangling an insect's virome from its endogenous viral elements. BMC Genomics 2023; 24:636. [PMID: 37875824 PMCID: PMC10594914 DOI: 10.1186/s12864-023-09737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Insects are an important reservoir of viral biodiversity, but the vast majority of viruses associated with insects have not been discovered. Recent studies have employed high-throughput RNA sequencing, which has led to rapid advances in our understanding of insect viral diversity. However, insect genomes frequently contain transcribed endogenous viral elements (EVEs) with significant homology to exogenous viruses, complicating the use of RNAseq for viral discovery. METHODS In this study, we used a multi-pronged sequencing approach to study the virome of an important agricultural pest and prolific vector of plant pathogens, the potato aphid Macrosiphum euphorbiae. We first used rRNA-depleted RNAseq to characterize the microbes found in individual insects. We then used PCR screening to measure the frequency of two heritable viruses in a local aphid population. Lastly, we generated a quality draft genome assembly for M. euphorbiae using Illumina-corrected Nanopore sequencing to identify transcriptionally active EVEs in the host genome. RESULTS We found reads from two insect-specific viruses (a Flavivirus and an Ambidensovirus) in our RNAseq data, as well as a parasitoid virus (Bracovirus), a plant pathogenic virus (Tombusvirus), and two phages (Acinetobacter and APSE). However, our genome assembly showed that part of the 'virome' of this insect can be attributed to EVEs in the host genome. CONCLUSION Our work shows that EVEs have led to the misidentification of aphid viruses from RNAseq data, and we argue that this is a widespread challenge for the study of viral diversity in insects.
Collapse
Affiliation(s)
- Paula Rozo-Lopez
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37916, USA.
| | - William Brewer
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37916, USA
| | - Simon Käfer
- Institut Für Biologie Und Umweltwissenschaften, Carl Von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany
| | - McKayla M Martin
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37916, USA
| | - Benjamin J Parker
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37916, USA.
| |
Collapse
|
3
|
Cheng Z, Huang X. Two new species of Aphis ( Toxoptera) Koch (Hemiptera, Aphididae) from China. Zookeys 2023; 1172:31-46. [PMID: 37533934 PMCID: PMC10390983 DOI: 10.3897/zookeys.1172.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Two new aphid species, Aphis (Toxoptera) fafuensis Cheng & Huang, sp. nov., feeding on Adinandramillettii (Pentaphylacaceae) from Fujian, China, and Aphis (Toxoptera) sennae Cheng & Huang, sp. nov., feeding on Sennabicapsularis (Fabaceae) from Yunnan, China, were described. Morphological characters and molecular data supported the taxonomic position of the new species within the subgenus Aphis (Toxoptera). A key for identifying species of apterous viviparous females in this subgenus is provided.
Collapse
Affiliation(s)
- Zhentao Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, ChinaFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, ChinaFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
4
|
Xu Y, Jiang L, Qiao G. A new unique genus of Macrosiphini (Aphididae: Aphidinae) feeding on Lonicera from China. ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Hébert C, Xu X, Yang Z, Favret C. A New Genus and Species of Gall-Forming Fordini (Hemiptera: Aphididae) on Rhus wilsonii Hemsl. from Yunnan, China. INSECTS 2022; 13:1104. [PMID: 36555014 PMCID: PMC9787618 DOI: 10.3390/insects13121104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
A new species of gall-forming aphid from China, Qiao jinshaensis gen. et sp. nov., is described from Rhus wilsonii Hemsl. Morphological identification and molecular analyses both support the establishment of a new genus. A diagnosis combining morphological and molecular characters from alate viviparae is provided and specimen metadata are published in an open-access and machine-readable format.
Collapse
Affiliation(s)
- Catherine Hébert
- Department of Biological Sciences, University of Montreal, Montreal, QC H1X 2B2, Canada
| | - Xin Xu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
| | - Zixiang Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
| | - Colin Favret
- Department of Biological Sciences, University of Montreal, Montreal, QC H1X 2B2, Canada
| |
Collapse
|
6
|
Wu T, Monnin D, Lee RAR, Henry LM. Local adaptation to hosts and parasitoids shape Hamiltonella defensa genotypes across aphid species. Proc Biol Sci 2022; 289:20221269. [PMID: 36285493 PMCID: PMC9597410 DOI: 10.1098/rspb.2022.1269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/30/2022] [Indexed: 10/22/2023] Open
Abstract
Facultative symbionts are common in insects and can provide their hosts with significant adaptations. Yet we still have a limited understanding of what shapes their distributions, such as why particular symbiont strains are common in some host species yet absent in others. To address this question, we genotyped the defensive symbiont Hamiltonella defensa in 26 aphid species that commonly carry this microbe. We found that Hamiltonella strains were strongly associated with specific aphid species and that strains found in one host species rarely occurred in others. To explain these associations, we reciprocally transferred the Hamiltonella strains of three aphid species, Acyrthosiphon pisum, Macrosiphoniella artemisiae and Macrosiphum euphorbiae, and assessed the impact of Hamiltonella strain on: the stability of the symbiosis, aphid fecundity and parasitoid resistance. We demonstrate that the Hamiltonella strains found in nature are locally adapted to specific aphid hosts, and their ecology: aphids tend to carry Hamiltonella strains that are efficiently transmitted to their offspring, non-lethal, and that provide strong protection against their dominant parasitoid species. Our results suggest that facultative symbiont distributions are shaped by selection from natural enemies, and the host itself, resulting in locally adapted symbioses that provide significant benefits against prevailing natural enemies.
Collapse
Affiliation(s)
- Taoping Wu
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - David Monnin
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Rene A. R. Lee
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Lee M. Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
7
|
The dynamics and the timeline of speciation in the gall-forming aphid Geoica spp. within and among Pistacia host tree species. Mol Phylogenet Evol 2022; 174:107549. [PMID: 35691571 DOI: 10.1016/j.ympev.2022.107549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022]
Abstract
Trees of the genus Pistacia serve as obligate hosts for gall-forming aphids (Hemiptera, Aphididae, Fordini). Each aphid species induces a characteristic gall on a single Pistacia host species. The genus Geoica (Fordini) induce similar spherical closed galls on the lower side of the leaflet's midvein, on different Pistacia species. Two species of Pistacia trees that harbor Geoica galls grow naturally in Israel: P. palaestina and P. atlantica. We analyzed the phylogeny and the genetic structure of the Geoica species complex in Israel, and assessed the genetic differentiation and the level of host plant specificity of the aphids between P. atlantica and P. palaestina. We found that the splitting of the genus between P. atlantica and P. palaestina is estimated to have occurred 24-25 Ma (the Oligocene/Miocene boundary). Five different haplotypes suggesting five different species have been further speciating among Geoica spp., galling on P. atlantica, and an additional three species, on P. palaestina.
Collapse
|
8
|
Fite T, Tefera T, Goftishu M, Damte T. Genetic diversity and demographic history of the Old World Bollworm,
Helicoverpa armigera
(Hubner) (Lepidoptera: Noctuidae), in Ethiopia inferred from mitochondrial gene sequences. Ecol Evol 2022; 12:e8907. [PMID: 35592065 PMCID: PMC9102519 DOI: 10.1002/ece3.8907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 11/05/2022] Open
Abstract
The Old World bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae), is a globally distributed agricultural and horticultural insect pest. Despite the economic importance of this insect in Ethiopia, its genetic diversity and demographic history are poorly understood. We examined the nucleotide variation of the mitochondrial cytochrome c oxidase subunit I (COI) gene fragment of 74 H. armigera individuals from six collection sites in Ethiopia. We recorded 15 COI haplotypes in H. armigera, ten globally shared and five exclusive to Ethiopia (HaET15, HaET14, HaET10, HaET7, and HaET4). Haplotype HaET1 was the most widely geographically distributed and frequent (71.62%). Analysis of molecular variance (AMOVA) revealed a high and significant level of variation within H. armigera populations (θST = −0.0135). Negative values of the neutrality test and nonsignificant index of mismatch distribution supported the demographic expansion of H. armigera populations in Ethiopia; furthermore, this was also supported by the nonsignificant values of the sum of squared deviations (SSD) and raggedness index (r). The high genetic variation and population expansion of H. armigera have immense implications for devising locally adapted management strategies in area‐wide integrated pest management IPM programs. However, a comprehensive study of H. armigera genetic diversity and population structure using various molecular markers is needed for future confirmation.
Collapse
Affiliation(s)
- Tarekegn Fite
- International Centre of Insect Physiology and Ecology (ICIPE) Addis Ababa Ethiopia
- School of Plant Sciences College of Agriculture and Environmental Sciences Haramaya University Dire Dhawa Ethiopia
| | - Tadele Tefera
- International Centre of Insect Physiology and Ecology (ICIPE) Addis Ababa Ethiopia
| | - Muluken Goftishu
- School of Plant Sciences College of Agriculture and Environmental Sciences Haramaya University Dire Dhawa Ethiopia
| | - Tebekew Damte
- Debre Zeit Agricultural Research Center Pulses, Oil and Fibre Crops Research Team Ethiopian Institute of Agricultural Research Debre Zeit Oromiya Ethiopia
| |
Collapse
|
9
|
Zhou T, Jiang W, Wang H, Cui Y. DNA barcoding of Naididae (Annelida, Oligochaeta), based on cytochrome C oxidase gene and ITS2 region in China. Biodivers Data J 2021; 9:e73556. [PMID: 34949956 PMCID: PMC8692306 DOI: 10.3897/bdj.9.e73556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Exploring the effectiveness of DNA barcoding in species identification is a prerequisite for biodiversity conservation and environmental monitoring. Aquatic oligochaetes could serve as excellent indicators in aquatic monitoring programmes. However, few studies have examined the effectiveness of DNA barcoding in these specific organisms. The mitochondrial cytochrome C oxidase (COI) gene of 83 specimens belonging to 40 species of 18 genera were sequenced in this study. The results showed that there was a barcode gap between species of Naididae and the intraspecific genetic distances of each species were smaller than interspecific genetic distances. The classification results of ABGD (Automatic Barcode Gap Discovery) were consistent with those of morphological identification, except for Tubifextubifex and Lumbriculusvariegatus. All species were successfully distinguished in the phylogenetic tree, based on the ITS2 region, which was coincident with the morphological result. Our results provided evidence that DNA barcoding can be used as an effective and convenient tool for species identification of the family Naididae and even for other aquatic oligochaetes.
Collapse
Affiliation(s)
- Tingting Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences Wuhan China.,University of Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences Beijing China
| | - Wei Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences Wuhan China.,University of Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences Beijing China
| | - Hongzhu Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences Wuhan China
| | - Yongde Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences Wuhan China
| |
Collapse
|
10
|
Li Q, Chen C, Wu Y, Siddiqui JA, Lu C, Cheng Z, Li Y, Liu Q, Huang X. Specialization on Ficus Supported by Genetic Divergence and Morphometrics in Sympatric Host-Populations of the Camellia Aphid, Aphis aurantii. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.786450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adaptation to different host plants is considered to be an important driver of the divergence and speciation of herbivorous insects. The application of molecular data and integrated taxonomic practices in recent years may contribute to our understanding of population divergence and speciation, especially for herbivorous insects considered to be polyphagous. Aphis aurantii is an important agricultural and forestry pest with a broad range of host plants. In this study, samples of A. aurantii feeding on different host plants in the same geographical area were collected, and their population genetic divergence and morphological difference were analyzed. Phylogenetic analysis and haplotype network analysis based on five genes revealed that the population on Ficus exhibited significantly genetic divergence from populations on other host plants, which was also supported by the statistical analysis based on measurements of 38 morphological characters. Our results suggest that A. aurantii has undergone specialized evolution on Ficus, and the Ficus population may represent a lineage that is experiencing ongoing sympatric speciation.
Collapse
|
11
|
Ortiz D, Pekár S, Dianat M. Phylogenomics and loci dropout patterns of deeply diverged Zodarion ant-eating spiders suggest a high potential of RAD-seq for genus-level spider phylogenetics. Cladistics 2021; 38:320-334. [PMID: 34699083 DOI: 10.1111/cla.12493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 11/28/2022] Open
Abstract
RAD sequencing yields large amounts of genome-wide data at a relatively low cost and without requiring previous taxon-specific information, making it ideal for evolutionary studies of highly diversified and neglected organisms. However, concerns about information decay with phylogenetic distance have discouraged its use for assessing supraspecific relationships. Here, using Double Digest Restriction Associated DNA (ddRAD) data, we perform the first deep-level approach to the phylogeny of Zodarion, a highly diversified spider genus. We explore the impact of loci and taxon filtering across concatenated and multispecies coalescent reconstruction methods and investigate the patterns of information dropout in reference to both the time of divergence and the mitochondrial divergence between taxa. We found that relaxed loci-filtering and nested taxon-filtering strategies maximized the amount of molecular information and improved phylogenetic inference. As expected, there was a clear pattern of allele dropout towards deeper time and mitochondrial divergences, but the phylogenetic signal remained strong throughout the phylogeny. Therefore, we inferred topologies that were almost fully resolved, highly supported, and noticeably congruent between setups and inference methods, which highlights overall inconsistency in the taxonomy of Zodarion. Because Zodarion appears to be among the oldest and most mitochondrially diversified spider genera, our results suggest that ddRAD data show high potential for inferring intra-generic relationships across spiders and probably also in other taxonomic groups.
Collapse
Affiliation(s)
- David Ortiz
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| | - Malahat Dianat
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia
| |
Collapse
|
12
|
Ahmad A, Wallau GL, Ren Z. Characterization of Mariner transposons in seven species of Rhus gall aphids. Sci Rep 2021; 11:16349. [PMID: 34381125 PMCID: PMC8357937 DOI: 10.1038/s41598-021-95843-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs), also known as jumping genes, are widely spread in the genomes of insects and play a considerable role in genomic evolution. Mariner/DD34D family belongs to class II transposable elements which is widely spread in the genomes of insects and have considerable role in genomic evolution. Mariner like elements (MLEs) were searched in the genomes of seven species of Rhus gall aphids belonging to six genera. In total, 121 MLEs were detected in the genomes of the seven investigated species of Rhus gall aphids, which showed a wide distribution in both close and distant related species. The sequences of MLEs ranged from 1 to 1.4 kb in length and the structural analysis of the MLEs showed that only five copies were potentially active with intact open reading frame (ORF) and terminal inverted repeats (TIRs). Phylogenetic analysis showed that all the 121 MLE sequences belonged to four subfamilies, i.e., Mauritiana, Drosophila, Vertumana and Irritans, among which Drosophila and Vertumana subfamilies were reported in aphids for the first time. Our present report revealed the diversity and distribution of MLEs in Rhus gall aphid genomes and expanded our understandings on the characterization of transposable elements in aphid genomes, which might be useful as genetic markers and tools and would play an important role in genomic evolution and adaptation of aphids.
Collapse
Affiliation(s)
- Aftab Ahmad
- School of Life Science, Shanxi University, 92 Wucheng Rd, Taiyuan, 030006, Shanxi, China
| | - Gabriel Luz Wallau
- Departamento de Entomologia e Núcleo de Bioinf Ormática, Instituto Aggeu Magalhães (IAM) - Fundação Oswaldo Cruz (FIOCRUZ), Recife, 50740-465, Brazil
| | - Zhumei Ren
- School of Life Science, Shanxi University, 92 Wucheng Rd, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
13
|
Acosta M, Alcantar D, Alier-Reyes I, Alvarez C, Arroyo CB, Calderon D, Cardenas D, Castro AR, Companion JK, Constante C, Diaz Telles ES, Fletes G, Gama FC, Garcia Perez C, Garcia A, Garcia B, Gutierrez BS, Guzman KL, Hernandez C, Hughey JR, Flores MI, Jacobo AI, Lopez B, Lopez-De Leon NC, Martinez JD, Mendoza N, Perez K, Perez LJ, Perez-Moreno M, Pineda CD, Pinedo E, Portillo JG, Rico A, Ruiz LV, Serrano GM, Sheldon KM, Terada H, Trujillo VA, Vazquez-Ramos C, Wang F, Flora D, Zavala FG. The complete mitochondrial genome of the strawberry aphid Chaetosiphon fragaefolii Cockerell, 1901 (Hemiptera: Aphididae) from California, USA. Mitochondrial DNA B Resour 2021; 6:2373-2375. [PMID: 34350347 PMCID: PMC8291070 DOI: 10.1080/23802359.2021.1915206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aphid Chaetosiphon fragaefolii Cockerell, 1901 is an agricultural pest and known vector of strawberry viruses. To better understand its biology and systematics, we performed a genomic analysis on C. fragaefolii collected from Quinalt strawberry plants from Pacific Grove, Monterey county, California, USA using Oxford Nanopore and Illumina sequencing. The resulting data were used to assemble the aphids complete mitogenome. The mitogenome of C. fragaefolii is 16,108 bp in length and contains 2 rRNA, 13 protein-coding, and 22 tRNA genes (GenBank accession number LC590896). The mitogenome is similar in content and organization to other Aphididae. Phylogenetic analysis of the C. fragaefolii mitogenome resolved it in a fully supported clade in the tribe Macrosiphini. Analysis of the cox1 barcode sequence of C. fragaefolii from California found exact and nearly identical sequences to C. fragaefolii and Chaetosiphon thomasi Hille Ris Lambers, 1953, suggesting the two species are conspecific.
Collapse
Affiliation(s)
- Miguel Acosta
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Diana Alcantar
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Ivan Alier-Reyes
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Carlos Alvarez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Crystal B. Arroyo
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - David Calderon
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - David Cardenas
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Alejandro R. Castro
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Janelle K. Companion
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Cristian Constante
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Evelyn S. Diaz Telles
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Gabriel Fletes
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Fatima C. Gama
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Celia Garcia Perez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Abigail Garcia
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Bailey Garcia
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Brandon S. Gutierrez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Karina L. Guzman
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Cecilia Hernandez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Jeffery R. Hughey
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Monica Ibarra Flores
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Adilene I. Jacobo
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Brianna Lopez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | | | - Jaden D. Martinez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Nayelli Mendoza
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Kimberly Perez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Lucio J. Perez
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Milagros Perez-Moreno
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Caitlin D. Pineda
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Elizabeth Pinedo
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Julissa G. Portillo
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Anais Rico
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Laura V. Ruiz
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Genevie M. Serrano
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Kalia M. Sheldon
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Hiroki Terada
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Victoria A. Trujillo
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | | | - Frank Wang
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Dawn Flora
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | - Felipe G. Zavala
- Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, USA
| | | |
Collapse
|
14
|
Li Q, Lin X, Li J, Liu B, Huang X. Differentiation in the eastern Asian Periphyllus koelreuteriae (Hemiptera: Aphididae) species complex driven by climate and host plant. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Divergent adaptation to different ecological conditions is regarded as important for speciation. For phytophagous insects, there is limited empirical evidence on species differentiation driven by climate and host plant. The recent application of molecular data and integrative taxonomic practice may improve our understanding of population divergence and speciation. Periphyllus koelreuteriae aphids feed exclusively on Koelreuteria (Sapindaceae) in temperate and subtropical regions of eastern Asia, and show morphological and phenological variations in different regions. In this study, phylogenetic and haplotype network analyses based on four genes revealed that P. koelreuteriae populations comprised three distinct genetic clades corresponding to climate and host plants, with the populations from subtropical highland regions and on Koelreuteria bipinnata host plants representing the most basal clade. These genetic lineages also showed distinct characteristics in terms of morphology and life cycle. The results indicate that P. koelreuteriae is a species complex with previously unrevealed lineages, whose differentiation may have been driven by climatic difference and host plant.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolan Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junjie Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
First Report on the Acrobat Ant Crematogaster scutellaris Storing Live Aphids in Its Oak-Gall Nests. INSECTS 2021; 12:insects12020108. [PMID: 33513695 PMCID: PMC7912212 DOI: 10.3390/insects12020108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Galls represent an amazing microcosm which contains a variety of multiple interactions among different actors, and therefore, offers the opportunity to observe and investigate phenomena belonging to different areas of biology: from the development process, connected to the interaction between the galligenous agent and the host plant, to the moment of their colonization by different species, since some ants may provide defense against pathogens, certain phytophagous insects or favor mutualists. In the present work we describe some aspects of oak-gall colonization by different ant species, highlighting how the gall’s height on the plant influences ant colonization and how different ant species produce different nest architectures. The most relevant aspect, however, is the discovery of a novel ant-aphid relationship: the transport of living aphids into oak-gall nests. We found no evidence of immediate predation of these aphids inside the galls, so they are likely stored to overwinter due to a mutualistic relationship and/or serve as food storage. This is not only an interesting report on the mutualisms involving ants and their insect partners, but it may also have important consequences on the aphids’ phenology with the host plants. Once more, ants show their relevant impact on multitrophic interactions and ecosystem dynamics. Abstract This study provides new data about the role of ants in mutualistic interactions with aphids mediated by galls. We focused our investigation on galls induced by the cynipid Andricus kollari by conducting a survey and a subsequent experiment in an Italian oak forest. The ants Crematogaster scutellaris, Colobopsis truncata and Temnothorax italicus frequently used the galls as nests: Crematogaster scutellaris occupied galls which were located higher on the oak trees, while C. truncata and T. italicus were located at lower positions. In addition, galls occupied by C. scutellaris showed varied internal architecture in relation to the colony composition. Importantly, field surveys revealed for the first time that C. scutellaris nest galls also contained live individuals of the non-galligenous aphid Panaphis juglandis. Field experiments suggested that the ants actively seek, collect and stock live aphids. No signs of predation and injuries were detected on the stored aphids, which were probably kept for safe overwintering, though we cannot exclude a possible occasional use as food. This report reveals a possible novel relationship which could have important consequences on the phenology and presence of aphids on the host plant.
Collapse
|
16
|
Morphologic and genetic analysis for geographic populations of greenbug Schizaphis graminum (Hemiptera: Aphididae) in Egypt. Biologia (Bratisl) 2021. [DOI: 10.2478/s11756-020-00501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
DNA barcoding and species delimitation of butterflies (Lepidoptera) from Nigeria. Mol Biol Rep 2020; 47:9441-9457. [PMID: 33200313 DOI: 10.1007/s11033-020-05984-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
Accurate identification of species is a prerequisite for successful biodiversity management and further genetic studies. Species identification techniques often require both morphological diagnostics and molecular tools, such as DNA barcoding, for correct identification. In particular, the use of the subunit I of the mitochondrial cytochrome c oxidase (COI) gene for DNA barcoding has proven useful in species identification for insects. However, to date, no studies have been carried out on the DNA barcoding of Nigerian butterflies. We evaluated the utility of DNA barcoding applied for the first time to 735 butterfly specimens from southern Nigeria. In total, 699 DNA barcodes, resulting in a record of 116 species belonging to 57 genera, were generated. Our study sample comprised 807 DNA barcodes based on sequences generated from our current study and 108 others retrieved from BOLD. Different molecular analyses, including genetic distance-based evaluation (Neighbor-Joining, Maximum Likelihood and Bayesian trees) and species delimitation tests (TaxonDNA, Automated Barcode Gap Discovery, General Mixed Yule-Coalescent, and Bayesian Poisson Tree Processes) were performed to accurately identify and delineate species. The genetic distance-based analyses resulted in 163 well-separated clusters consisting of 147 described and 16 unidentified species. Our findings indicate that about 90.20% of the butterfly species were explicitly discriminated using DNA barcodes. Also, our field collections reported the first country records of ten butterfly species-Acraea serena, Amauris cf. dannfelti, Aterica galena extensa, Axione tjoane rubescens, Charaxes galleyanus, Papilio lormieri lormeri, Pentila alba, Precis actia, Precis tugela, and Tagiades flesus. Further, DNA barcodes revealed a high mitochondrial intraspecific divergence of more than 3% in Bicyclus vulgaris vulgaris and Colotis evagore. Furthermore, our result revealed an overall high haplotype (gene) diversity (0.9764), suggesting that DNA barcoding can provide information at a population level for Nigerian butterflies. The present study confirms the efficiency of DNA barcoding for identifying butterflies from Nigeria. To gain a better understanding of regional variation in DNA barcodes of this biogeographically complex area, future work should expand the DNA barcode reference library to include all butterfly species from Nigeria as well as surrounding countries. Also, further studies, involving relevant genetic and eco-morphological datasets, are required to understand processes governing mitochondrial intraspecific divergences reported in some species complexes.
Collapse
|
18
|
Liu T, Chen J, Jiang L, Qiao G. Phylogeny and species reassessment of
Hyalopterus
(Aphididae, Aphidinae). ZOOL SCR 2020. [DOI: 10.1111/zsc.12444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Tongyi Liu
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
19
|
Depa Ł, Kaszyca‐Taszakowska N, Taszakowski A, Kanturski M. Ant‐induced evolutionary patterns in aphids. Biol Rev Camb Philos Soc 2020; 95:1574-1589. [DOI: 10.1111/brv.12629] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Łukasz Depa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences University of Silesia in Katowice Bankowa 9 40‐007 Katowice Poland
| | - Natalia Kaszyca‐Taszakowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences University of Silesia in Katowice Bankowa 9 40‐007 Katowice Poland
| | - Artur Taszakowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences University of Silesia in Katowice Bankowa 9 40‐007 Katowice Poland
| | - Mariusz Kanturski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences University of Silesia in Katowice Bankowa 9 40‐007 Katowice Poland
| |
Collapse
|
20
|
Piemontese L, Giovannini I, Guidetti R, Pellegri G, Dioli P, Maistrello L, Rebecchi L, Cesari M. The species identification problem in mirids (Hemiptera: Heteroptera) highlighted by DNA barcoding and species delimitation studies. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1773948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- L. Piemontese
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - I. Giovannini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - R. Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - G. Pellegri
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - P. Dioli
- Department of Entomology, Museo Civico di Storia Naturale di Milano, Milan, Italy
| | - L. Maistrello
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - L. Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - M. Cesari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
21
|
Abstract
AbstractAn important component of reintroduction is acclimatization to the release site. Movement parameters and breeding are common metrics used to infer the end of the acclimatization period, but the time taken to locate preferred food items is another important measure. We studied the diet of a reintroduced population of brushtail possums Trichosurus vulpecula in semi-arid South Australia over a 12 month period, investigating changes over time as well as the general diet. We used next-generation DNA sequencing to determine the contents of 253 scat samples, after creating a local plant reference library. Vegetation surveys were conducted monthly to account for availability. Dietary diversity and richness decreased significantly with time since release after availability was accounted for. We used Jacob's Index to assess selectivity; just 13.4% of available plant genera were significantly preferred overall, relative to availability. The mean proportion of preferred plant genera contained within individual samples increased significantly with time since release, but the frequency of occurrence of preferred plants did not. Five genera (Eucalyptus, Petalostylis, Maireana, Zygophyllum and Callitris) were present in more than half of samples. There was no difference in dietary preferences between sexes (Pianka overlap = 0.73). Our results suggest that acclimatization periods may be longer than those estimated via reproduction, changes in mass and movement parameters, but that under suitable conditions a changeable diet should not negatively affect reintroduction outcomes. Reintroduction projects should aim to extend post-release monitoring beyond the dietary acclimatization period and, for dry climates, diet should be monitored through a drought period.
Collapse
|
22
|
Rojas LA, Scully E, Enders L, Timm A, Sinha D, Smith CM. Comparative transcriptomics of Diuraphis noxia and Schizaphis graminum fed wheat plants containing different aphid-resistance genes. PLoS One 2020; 15:e0233077. [PMID: 32442185 PMCID: PMC7313535 DOI: 10.1371/journal.pone.0233077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/26/2020] [Indexed: 01/08/2023] Open
Abstract
The molecular bases of aphid virulence to aphid crop plant resistance genes are
poorly understood. The Russian wheat aphid, Diuraphis noxia,
(Kurdjumov), and the greenbug, Schizaphis graminum (Rondani),
are global pest of cereal crops. Each species damages barley, oat, rye and
wheat, but S. graminum includes fescue, maize,
rice and sorghum in its host range. This study was conducted to compare and
contrast the transcriptomes of S. graminum
biotype I and D. noxia biotype 1 when each
ingested phloem from leaves of varieties of bread wheat, Triticum
aestivum L., containing no aphid resistance (Dn0),
resistance to D. noxia biotype 1
(Dn4), or resistance to both D.
noxia biotype 1 and S.
graminum biotype I (Dn7, wheat genotype
94M370). Gene ontology enrichments, k-means analysis and KEGG pathway analysis
indicated that 94M370 plants containing the Dn7 D.
noxia resistance gene from rye had stronger effects on the
global transcriptional profiles of S. graminum
and D. noxia relative to those fed
Dn4 plants. S. graminum
responds to ingestion of phloem sap from 94M370 plants by expression of unigenes
coding for proteins involved in DNA and RNA repair, and delayed tissue and
structural development. In contrast, D. noxia
displays a completely different transcriptome after ingesting phloem sap from
Dn4 or 94M370 plants, consisting of unigenes involved
primarily in detoxification, nutrient acquisition and structural development.
These variations in transcriptional responses of D.
noxia and S. graminum
suggest that the underlying evolutionary mechanism(s) of virulence in these
aphids are likely species specific, even in cases of cross resistance.
Collapse
Affiliation(s)
- Lina Aguirre Rojas
- Department of Entomology, Kansas State University, Manhattan, KS, United
States of America
| | - Erin Scully
- Stored Product Insect and Engineering Unit, USDA-ARS Centerfor Grain and
Animal Health Research, Manhattan, KS, United States of
America
| | - Laramy Enders
- Department of Entomology, Purdue University, West Lafayette, IN, United
States of America
| | - Alicia Timm
- Department of Bioagricultural Sciences and Pest Management, Colorado
State University, Fort Collins, CO, United States of America
| | - Deepak Sinha
- Department of Entomology, Kansas State University, Manhattan, KS, United
States of America
- SAGE University, Indore, India
| | - Charles Michael Smith
- Department of Entomology, Kansas State University, Manhattan, KS, United
States of America
- * E-mail:
| |
Collapse
|
23
|
Kondo H, Fujita M, Hisano H, Hyodo K, Andika IB, Suzuki N. Virome Analysis of Aphid Populations That Infest the Barley Field: The Discovery of Two Novel Groups of Nege/Kita-Like Viruses and Other Novel RNA Viruses. Front Microbiol 2020; 11:509. [PMID: 32318034 PMCID: PMC7154061 DOI: 10.3389/fmicb.2020.00509] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Aphids (order Hemiptera) are important insect pests of crops and are also vectors of many plant viruses. However, little is known about aphid-infecting viruses, particularly their diversity and relationship to plant viruses. To investigate the aphid viromes, we performed deep sequencing analyses of the aphid transcriptomes from infested barley plants in a field in Japan. We discovered virus-like sequences related to nege/kita-, flavi-, tombus-, phenui-, mononega-, narna-, chryso-, partiti-, and luteoviruses. Using RT-PCR and sequence analyses, we determined almost complete sequences of seven nege/kitavirus-like virus genomes; one of which was a variant of the Wuhan house centipede virus (WHCV-1). The other six seem to belong to four novel viruses distantly related to Wuhan insect virus 9 (WhIV-9) or Hubei nege-like virus 4 (HVLV-4). We designated the four viruses as barley aphid RNA virus 1 to 4 (BARV-1 to -4). Moreover, some nege/kitavirus-like sequences were found by searches on the transcriptome shotgun assembly (TSA) libraries of arthropods and plants. Phylogenetic analyses showed that BARV-1 forms a clade with WHCV-1 and HVLV-4, whereas BARV-2 to -4 clustered with WhIV-9 and an aphid virus, Aphis glycines virus 3. Both virus groups (tentatively designated as Centivirus and Aphiglyvirus, respectively), together with arthropod virus-like TSAs, fill the phylogenetic gaps between the negeviruses and kitaviruses lineages. We also characterized the flavi/jingmen-like and tombus-like virus sequences as well as other RNA viruses, including six putative novel viruses, designated as barley aphid RNA viruses 5 to 10. Interestingly, we also discovered that some aphid-associated viruses, including nege/kita-like viruses, were present in different aphid species, raising a speculation that these viruses might be distributed across different aphid species with plants being the reservoirs. This study provides novel information on the diversity and spread of nege/kitavirus-related viruses and other RNA viruses that are associated with aphids.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Miki Fujita
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Hiroshi Hisano
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Kiwamu Hyodo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| |
Collapse
|
24
|
Parallel Evolution in the Integration of a Co-obligate Aphid Symbiosis. Curr Biol 2020; 30:1949-1957.e6. [PMID: 32243856 DOI: 10.1016/j.cub.2020.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 01/21/2023]
Abstract
Insects evolve dependence-often extreme-on microbes for nutrition. This includes cases in which insects harbor multiple endosymbionts that function collectively as a metabolic unit [1-5]. How do these dependences originate [6], and is there a predictable sequence of events leading to the integration of new symbionts? While co-obligate symbioses, in which hosts rely on multiple nutrient-provisioning symbionts, have evolved numerous times across sap-feeding insects, there is only one known case in aphids, involving Buchnera aphidicola and Serratia symbiotica in the Lachninae subfamily [7-9]. Here, we identify three additional independent transitions to the same co-obligate symbiosis in different aphids. Comparing recent and ancient associations allow us to investigate intermediate stages of metabolic and anatomical integration of Serratia. We find that these uniquely replicated evolutionary events support the idea that co-obligate associations initiate in a predictable manner-through parallel evolutionary processes. Specifically, we show how the repeated losses of the riboflavin and peptidoglycan pathways in Buchnera lead to dependence on Serratia. We then provide evidence of a stepwise process of symbiont integration, whereby dependence evolves first. Then, essential amino acid pathways are lost (at ∼30-60 mya), which coincides with the increased anatomical integration of the companion symbiont. Finally, we demonstrate that dependence can evolve ahead of specialized structures (e.g., bacteriocytes), and in one case with no direct nutritional basis. More generally, our results suggest the energetic costs of synthesizing nutrients may provide a unified explanation for the sequence of gene losses that occur during the evolution of co-obligate symbiosis.
Collapse
|
25
|
Skvarla M, Kramer M, Owen CL, Miller GL. Reexamination of Rhopalosiphum (Hemiptera: Aphididae) using linear discriminant analysis to determine the validity of synonymized species, with some new synonymies and distribution data. Biodivers Data J 2020; 8:e49102. [PMID: 32042252 PMCID: PMC6997245 DOI: 10.3897/bdj.8.e49102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/17/2020] [Indexed: 11/12/2022] Open
Abstract
Although 17 species of Rhopalosiphum (Hemiptera: Aphididae) are currently recognized, 85 taxonomic names have been proposed historically. Some species are morphologically similar, especially alate individuals and most synonymies were proposed in catalogues without evidence. This has led to both confusion and difficulty in making accurate species-level identifications. In an attempt to address these issues, we developed a new approach to resolve synonymies based on linear discriminant analysis (LDA) and suggest that this approach may be useful for other taxonomic groups to reassess previously proposed synonymies. We compared 34 valid and synonymized species using 49 measurements and 20 ratios from 1,030 individual aphids. LDA was repeatedly applied to subsets of the data after removing clearly separated groups found in a previous iteration. We found our characters and technique worked well to distinguish among apterae. However, it separated well only those alatae with some distinctive traits, while those apterate which were morphologically similar were not well separated using LDA. Based on our morphological investigation, we transfer R. arundinariae (Tissot, 1933) to Melanaphis supported by details of the wing veination and other morphological traits and propose Melanaphis takahashii Skvarla and Miller as a replacement name for M. arundinariae (Takahashi, 1937); we also synonymize R. momo (Shinji, 1922) with R. nymphaeae (Linnaeus, 1761). Our analyses confirmed many of the proposed synonymies, which will help to stabilize the nomenclature and species concepts within Rhopalosiphum.
Collapse
Affiliation(s)
- Michael Skvarla
- Penn State, University Park, United States of America Penn State University Park United States of America
| | - Matthew Kramer
- Statistics Group, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, United States of America Statistics Group, Agricultural Research Service, U.S. Department of Agriculture Beltsville, MD United States of America
| | - Christopher L Owen
- Systematic Entomology Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, United States of America Systematic Entomology Laboratory, Agricultural Research Service, U.S. Department of Agriculture Beltsville, MD United States of America
| | - Gary L Miller
- Systematic Entomology Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, United States of America Systematic Entomology Laboratory, Agricultural Research Service, U.S. Department of Agriculture Beltsville, MD United States of America
| |
Collapse
|
26
|
Valouzi H, Hashemi SS, Wylie SJ, Ahadiyat A, Golnaraghi A. Wisteria Vein Mosaic Virus Detected for the First Time in Iran from an Unknown Host by Analysis of Aphid Vectors. THE PLANT PATHOLOGY JOURNAL 2020; 36:87-97. [PMID: 32089664 PMCID: PMC7012578 DOI: 10.5423/ppj.oa.10.2019.0268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The development of reverse transcription-polymerase chain reaction using degenerate primers against conserved regions of most potyviral genomes enabled sampling of the potyvirome. However, these assays usually involve sampling potential host plants, but identifying infected plants when they are asymptomatic is challenging, and many plants, especially wild ones, contain inhibitors to DNA amplification. We used an alternative approach which utilized aphid vectors and indicator plants to identify potyviruses capable of infecting common bean (Phaseolus vulgaris). Aphids were collected from a range of asymptomatic leguminous weeds and trees in Iran, and transferred to bean seedlings under controlled conditions. Bean plants were tested serologically for potyvirus infections four-weeks post-inoculation. The serological assay and symptomatology together indicated the presence of one potyvirus, and symptomology alone implied the presence of an unidentified virus. The partial genome of the potyvirus, encompassing the complete coat protein gene, was amplified using generic potyvirus primers. Sequence analysis of the amplicon confirmed the presence of an isolate of Wisteria vein mosaic virus (WVMV), a virus species not previously identified from Western Asia. Phylogenetic analyses of available WVMV sequences categorized them into five groups: East Asian-1 to 3, North American and World. The Iranian isolate clustered with those in the World group. Multiple sequence alignment indicated the presence of some genogroup-specific amino acid substitutions among the isolates studied. Chinese isolates were sister groups of other isolates and showed higher nucleotide distances as compared with the others, suggesting a possible Eastern-Asian origin of WVMV, the main region where Wisteria might have originated.
Collapse
Affiliation(s)
- Hajar Valouzi
- Department of Plant Protection, Faculty of Agricultural Sciences and Food Industries, Science and Research Branch, Islamic Azad University, Tehran,
Iran
| | - Seyedeh-Shahrzad Hashemi
- Department of Plant Protection, Faculty of Agricultural Sciences and Food Industries, Science and Research Branch, Islamic Azad University, Tehran,
Iran
| | - Stephen J. Wylie
- Plant Biotechnology Research Group – Virology, State Agricultural Biotechnology Centre, Murdoch University, Perth, WA 6150,
Australia
| | - Ali Ahadiyat
- Department of Plant Protection, Faculty of Agricultural Sciences and Food Industries, Science and Research Branch, Islamic Azad University, Tehran,
Iran
| | - Alireza Golnaraghi
- Department of Plant Protection, Faculty of Agricultural Sciences and Food Industries, Science and Research Branch, Islamic Azad University, Tehran,
Iran
| |
Collapse
|
27
|
Li Q, Deng J, Chen C, Zeng L, Lin X, Cheng Z, Qiao G, Huang X. DNA Barcoding Subtropical Aphids and Implications for Population Differentiation. INSECTS 2019; 11:E11. [PMID: 31877643 PMCID: PMC7022676 DOI: 10.3390/insects11010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 11/16/2022]
Abstract
DNA barcoding has proven its worth in species identification, discovering cryptic diversity, and inferring genetic divergence. However, reliable DNA barcode reference libraries that these applications depend on are not available for many taxonomic groups and geographical regions. Aphids are a group of plant sap sucking insects, including many notorious pests in agriculture and forestry. The aphid fauna of the subtropical region has been understudied. In this study, based on extensive sampling effort across main subtropical areas, we sequenced 1581 aphid specimens of 143 morphospecies, representing 75 genera, and 13 subfamilies, to build the first comprehensive DNA barcode library for subtropical aphids. We examined the utility of DNA barcodes in identifying aphid species and population differentiation and evaluated the ability of different species delimitation methods (automatic barcode gap discovery (ABGD), generalized mixed Yule-coalescent (GMYC), and Bayesian Poisson tree processes (bPTP)). We found that most aphid species demonstrated barcode gaps and that a threshold value of 2% genetic distance is suitable for distinguishing most species. Our results indicated that ten morphospecies may have species divergence related to factors such as host plant or geography. By using two pest species Aphis spiraecola and A. gossypii as examples, we also discussed the effect of the sampling scale of host plants on the results and reliability of DNA barcoding of phytophagous insects. This DNA barcode library will be valuable for future studies and applications.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (J.D.); (C.C.); (L.Z.); (X.L.); (Z.C.)
| | - Jun Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (J.D.); (C.C.); (L.Z.); (X.L.); (Z.C.)
| | - Cui Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (J.D.); (C.C.); (L.Z.); (X.L.); (Z.C.)
| | - Linda Zeng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (J.D.); (C.C.); (L.Z.); (X.L.); (Z.C.)
| | - Xiaolan Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (J.D.); (C.C.); (L.Z.); (X.L.); (Z.C.)
| | - Zhentao Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (J.D.); (C.C.); (L.Z.); (X.L.); (Z.C.)
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (J.D.); (C.C.); (L.Z.); (X.L.); (Z.C.)
| |
Collapse
|
28
|
Naseem MT, Ashfaq M, Khan AM, Rasool A, Asif M, Hebert PDN. BIN overlap confirms transcontinental distribution of pest aphids (Hemiptera: Aphididae). PLoS One 2019; 14:e0220426. [PMID: 31821347 PMCID: PMC6903727 DOI: 10.1371/journal.pone.0220426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/24/2019] [Indexed: 11/25/2022] Open
Abstract
DNA barcoding is highly effective for identifying specimens once a reference sequence library is available for the species assemblage targeted for analysis. Despite the great need for an improved capacity to identify the insect pests of crops, the use of DNA barcoding is constrained by the lack of a well-parameterized reference library. The current study begins to address this limitation by developing a DNA barcode reference library for the pest aphids of Pakistan. It also examines the affinities of these species with conspecific populations from other geographic regions based on both conventional taxonomy and Barcode Index Numbers (BINs). A total of 809 aphids were collected from a range of plant species at sites across Pakistan. Morphological study and DNA barcoding allowed 774 specimens to be identified to one of 42 species while the others were placed to a genus or subfamily. Sequences obtained from these specimens were assigned to 52 BINs whose monophyly were supported by neighbor-joining (NJ) clustering and Bayesian inference. The 42 species were assigned to 41 BINs with 38 showing BIN concordance. These species were represented on BOLD by 7,870 records from 69 countries. Combining these records with those from Pakistan produced 60 BINs with 12 species showing a BIN split and three a BIN merger. Geo-distance correlations showed that intraspecific divergence values for 49% of the species were not affected by the distance between populations. Forty four of the 52 BINs from Pakistan had counterparts in 73 countries across six continents, documenting the broad distributions of pest aphids.
Collapse
Affiliation(s)
- Muhammad Tayyib Naseem
- National institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Muhammad Ashfaq
- Centre for Biodiversity Genomics & Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
- * E-mail:
| | - Arif Muhammad Khan
- National institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Akhtar Rasool
- National institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Zoology, University of Swat, Swat, Pakistan
| | - Muhammad Asif
- National institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Paul D. N. Hebert
- Centre for Biodiversity Genomics & Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
29
|
Langley J, Van der Westhuizen S, Morland G, van Asch B. Mitochondrial genomes and polymorphic regions of Gonimbrasia belina and Gynanisa maja (Lepidoptera: Saturniidae), two important edible caterpillars of Southern Africa. Int J Biol Macromol 2019; 144:632-642. [PMID: 31830455 DOI: 10.1016/j.ijbiomac.2019.12.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 11/26/2022]
Abstract
Mopane worms are the vernacular designation for the edible caterpillars of the African emperor moths Gonimbrasia belina and Gynanisa maja. Both species, particularly G. belina, are widely harvested in Southern Africa, and their populations are declining. Despite their commercial, nutritional, and cultural importance, their genetic data are currently unavailable. We sequenced two complete mitogenomes from each species using Ion Torrent technology, and identified informative markers in the complete mitogenomes of the two species for use in future studies. Comparing the conspecific mitogenomes allowed the identification of regions with high nucleotide diversity in ATP6, ND1, ND4, ND5, ND6, and CYTB genes. The final panels of markers will allow for the survey of 3117 bp in G. belina, and 3990 bp in Gy. maja. Phylogenetic reconstruction within the family Saturniidae recovered the tribe Bunaeini as monophyletic and basal to Saturniidae, and the tribe Attacini as a monophyletic clade nested within the tribe Saturniini. The G. belina and Gy. maja mitogenomes are the first representatives of African Saturniidae, a taxonomic group with relevance as a food resource on the continent. This study represents the first step towards assessing the genetic diversity, population structure, and phylogeography of African edible caterpillars.
Collapse
Affiliation(s)
- Jethro Langley
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | | | - Gail Morland
- Department of Natural Resources Management, Faculty of Natural Resources and Spatial Sciences, Namibia University of Science and Technology, Private Bag 13388, Windhoek, Namibia
| | - Barbara van Asch
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
30
|
Brookes DR, Hereward JP, Walter GH, Furlong MJ. Origins, Divergence, and Contrasting Invasion History of the Sweet Potato Weevil Pests Cylas formicarius (Coleoptera: Brentidae) and Euscepes batatae (Coleoptera: Curculionidae) in the Asia-Pacific. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2931-2939. [PMID: 31352482 DOI: 10.1093/jee/toz198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Indexed: 06/10/2023]
Abstract
Cylas formicarius F. and Euscepes batatae Waterhouse are the most damaging sweet potato insect pests globally. Both weevils are thought to have invaded the Pacific alongside the movement of sweet potato (Ipomoea batatas (L.) Lam. Convolvulaceae), with C. formicarius having originated in India and E. batatae in Central or South America. Here we compare the genetic relationships between populations of the pests, primarily in the Asia-Pacific, to understand better their contemporary population structure and their historical movement relative to that of sweet potato. Cylas formicarius has divergent mitochondrial lineages that indicate a more complex biogeographic and invasive history than is presently assumed for this insect, suggesting it was widespread across the Asia-Pacific before the arrival of sweet potato. Cylas formicarius must have originally fed on Ipomoea species other than I. batatas but the identity of these species is presently unknown. Cylas formicarius was formerly designated as three species or subspecies and the genetic data presented here suggests that these designations should be reinvestigated. Euscepes batatae has very low genetic diversity which is consistent with its historical association with sweet potato and a recent introduction to the Asia-Pacific from the Americas. The distribution of E. batatae may be narrower than that of C. formicarius in the Asia-Pacific because it has relied relatively more on human-assisted movement. Consequently, E. batatae may become more widespread in the future. Investigating the invasion history of both species will help to understand the probability and nature of future invasions.
Collapse
Affiliation(s)
- Dean R Brookes
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James P Hereward
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Gimme H Walter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael J Furlong
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Aphids of the family Adelgidae in Lithuania: distribution, host specificity and molecular (mitochondrial COI and nuclear EF-1α) diversity. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00365-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Siddiqui JA, Chen Z, Li Q, Deng J, Lin X, Huang X. DNA barcoding of aphid-associated ants (Hymenoptera, Formicidae) in a subtropical area of southern China. Zookeys 2019; 879:117-136. [PMID: 31636501 PMCID: PMC6795625 DOI: 10.3897/zookeys.879.29705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/05/2019] [Indexed: 01/13/2023] Open
Abstract
As one of the most abundant and complex groups of terrestrial insects, ants have associations with many other organismal groups, such as hemipteran insects producing honeydew. With the aim of expanding the knowledge base of ant species associated with aphids, this study analyzed mitochondrial COI barcodes of 301 ant samples for 37 aphid-associated ant species in a subtropical area of southern China. Sequence analyses revealed that the intraspecific and interspecific distances ranged from zero to 7.7%% and 0.2 to 31.7%, respectively. Three barcoding approaches - Automatic Barcode Gap Discovery, Bayesian Poisson Tree Processes and Generalized Mixed Yule-coalescent - were used to help delimit ant species based on COI sequences, and their results corresponded well with most of the morphospecies. All three approaches indicate cryptic diversity may exist within Tetramorium bicarinatum and Technomyrmex albipes, with intraspecific genetic distances of 7.7% and 6.24%, respectively. Our analyses also reported five species for the first time from Fujian Province of China, and the COI sequences of nine species are newly added into the GenBank. This study provides information about species diversity of aphid-associated ants in subtropical China and compiles a DNA barcode reference library for future ant barcoding work.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhilin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry of Education, Guangxi Normal University, Guilin 541004, China
| | - Qiang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolan Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
33
|
Huemer P, Wieser C, Stark W, Hebert PDN, Wiesmair B. DNA barcode library of megadiverse Austrian Noctuoidea (Lepidoptera) - a nearly perfect match of Linnean taxonomy. Biodivers Data J 2019; 7:e37734. [PMID: 31423084 PMCID: PMC6694074 DOI: 10.3897/bdj.7.e37734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023] Open
Abstract
The aim of the study was to establish a nationwide barcode library for the most diverse group of Austrian Lepidoptera, the Noctuoidea, with 5 families (Erebidae, Euteliidae, Noctuidae, Nolidae, Notodontidae) and around 690 species. Altogether, 3431 DNA barcode sequences from COI gene (cytochrome c oxidase 1) belonging to 671 species were gathered, with 3223 sequences >500 bp. The intraspecific divergence with a mean of only 0.17% is low in most species whereas interspecific distances to the Nearest Neighbour are significantly higher with an average of 4.95%. Diagnostic DNA barcodes were obtained for 658 species. Only 13 species (1.9% of the Austrian Noctuoidea) cannot be reliably identified from their DNA barcode (Setina aurita/Setina irrorella, Conisania leineri/Conisania poelli, Photedes captiuncula/Photedes minima, Euxoa obelisca/Euxoa vitta/Euxoa tritici, Mesapamaea secalella/Mesapamea secalis, Amphipoea fucosa/Amphipoea lucens). A similarly high identification performance was achieved by the Barcode Index (BIN) system. 671 species of Austrian Noctuoidea, representing 3202 records with BINs, are assigned to a total of 678 BINs. The vast majority of 649 species is placed into a single BIN, with only 13 species recognised as BIN-sharing (including the barcode sharing species above). Twenty-one species were assigned to more than one BIN and have to be checked for cryptic diversity in the future.
Collapse
Affiliation(s)
- Peter Huemer
- Tiroler Landesmuseen Betriebsges.m.b.H., Innsbruck, Austria Tiroler Landesmuseen Betriebsges.m.b.H. Innsbruck Austria
| | - Christian Wieser
- Landesmuseum Kärnten, Klagenfurt am Wörthersee, Austria Landesmuseum Kärnten Klagenfurt am Wörthersee Austria
| | | | - Paul D N Hebert
- Biodiversity Institute of Ontario, Guelph, Canada Biodiversity Institute of Ontario Guelph Canada
| | - Benjamin Wiesmair
- Tiroler Landesmuseen Betriebsges.m.b.H., Innsbruck, Austria Tiroler Landesmuseen Betriebsges.m.b.H. Innsbruck Austria
| |
Collapse
|
34
|
Zúñiga-Centeno A, Sandoval-Carvajal I, Montero-Astúa M, Villalobos-Muller W, Quốc NB, Hidalgo NP. A molecular study of Neophyllaphisvaricolor (Hemiptera, Aphididae) in Costa Rica. Zookeys 2019; 865:123-135. [PMID: 31379447 PMCID: PMC6663932 DOI: 10.3897/zookeys.865.35213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/29/2019] [Indexed: 11/12/2022] Open
Abstract
The genus Neophyllaphis (Takahashi) (Aphididae: Neophyllaphidinae) is composed of 18 species; however, in the Americas only nine species have been reported previously. A new species, Neophyllaphisvaricolor Miller & Halbert, was described in 2014 in USA. Colonies resembling those of this new species have been observed in Costa Rica on Podocarpus spp. In order to determine if N.varicolor is also present in Costa Rica, we sampled Neophyllaphis colonies from Podocarpusfalcatus and P.chinensis. Additionally, we sampled individuals from Podocarpus sp. in Spain and Vietnam. DNA of each sample was extracted and used to amplify and sequence the cytochrome c oxidase subunit I (COI) and elongation factor I (EF-1α) partial regions. According to morphological characteristics, sequences comparisons done in GenBank and BOLD, and phylogenetic analyses, the colonies collected from Podocarpus spp. in Costa Rica and the colony from Vietnam corresponded to the species N.varicolor. To the best of our knowledge this is the first report of the presence of N.varicolor in Central America and Vietnam.
Collapse
Affiliation(s)
| | - Izayana Sandoval-Carvajal
- Universidad de Costa Rica, Centro de Investigación en Biología Celular y Molecular, San José, 11501-2060, Costa Rica
| | - Mauricio Montero-Astúa
- Universidad de Costa Rica, Escuela de Agronomía, San José, 11501-2060, Costa Rica.,Universidad de Costa Rica, Centro de Investigación en Biología Celular y Molecular, San José, 11501-2060, Costa Rica
| | - William Villalobos-Muller
- Universidad de Costa Rica, Centro de Investigación en Biología Celular y Molecular, San José, 11501-2060, Costa Rica
| | - Nguyễn Bảo Quốc
- Nong Lam University, Research Institute for Biotechnology and Environment, Ho Chi Minh City, 700000, Vietnam
| | - Nicolás Pérez Hidalgo
- Instituto de Biología Integrativa de Sistemas (I2SysBio), Centro Mixto Universidad de Valencia-CSIC, Valencia, 46980, España
| |
Collapse
|
35
|
Poveda-Martínez D, Aguirre MB, Logarzo G, Calderón L, de la Colina A, Hight S, Triapitsyn S, Diaz-Soltero H, Hasson E. Untangling the Hypogeococcus pungens species complex (Hemiptera: Pseudococcidae) for Argentina, Australia, and Puerto Rico based on host plant associations and genetic evidence. PLoS One 2019; 14:e0220366. [PMID: 31344099 PMCID: PMC6657911 DOI: 10.1371/journal.pone.0220366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
Hypogeococcus pungens, a mealybug native of southern South America, is devastating native cacti in Puerto Rico and threatening cactus diversity in the Caribbean, and potentially in Central and North America. The taxonomic status of H. pungens is controversial since it has been reported feeding not only on Cactaceae but also on other plant families throughout its distribution range. However, in Australia, where the species had been exported from Argentina to control weedy American cacti, it was never found on host plants other than Cactaceae. These conflicting pieces of evidence not only cast doubt on the species identity that invaded Puerto Rico, but also have a negative impact on the search for natural enemies to be used in biological control programs against this pest. Here we present reproductive incompatibility and phylogenetic evidences that give support to the hypothesis that H. pungens is a species complex in which divergence appears to be driven by the host plants. The nuclear EF1α and 18S and the mitochondrial COI genes were used as markers to evaluate the phylogenetic relationships among H. pungens populations collected in Argentina, Australia and Puerto Rico feeding on Cactaceae and/or Amaranthaceae. Additionally, we conducted reciprocal crosses between mealybugs from both hosts. Species delimitation analysis revealed two well-supported putative species within H. pungens, one including mealybugs feeding on Amaranthaceae (H. pungens sensu stricto), and a new undescribed species using Cactaceae as hosts. Additionally, we found asymmetric reproductive incompatibility between these putative species suggesting recent reproductive isolation. The Bayesian species delimitation also suggested that the Australian mealybug population may derive from another undescribed species. Overall, the patterns of genetic differentiation may be interpreted as the result of recent speciation events prompted by host plant shifts. Finally, the finding of a single haplotype in the Puerto Rico population suggests only one invasive event. We still need to identify the geographical origin of the pest in order to enable the use of biological control to reduce the threat to cacti diversity in the Caribbean.
Collapse
Affiliation(s)
- Daniel Poveda-Martínez
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
- Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Grupo de investigación en Evolución, Ecología y Conservación (EECO), Universidad del Quindío, Armenia, Colombia
- * E-mail: (DPM); (MBA)
| | - María Belén Aguirre
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail: (DPM); (MBA)
| | - Guillermo Logarzo
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
| | - Luciano Calderón
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alicia de la Colina
- Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Stephen Hight
- U.S. Department of Agriculture-ARS, Tallahassee, Florida, United States of America
| | - Serguei Triapitsyn
- Department of Entomology, University of California, Riverside, California, United States of America
| | - Hilda Diaz-Soltero
- Caribbean Advisor to the APHIS Administrator, USDA, San Juan, Puerto Rico
| | - Esteban Hasson
- Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
36
|
Li Q, Yao J, Zeng L, Lin X, Huang X. Molecular and morphological evidence for the identity of two nominal species of Astegopteryx (Hemiptera, Aphididae, Hormaphidinae). Zookeys 2019; 833:59-74. [PMID: 31015776 PMCID: PMC6443623 DOI: 10.3897/zookeys.833.30592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/25/2019] [Indexed: 11/12/2022] Open
Abstract
The morphology of many insect species is usually influenced by environmental factors and therefore high phenotypic variation exists even within a species. This causes difficulty and uncertainty in species taxonomy, which can be remedied by using molecular data and integrative taxonomy. Astegopteryxbambusae and A.bambucifoliae are currently regarded as two closely related aphid species with similar bamboo hosts and overlapping distributions in the oriental region. However, in practice it is hard to distinguish between them. By incorporating molecular data from four mitochondrial and nuclear genes as well as morphological information from an extensive collection of live specimens, the present study indicates that A.bambucifoliae is a junior synonym of A.bambusae. The data also indicate that large-scale geographic patterns of population differentiation may exist within this species.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China Fujian Agriculture and Forestry University Fuzhou China
| | - Jiamin Yao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China Fujian Agriculture and Forestry University Fuzhou China
| | - Lingda Zeng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China Fujian Agriculture and Forestry University Fuzhou China
| | - Xiaolan Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China Fujian Agriculture and Forestry University Fuzhou China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
37
|
Infection pattern and negative effects of a facultative endosymbiont on its insect host are environment-dependent. Sci Rep 2019; 9:4013. [PMID: 30850675 PMCID: PMC6408509 DOI: 10.1038/s41598-019-40607-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/20/2019] [Indexed: 02/01/2023] Open
Abstract
Regiella insecticola is a bacterial endosymbiont in insects that exhibits a negative effect on the fitness of hosts. Thus, it is not clear why this costly endosymbiont can persist in host populations. Here, we tested a hypothesis that the infection pattern and negative roles of the endosymbiont were not constant but environmentally dependent. The grain aphids Sitobion avenae, belonging to different genotypes and infected with Regiella or not, were used in this study. We found that S. avenae populations were infected with Regiella, Hamiltonella defensa, Serratia symbiotica and Rickettsia. The predominant endosymbionts in the aphid populations varied with season. Serratia and Rickettsia were predominant from December to February while Regiella predominated from March to May. The vertical transmission of Regiella was poorer at high temperature, but following conditioning for seven generations, the transmission rate improved. Regiella inhibited the production of winged aphids at 25 °C, but it did not affect winged morph production at the higher temperatures of 28 °C and 31 °C. Regiella infection decreased the intrinsic rate of increase (rm) of aphids at 25 °C and 28 °C. However, at 31 °C, the effect of Regiella on the rm varied depending on the aphid genotype and density. Thus, the negative effects of this endosymbiont on its host were environmentally dependent.
Collapse
|
38
|
Foottit RG, Maw HEL, Kits JH, Scudder GGE. Hemiptera of Canada. Zookeys 2019; 819:277-290. [PMID: 30713446 PMCID: PMC6355760 DOI: 10.3897/zookeys.819.26574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/10/2018] [Indexed: 11/27/2022] Open
Abstract
The Canadian Hemiptera (Sternorrhyncha, Auchenorrhyncha, and Heteroptera) fauna is reviewed, which currently comprises 4011 species, including 405 non-native species. DNA barcodes available for Canadian specimens are represented by 3275 BINs. The analysis was based on the most recent checklist of Hemiptera in Canada (Maw et al. 2000) and subsequent collection records, literature records and compilation of DNA barcode data. It is estimated that almost 600 additional species remain to be discovered among Canadian Hemiptera.
Collapse
Affiliation(s)
- Robert G. Foottit
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre and Canadian National Collection of Insects, Arachnids and Nematodes, K. W. Neatby Bldg., 960 Carling Ave., Ottawa, Ontario, K1A 0C6, CanadaAgriculture and Agri-Food CanadaOttawaCanada
| | - H. Eric L. Maw
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre and Canadian National Collection of Insects, Arachnids and Nematodes, K. W. Neatby Bldg., 960 Carling Ave., Ottawa, Ontario, K1A 0C6, CanadaAgriculture and Agri-Food CanadaOttawaCanada
| | - Joel H. Kits
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre and Canadian National Collection of Insects, Arachnids and Nematodes, K. W. Neatby Bldg., 960 Carling Ave., Ottawa, Ontario, K1A 0C6, CanadaAgriculture and Agri-Food CanadaOttawaCanada
| | - Geoffrey G. E. Scudder
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, CanadaUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
39
|
Abstract
Based on data presented in 29 papers published in the Biota of Canada Special Issue of ZooKeys and data provided herein about Zygentoma, more than 44,100 described species of terrestrial arthropods (Arachnida, Myriapoda, Insecta, Entognatha) are now known from Canada. This represents more than a 34% increase in the number of described species reported 40 years ago (Danks 1979a). The most speciose groups are Diptera (9620 spp.), Hymenoptera (8757), and Coleoptera (8302). Less than 5% of the fauna has a natural Holarctic distribution and an additional 5.1% are non-native species. A conservatively estimated 27,000-42,600 additional species are expected to be eventually discovered in Canada, meaning that the total national species richness is ca. 71,100-86,700 and that currently 51-62% of the fauna is known. Of the most diverse groups, those that are least known, in terms of percent of the Canadian fauna that is documented, are Acari (31%), Thysanoptera (37%), Hymenoptera (46%), and Diptera (32-65%). All groups but Pauropoda have DNA barcodes based on Canadian material. More than 75,600 Barcode Index Numbers have been assigned to Canadian terrestrial arthropods, 63.5% of which are Diptera and Hymenoptera. Much work remains before the Canadian fauna is fully documented, and this will require decades to achieve. In particular, greater and more strategic investment in surveys and taxonomy (including DNA barcoding) is needed to adequately document the fauna.
Collapse
Affiliation(s)
- David W. Langor
- Natural Resources Canada, Canadian Forest Service, 5320 – 122 St. NW, Edmonton, Alberta, T6H 3S5, CanadaNatural Resources Canada, Canadian Forest ServiceEdmontonCanada
| |
Collapse
|
40
|
Kim J, Jung S. COI barcoding of plant bugs (Insecta: Hemiptera: Miridae). PeerJ 2018; 6:e6070. [PMID: 30533322 PMCID: PMC6284446 DOI: 10.7717/peerj.6070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/06/2018] [Indexed: 11/20/2022] Open
Abstract
The family Miridae is the most diverse and one of the most economically important groups in Heteroptera. However, identification of mirid species on the basis of morphology is difficult and time-consuming. In the present study, we evaluated the effectiveness of COI barcoding for 123 species of plant bugs in seven subfamilies. With the exception of three Apolygus species-A. lucorum, A. spinolae, and A. watajii (subfamily Mirinae)-each of the investigated species possessed a unique COI sequence. The average minimum interspecific genetic distance of congeners was approximately 37 times higher than the average maximum intraspecific genetic distance, indicating a significant barcoding gap. Despite having distinct morphological characters, A. lucorum, A. spinolae, and A. watajii mixed and clustered together, suggesting taxonomic revision. Our findings indicate that COI barcoding represents a valuable identification tool for Miridae and can be economically viable in a variety of scientific research fields.
Collapse
Affiliation(s)
- Junggon Kim
- Laboratory of Systematic Entomology, Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Korea
| | - Sunghoon Jung
- Laboratory of Systematic Entomology, Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Korea
| |
Collapse
|
41
|
Podmore C, Hogg ID, Drayton GM, Barratt BIP, Scott IAW, Foottit RG, Teulon DAJ, Bulman SR. Study of COI sequences from endemic New Zealand aphids highlights high mitochondrial DNA diversity in Rhopalosiphina (Hemiptera: Aphididae). NEW ZEALAND JOURNAL OF ZOOLOGY 2018. [DOI: 10.1080/03014223.2018.1510843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Colleen Podmore
- Analytica Laboratories, Ruakura Research Centre, Hamilton, New Zealand
- Environmental Research Institute, School of Science, University of Waikato, New Zealand
| | - Ian D. Hogg
- Environmental Research Institute, School of Science, University of Waikato, New Zealand
- Polar Knowledge Canada, Canadian High Arctic Research Station, Cambridge Bay, Nunavut, Canada
| | | | - Barbara I. P. Barratt
- AgResearch Invermay Agricultural Centre, Mosgiel, New Zealand
- Better Border Biosecurity (B3), Lincoln, New Zealand
| | - Ian A. W. Scott
- New Zealand Institute for Plant & Food Research Ltd, Christchurch, New Zealand
| | - Robert G. Foottit
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre and Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, Canada
| | - David A. J. Teulon
- New Zealand Institute for Plant & Food Research Ltd, Christchurch, New Zealand
- Better Border Biosecurity (B3), Lincoln, New Zealand
| | - Simon R. Bulman
- New Zealand Institute for Plant & Food Research Ltd, Christchurch, New Zealand
- Better Border Biosecurity (B3), Lincoln, New Zealand
| |
Collapse
|
42
|
Kanturski M, Lee Y, Choi J, Lee S. DNA barcoding and a precise morphological comparison revealed a cryptic species in the Nippolachnus piri complex (Hemiptera: Aphididae: Lachninae). Sci Rep 2018; 8:8998. [PMID: 29899412 PMCID: PMC5997986 DOI: 10.1038/s41598-018-27218-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/27/2018] [Indexed: 12/18/2022] Open
Abstract
Nippolachnus is a small Palaearctic-Oriental genus of very characteristic aphids that live on the leaves of woody Rosaceae. One species, N. piri, has hitherto been regarded to be widely distributed and relatively polyphagous. Members of this genus are considered to be easy to recognize due to the absence of the ocular tubercle and triommatidia on the head. We conducted research on the morphology and generic characters of Nippolachnus piri complex using scanning electron microscopy (for the first time) and DNA barcoding. We analyzed N. piri populations on Pyrus and other plants (Eriobotrya, Rhaphiolepis and Sorbus) in Japan and the Republic of Korea. Specifically, a high genetic divergence value was found between the N. piri populations associated with different host plants. SEM investigation of the head capsule revealed that a triommatidium is present under the compound eye, despite their lack of an ocular tubercle. We propose Nippolachnus micromeli Shinji, 1924 stat. nov. as a cryptic species in the N. piri complex based on a morphological comparison, DNA barcoding and different host-plant associations. Illustrations and descriptions of studied species are given. Morphological keys to the apterae and alatae of all known species of the genus Nippolachnus are also provided.
Collapse
Affiliation(s)
- Mariusz Kanturski
- Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Yerim Lee
- Laboratory of Insect Biosystematics, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinyeong Choi
- Laboratory of Insect Biosystematics, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seunghwan Lee
- Laboratory of Insect Biosystematics, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
43
|
Lee Y, Lee S. A review of the genus Takecallis Mastumura in Korea with the description of a new species (Hemiptera, Aphididae). Zookeys 2018:131-149. [PMID: 29674918 PMCID: PMC5904397 DOI: 10.3897/zookeys.748.23140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 11/12/2022] Open
Abstract
The aphid genus, Takecallis Mastumura, 1917, was reviewed from Korea. Four species, T.alba Y. Lee, sp. n., T.arundicolens (Clarke), T.arundinariae (Essig), and T.taiwana (Takahashi), are recognized in Korea and morphological and molecular evidence are presented. Species descriptions and illustrations are given for the four species. A key to Korean species and the results of COI sequence analyses are also provided.
Collapse
Affiliation(s)
- Yerim Lee
- Laboratory of Insect Biosystematics, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seunghwan Lee
- Laboratory of Insect Biosystematics, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
44
|
Molecular phylogeny of Macrosiphini (Hemiptera: Aphididae): An evolutionary hypothesis for the Pterocomma-group habitat adaptation. Mol Phylogenet Evol 2018; 121:12-22. [DOI: 10.1016/j.ympev.2017.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 10/25/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
|
45
|
LeVan KE, Barney SK, Rankin EEW. Introduced ants reduce interaction diversity in a multi-species, ant-aphid mutualism. OIKOS 2018. [DOI: 10.1111/oik.05043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katherine E. LeVan
- Div. of Biological Sciences, Section of Ecology, Behavior and Evolution; Univ. of California; San Diego La Jolla, CA USA
- National Ecological Observatory Network; 1685 38th Street no. 100 Boulder CO 80301 USA
| | | | | |
Collapse
|
46
|
Gibson DJ, Adamowicz SJ, Jacobs SR, Smith MA. Host Specificity in Subarctic Aphids. ENVIRONMENTAL ENTOMOLOGY 2018; 47:77-86. [PMID: 29186477 DOI: 10.1093/ee/nvx176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plants and herbivorous (or parasitic) insects form the majority of macroscopic life. The specificity of interaction between host plant and parasitic insect depends on the adaptations of both the host and the parasite. Over time, these interactions evolve and change as a result of an 'arms race' between host and parasite, and the resulting species-specific adaptations may be maintained, perpetuating these interactions across speciation events. This can lead to specialisation between species or clades. With speciation and species sorting over time, complex interactions evolve. Here, we elucidate a three-tier method to test these interactions using the aphids (Hemiptera: Aphididae) and plants of Churchill (Manitoba, Canada) as a model system. We analyzed these interactions by testing for three patterns in host specificity: monophagy, phylogenetic clustering, and cophylogeny. We defined monophagy strictly as one species feeding exclusively upon a single host plant species (an association likely driven by arms races in morphology, chemical resistance/tolerance, and visual appearance) and observed this in 7 of 22 aphid species. In all the remaining 'polyphagous' cases, there was a strong trend toward monophagy (80% of individuals were found on a single host plant species). Second, we observed two separate examples of phylogenetic clustering where groups of closely related aphid species fed upon individual plant species. Finally, we found no support for cophylogenetic relationships where both aphids and plants cospeciate to form congruent phylogenetic trees (evidence of coadaptation through an ongoing arms race). One explanation for uncovering species-specific interactions in a recently deglaciated, subarctic locality is that the species involved in the associations moved north together. Testing different levels of specificity in the most predominant species-species interactions on the planet will allow us to elucidate these patterns accurately and gives us insight into where to direct future research.
Collapse
Affiliation(s)
- Daniel J Gibson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Churchill Northern Studies Centre, Manitoba, Canada
| | - Sarah J Adamowicz
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Shoshanah R Jacobs
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - M Alex Smith
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
47
|
Chen N, Bai Y, Fan YL, Liu TX. Solid-phase microextraction-based cuticular hydrocarbon profiling for intraspecific delimitation in Acyrthosiphon pisum. PLoS One 2017; 12:e0184243. [PMID: 28859151 PMCID: PMC5578635 DOI: 10.1371/journal.pone.0184243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/21/2017] [Indexed: 01/26/2023] Open
Abstract
Insect cuticular hydrocarbons (CHCs) play critical roles in reducing water loss and chemical communication. Species-specific CHC profiles have been used increasingly as an excellent character for species classification. However, considerably less is known about their potential for population delimitation within species. The aims of this study were to develop a solid-phase microextraction (SPME)-based CHC collection method and to investigate whether CHC profiles could serve as potential chemotaxonomic tools for intraspecific delimitation in Acyrthosiphon pisum. Optimization of fibers for SPME sampling revealed that 7 μm polydimethylsiloxane (PDMS) demonstrated the most efficient adsorption of CHCs among five different tested fibers. SPME sampling showed good reproducibility with repeated collections of CHCs from a single aphid. Validation of SPME was performed by comparing CHC profiles with those from conventional hexane extractions. The two methods showed no qualitative differences in CHCs, although SPME appeared to extract relatively fewer short-chained CHCs. While CHC profiles of a given population differed among developmental stages, wing dimorphism types, and host plants, wingless adult aphids showed very low variance in relative proportions of individual CHC components. Reproducibility of CHC profiles was explored further to classify wingless adult morphs of A. pisum from five different geographic regions that showed no variation in mitochondrial COI gene sequences. Our results demonstrate that CHC profiles are useful in intraspecific delimitation in the field of insect chemotaxonomy.
Collapse
Affiliation(s)
- Nan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (YLF); (TXL)
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (YLF); (TXL)
| |
Collapse
|
48
|
Wang J, Zhang L, Zhang QL, Zhou MQ, Wang XT, Yang XZ, Yuan ML. Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding markers. PeerJ 2017; 5:e3661. [PMID: 28791201 PMCID: PMC5545108 DOI: 10.7717/peerj.3661] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/17/2017] [Indexed: 12/31/2022] Open
Abstract
The family Miridae is one of the most species-rich families of insects. To better understand the diversity and evolution of mirids, we determined the mitogenome of Lygus pratenszs and re-sequenced the mitogenomes of four mirids (i.e., Apolygus lucorum, Adelphocoris suturalis, Ade. fasciaticollis and Ade. lineolatus). We performed a comparative analysis for 15 mitogenomic sequences representing 11 species of five genera within Miridae and evaluated the potential of these mitochondrial genes as molecular markers. Our results showed that the general mitogenomic features (gene content, gene arrangement, base composition and codon usage) were well conserved among these mirids. Four protein-coding genes (PCGs) (cox1, cox3, nad1 and nad3) had no length variability, where nad5 showed the largest size variation; no intraspecific length variation was found in PCGs. Two PCGs (nad4 and nad5) showed relatively high substitution rates at the nucleotide and amino acid levels, where cox1 had the lowest substitution rate. The Ka/Ks values for all PCGs were far lower than 1 (<0.59), but the Ka/Ks values of cox1-barcode sequences were always larger than 1 (1.34 -15.20), indicating that the 658 bp sequences of cox1 may be not the appropriate marker due to positive selection or selection relaxation. Phylogenetic analyses based on two concatenated mitogenomic datasets consistently supported the relationship of Nesidiocoris + (Trigonotylus + (Adelphocoris + (Apolygus + Lygus))), as revealed by nad4, nad5, rrnL and the combined 22 transfer RNA genes (tRNAs), respectively. Taken sequence length, substitution rate and phylogenetic signal together, the individual genes (nad4, nad5 and rrnL) and the combined 22 tRNAs could been used as potential molecular markers for Miridae at various taxonomic levels. Our results suggest that it is essential to evaluate and select suitable markers for different taxa groups when performing phylogenetic, population genetic and species identification studies.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| | - Li Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| | - Qi-Lin Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| | - Min-Qiang Zhou
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiao-Tong Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| | - Xing-Zhuo Yang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
49
|
Wongsa K, Duangphakdee O, Rattanawannee A. Genetic Structure of the Aphis craccivora (Hemiptera: Aphididae) From Thailand Inferred From Mitochondrial COI Gene Sequence. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3966736. [PMID: 28973491 PMCID: PMC5510963 DOI: 10.1093/jisesa/iex058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 06/07/2023]
Abstract
The cowpea aphid, Aphis craccivora Koch (Hemiptera: Aphididae), is one of the most destructive insect pests of legume plants worldwide. Although outbreaks of this pest occur annually in Thailand causing heavy damage, its genetic structure and demographic history are poorly understood. In order to determine genetic structure and genetic relationship of the geographic populations of this species, we examined sequences of mitochondrial cytochrome c oxidase subunit I (COI) gene of 51 individuals collected from 32 localities throughout Thailand. Within the sequences of these geographic populations, 32 polymorphic sites defined 17 haplotypes, ranging in sequence divergence from 0.2% (1 nucleotide) to 2.7% (16 nucleotides). A relatively high haplotype diversity but low nucleotide diversity was detected in the populations of A. craccivora, a finding that is typical for migratory species. Phylogenetic analysis revealed a weak phylogeographic structuring among the geographic populations and among the haplotypes, indicating their close relationship. Considering the distance between the sampling sites, the occurrence of identical haplotypes over wide areas is noteworthy. Moreover, the low genetic distance (FST ranging from -0.0460 to 0.3263) and high rate of per-generation female migration (Nm ranging from 1.0323 to 20.3333) suggested population exchange and gene flow between the A. craccivora populations in Thailand.
Collapse
Affiliation(s)
- Kanyanat Wongsa
- Department of Entomology, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok 10900, Thailand (; )
| | - Orawan Duangphakdee
- King Mongkut’s University of Technology Thonburi, Ratchaburi Campus, 126, Bangmod, Thung Khru, Bangkok 10140, Thailand ()
| | - Atsalek Rattanawannee
- Department of Entomology, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok 10900, Thailand (; )
| |
Collapse
|
50
|
Lee Y, Lee W, Kanturski M, Foottit RG, Akimoto SI, Lee S. Cryptic diversity of the subfamily Calaphidinae (Hemiptera: Aphididae) revealed by comprehensive DNA barcoding. PLoS One 2017; 12:e0176582. [PMID: 28448639 PMCID: PMC5407777 DOI: 10.1371/journal.pone.0176582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022] Open
Abstract
Aphids are a species rich group comprising many important pests. However, species identification can be very difficult for aphids due to their morphological ambiguity. DNA barcoding has been widely adopted for rapid and reliable species identification as well as cryptic species detection. In this study, we investigated cryptic diversity in the subfamily Calaphidinae (Hemiptera: Aphididae) based on 899 sequences of cytochrome c oxidase I (COI) for 115 morphospecies (78 species collected in this study and sequences of 73 species downloaded from Genbank). Among these 115 morphospecies, DNA barcoding results of 90 (78.3%) species were identical to results of morphological identification. However, 25 (21.7%) morphospecies showed discrepancies between DNA barcoding and traditional taxonomy. Among these 25 discordances, a total of 15 cryptic species were identified from 12 morphospecies. We also found three morphologically distinct species pairs that sharing DNA barcoding. Based on molecular operational taxonomic unit (MOTU) estimation, we discussed on species delimitation threshold value for these taxa. Our findings confirm that Calaphidinae has high cryptic diversity even though aphids are relatively well-studied.
Collapse
Affiliation(s)
- Yerim Lee
- Laboratory of Insect Biosystematics, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wonhoon Lee
- Department of Plant Medicine and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Korea
| | - Mariusz Kanturski
- Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa, Katowice, Poland
| | - Robert G. Foottit
- Invertebrate Biodiversity, National Environmental Health Program, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Shin-Ichi Akimoto
- Laboratory of Systematic Entomology, Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Seunghwan Lee
- Laboratory of Insect Biosystematics, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|