1
|
Meirmans PG. Correcting for Replicated Genotypes May Introduce More Problems Than it Solves. Mol Ecol Resour 2024:e14041. [PMID: 39465502 DOI: 10.1111/1755-0998.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Across the tree of life, many organisms are able to reproduce clonally, via vegetative spread, budding or parthenogenesis. In population genetic analyses of clonally reproducing organisms, it is common practice to retain only a single representative per multilocus genotype. Though this practice of clone correction is widespread, the theoretical justification behind it has been very little studied. Here, I use individual-based simulations to study the effect of clone correction on the estimation of the genetic summary statistics HO, HS, FIS, FST, F''ST and Dest. The simulations follow the standard finite island model, consisting of a set of populations connected by gene flow, but with a variable rate of sexual versus asexual reproduction. The results of the simulations show that by itself, the inclusion of replicated genotypes does not lead to a deviation in the values of the summary statistics, except when the rate of sexual reproduction is less than about one in thousand. However, clone correction can introduce a strong deviation in the values of most of the statistics, when compared to a scenario of full sexual reproduction. For HS and FIS, this deviation can be informative about the process of asexual reproduction, but for FST, F''ST and Dest, clone correction can lead to incorrect conclusions. I therefore argue that clone correction is not strictly necessary, but can in some cases be insightful. However, when clone correction is applied, it is imperative that results for both the corrected and uncorrected data are presented.
Collapse
Affiliation(s)
- Patrick G Meirmans
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
2
|
Zhou Y, Wang Q, Wang Q, Yan Y, Li G, Wu G, Yang N, Wen C. Pedigree reconstruction based on genotype data in chickens. Poult Sci 2024; 103:104327. [PMID: 39357237 PMCID: PMC11474194 DOI: 10.1016/j.psj.2024.104327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
A reliable pedigree serves as the backbone of genetic evolution in domesticated animals, providing guidance for daily management and breeding strategies. However, in commercial chicken breeding, pedigree errors and omissions are common. The large-scale application of genomic selection provides an opportunity to reconstruct chicken pedigrees using SNP markers. Here, to reconstruct pedigrees in chickens, we detected high-quality SNPs from 2866 parent-offspring pairs and calculated their genomic relationship and identity by descent (IBD). The results showed that the IBD values for parent-offspring pairs ranged from 0.48 to 0.58, clearly distinguishing them from nonparent-offspring pairs and demonstrating robustness in parentage assignment. In contrast, the genomic relatedness coefficients varied from 0.32 to 0.65. The accuracy of pedigree reconstruction significantly improved as the SNP number and minor allele frequency (MAF) increased. When the number of SNPs exceeded 200, better inference power was exhibited with IBD than with genomic relatedness. Upon reaching an effective SNP quantity of 350, despite a MAF of 0.01, the accuracy of the pedigrees inferred reached a remarkable level of 99%. Furthermore, with a doubled SNP quantity of 700 and a MAF of 0.05, the accuracy increased to a perfect 100%. This study demonstrated the feasibility of accurately constructing pedigrees in chickens using low-density SNP markers and emphasized the importance of considering the number and MAFs of these markers to achieve optimal outcomes. The adoption of the IBD as a suitable metric for pedigree inference is promising for improving the efficiency and accuracy of genetic breeding programs. These findings are paramount for the development of cost-effective yet accurate parentage verification systems.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qunpu Wang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiulian Wang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yiyuan Yan
- Beijing Engineering Research Center of Layer, Beijing, 101206, China
| | - Guangqi Li
- Beijing Engineering Research Center of Layer, Beijing, 101206, China
| | - Guiqin Wu
- Beijing Engineering Research Center of Layer, Beijing, 101206, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Hainan, 572025, China.
| |
Collapse
|
3
|
Noh ES, Shin EH, Kong HJ, Kim YO, Ryu YW. Developing a Microsatellite Polymerase Chain Reaction System for Small Yellow Croaker ( Larimichthys polyactis) and Its Application in Parentage Assignment. BIOLOGY 2024; 13:710. [PMID: 39336137 PMCID: PMC11428518 DOI: 10.3390/biology13090710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
(1) Background: The small yellow croaker, an economically important fish in East Asia, has been subjected to population declines due to overfishing and environmental pressures. The development of effective breeding programs is considered crucial for the species, and accurate parentage assignment is deemed essential for such programs. (2) Methods: The assembled reference genome of the small yellow croaker was utilized to select highly polymorphic microsatellite markers. A multiplex PCR system was optimized for the simultaneous amplification of these markers. The system's accuracy was validated using controlled mating pairs and subsequently applied to a group mating scenario. (3) Results: The developed multiplex PCR system demonstrated high accuracy in assigning offspring to their parents in both the controlled and group mating scenarios. (4) Conclusions: The system is presented as a valuable tool for pedigree management, selective breeding, and conservation efforts for the small yellow croaker, facilitating sustainable aquaculture practices and genetic improvement.
Collapse
Affiliation(s)
- Eun-Soo Noh
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Eun-Ha Shin
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Hee-Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Yong-Woon Ryu
- Subtropical Fisheries Research Institute, National Institute of Fisheries Science, Jeju 63610, Republic of Korea
| |
Collapse
|
4
|
Roche J, Griot R, Allal F, Besson M, Haffray P, Patrice P, Phocas F, Vandeputte M. APIS: an updated parentage assignment software managing triploids induced from diploid parents. G3 (BETHESDA, MD.) 2024; 14:jkae143. [PMID: 38954534 PMCID: PMC11304945 DOI: 10.1093/g3journal/jkae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
In aquaculture, sterile triploids are commonly used for production as sterility gives them potential gains in growth, yields, and quality. However, they cannot be reproduced, and DNA parentage assignment to their diploid or tetraploid parents is required to estimate breeding values for triploid phenotypes. No publicly available software has the ability to assign triploids to their parents. Here, we updated the R package APIS to support triploids induced from diploid parents. First, we created new exclusion and likelihood tables that account for the double allelic contribution of the dam and the recombination that can occur during female meiosis. As the effective recombination rate of each marker with the centromere is usually unknown, we set it at 0.5 and found that this value maximizes the assignment rate even for markers with high or low recombination rates. The number of markers needed for a high true assignment rate did not strongly depend on the proportion of missing parental genotypes. The assignment power was however affected by the quality of the markers (minor allele frequency, call rate). Altogether, 96-192 SNPs were required to have a high parentage assignment rate in a real rainbow trout dataset of 1,232 triploid progenies from 288 parents. The likelihood approach was more efficient than exclusion when the power of the marker set was limiting. When more markers were used, exclusion was more advantageous, with sensitivity reaching unity, very low false discovery rate (<0.01), and excellent specificity (0.96-0.99). Thus, APIS provides an efficient solution to assign triploids to their diploid parents.
Collapse
Affiliation(s)
- Julien Roche
- SYSAAF (French Poultry and Aquaculture Breeders Technical Centre), 35042 Rennes, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Ronan Griot
- SYSAAF (French Poultry and Aquaculture Breeders Technical Centre), 35042 Rennes, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250 Palavas-les-Flots, France
| | - François Allal
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250 Palavas-les-Flots, France
| | - Mathieu Besson
- SYSAAF (French Poultry and Aquaculture Breeders Technical Centre), 35042 Rennes, France
| | - Pierrick Haffray
- SYSAAF (French Poultry and Aquaculture Breeders Technical Centre), 35042 Rennes, France
| | - Pierre Patrice
- SYSAAF (French Poultry and Aquaculture Breeders Technical Centre), 35042 Rennes, France
| | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Marc Vandeputte
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, 34250 Palavas-les-Flots, France
| |
Collapse
|
5
|
Derbala MK, Sargious MAN, Hagag NM, Pycock JF, Abu-Seida AM. A case of a twin surviving to term following the abortion of its co-twin at 9 months in an Arabian mare. J Equine Vet Sci 2024; 139:105132. [PMID: 38897332 DOI: 10.1016/j.jevs.2024.105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Twin pregnancy in mares is one of the leading causes of abortions. Abortion invariably impacts both fetuses. This report describes an unusual case of a twin surviving to term following the abortion of its co-twin at 9 months in a 7-year-old Egyptian Arabian mare. At the time of abortion at 9 months of gestation, the size of the aborted fetus was equivalent to one of approximately 5 months of age while the age of the live co-twin was 9 months. Both fetuses were males. A skin sample was collected from the aborted fetus and hair samples were collected from the dam, sire and live foal for parentage analysis. The parentage analysis confirmed that both fetuses were by the same dam and sire stallion. The authors suggest several scenarios to explain this condition. This report describes a unique case of a twin surviving to term following the abortion of its co-twin at 9 months in a mare.
Collapse
Affiliation(s)
- M K Derbala
- Animal Reproduction Research Institute, Diagnostic Imaging and Endoscopy Unit, ARC, Giza, Egypt
| | - M A N Sargious
- Animal Health Research Institute, Genome Research Unit, ARC, Giza, Egypt
| | - N M Hagag
- Animal Health Research Institute, Genome Research Unit, ARC, Giza, Egypt
| | - J F Pycock
- Diplomate in Equine Stud Medicine, Messenger Farm, United Kingdom
| | - A M Abu-Seida
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, PO: 12211, Egypt..
| |
Collapse
|
6
|
Lin Y, Xiang Y, Wei S, Zhang Q, Liu Y, Zhang Z, Tang S. Genetic diversity and population structure of an insect-pollinated and bird-dispersed dioecious tree Magnolia kwangsiensis in a fragmented karst forest landscape. Ecol Evol 2024; 14:e70094. [PMID: 39091326 PMCID: PMC11291554 DOI: 10.1002/ece3.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
This study combined population genetics and parentage analysis to obtain foundational data for the conservation of Magnolia kwangsiensis. M. kwangsiensis is a Class I tree species that occurs in two disjunct regions in a biodiversity hotspot in southwest China. We assessed the genetic diversity and structure of this species across its distribution range to support its conservation management. Genetic diversity and population structure of 529 individuals sampled from 14 populations were investigated using seven nuclear simple sequence repeat (nSSR) markers and three chloroplast DNA (cpDNA) fragments. Parentage analysis was used to evaluate the pollen and seed dispersal distances. The nSSR marker analysis revealed a high genetic diversity in M. kwangsiensis, with an average observed (Ho) and expected heterozygosities (He) of 0.726 and 0.687, respectively. The mean and maximum pollen and seed dispersal distances were 66.4 and 95.7 m and 535.4 and 553.8 m, respectively. Our data revealed two distinct genetic groups, consistent with the disjunct geographical distribution of the M. kwangsiensis populations. Both pollen and seed dispersal movements help maintain genetic connectivity among M. kwangsiensis populations, contributing to high levels of genetic diversity. Both genetically differentiated groups corresponding to the two disjunct regions should be recognized as separate conservation units.
Collapse
Affiliation(s)
- Yanfang Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of EducationGuangxi Normal UniversityGuilinChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinChina
- Wuzhou No. 18 Middle SchoolWuzhouChina
| | - Yingying Xiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of EducationGuangxi Normal UniversityGuilinChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinChina
| | - Sujian Wei
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of EducationGuangxi Normal UniversityGuilinChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinChina
| | - Qiwei Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of EducationGuangxi Normal UniversityGuilinChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinChina
| | - Yanhua Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of EducationGuangxi Normal UniversityGuilinChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinChina
| | - Zhiyong Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of EducationGuangxi Normal UniversityGuilinChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinChina
| | - Shaoqing Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of EducationGuangxi Normal UniversityGuilinChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinChina
| |
Collapse
|
7
|
Scott AM, Banes GL, Setiadi W, Saragih JR, Susanto TW, Mitra Setia T, Knott CD. Flanged males have higher reproductive success in a completely wild orangutan population. PLoS One 2024; 19:e0296688. [PMID: 38335166 PMCID: PMC10857694 DOI: 10.1371/journal.pone.0296688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/17/2023] [Indexed: 02/12/2024] Open
Abstract
Male orangutans (Pongo spp.) exhibit bimaturism, an alternative reproductive tactic, with flanged and unflanged males displaying two distinct morphological and behavioral phenotypes. Flanged males are larger than unflanged males and display secondary sexual characteristics which unflanged males lack. The evolutionary explanation for alternative reproductive tactics in orangutans remains unclear because orangutan paternity studies to date have been from sites with ex-captive orangutans, provisioning via feeding stations and veterinary care, or that lack data on the identity of mothers. Here we demonstrate, using the first long-term paternity data from a site free of these limitations, that alternative reproductive tactics in orangutans are condition-dependent, not frequency-dependent. We found higher reproductive success by flanged males than by unflanged males, a pattern consistent with other Bornean orangutan (Pongo pygmaeus) paternity studies. Previous paternity studies disagree on the degree of male reproductive skew, but we found low reproductive skew among flanged males. We compare our findings and previous paternity studies from both Bornean and Sumatran orangutans (Pongo abelii) to understand why these differences exist, examining the possible roles of species differences, ecology, and human intervention. Additionally, we use long-term behavioral data to demonstrate that while flanged males can displace unflanged males in association with females, flanged males are unable to keep other males from associating with a female, and thus they are unable to completely mate guard females. Our results demonstrate that alternative reproductive tactics in Bornean orangutans are condition-dependent, supporting the understanding that the flanged male morph is indicative of good condition. Despite intense male-male competition and direct sexual coercion by males, female mate choice is effective in determining reproductive outcomes in this population of wild orangutans.
Collapse
Affiliation(s)
- Amy M. Scott
- Department of Anthropology, Boston University, Boston, Massachusetts, United States of America
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Graham L. Banes
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- The Orang-Utan Conservation Genetics Project, Madison, Wisconsin, United States of America
| | - Wuryantari Setiadi
- Eijkman Research Center for Molecular Biology, National Agency for Research and Innovation (BRIN), The Science and Technology Center of Soekarno, Cibinong, West Java, Indonesia
| | - Jessica R. Saragih
- Eijkman Research Center for Molecular Biology, National Agency for Research and Innovation (BRIN), The Science and Technology Center of Soekarno, Cibinong, West Java, Indonesia
| | - Tri Wahyu Susanto
- Departemen of Biology, Faculty of Biology and Agricultural, Universitas Nasional, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta, Indonesia
| | - Tatang Mitra Setia
- Departemen of Biology, Faculty of Biology and Agricultural, Universitas Nasional, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta, Indonesia
| | - Cheryl D. Knott
- Department of Anthropology, Boston University, Boston, Massachusetts, United States of America
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Xia L, Shi M, Li H, Zhang W, Cheng Y, Xia XQ. PMSeeker: A Scheme Based on the Greedy Algorithm and the Exhaustive Algorithm to Screen Low-Redundancy Marker Sets for Large-Scale Parentage Assignment with Full Parental Genotyping. BIOLOGY 2024; 13:100. [PMID: 38392318 PMCID: PMC10886308 DOI: 10.3390/biology13020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
Parentage assignment is a genetic test that utilizes genetic characteristics, such as molecular markers, to identify the parental relationships within populations, which, in commercial fish farming, are almost always large and where full information on potential parents is known. To accurately find the true parents, the genotypes of all loci in the parentage marker set (PMS) are required for each individual being tested. With the same accuracy, a PMS containing a smaller number of markers will undoubtedly save experimental costs. Thus, this study established a scheme to screen low-redundancy PMSs using the exhaustive algorithm and greedy algorithm. When screening PMSs, the greedy algorithm selects markers based on the parental dispersity index (PDI), a uniquely defined metric that outperforms the probability of exclusion (PE). With the conjunctive use of the two algorithms, non-redundant PMSs were found for more than 99.7% of solvable cases in three groups of random sample experiments in this study. Then, a low-redundancy PMS can be composed using two or more of these non-redundant PMSs. This scheme effectively reduces the number of markers in PMSs, thus conserving human and experimental resources and laying the groundwork for the widespread implementation of parentage assignment technology in economic species breeding.
Collapse
Affiliation(s)
- Lei Xia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mijuan Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanting Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yingyin Cheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qin Xia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Mao ML, Luo T, Li W, Xiao N, Deng HQ, Zhou J. Isolation and characterisation of 17 microsatellite DNA loci from RAD reduced-representation genomes for Asian warty newts, genus Paramesotriton (Caudata: Salamandridae). Biodivers Data J 2024; 12:e113979. [PMID: 38348181 PMCID: PMC10859859 DOI: 10.3897/bdj.12.e113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
Asian warty newts, genus Paramesotriton, are endemic to southern China and northern Vietnam. Despite the achievements in biodiversity, molecular systematics and biogeography of species in this genus, population genetic diversity studies are lacking due to the lack of economical and available genetic markers. In this study, we developed 17 highly polymorphic microsatellite loci from RAD simplified genomic data for the Asian warty newts, genus Paramesotriton and successfully completed cross-species amplification tests on 20 samples of four species of Paramesotriton. These microsatellite markers can be used as important tools to study population genetic structure, levels of gene flow, population differentiation, mating systems and landscape genetics within the genus Paramesotriton and, thus, to make scientific conservation decisions and actions for the conservation of these rare and endangered amphibians.
Collapse
Affiliation(s)
- Ming-Le Mao
- School of Karst Science, Guizhou Normal University, Guiyang, ChinaSchool of Karst Science, Guizhou Normal UniversityGuiyangChina
| | - Tao Luo
- School of Life Sciences, Guizhou Normal University, Guiyang, ChinaSchool of Life Sciences, Guizhou Normal UniversityGuiyangChina
| | - Wei Li
- School of Life Sciences, Guizhou Normal University, Guiyang, ChinaSchool of Life Sciences, Guizhou Normal UniversityGuiyangChina
| | - Ning Xiao
- Guiyang Healthcare Vocational University, Guiyang, ChinaGuiyang Healthcare Vocational UniversityGuiyangChina
| | - Huai-Qing Deng
- School of Life Sciences, Guizhou Normal University, Guiyang, ChinaSchool of Life Sciences, Guizhou Normal UniversityGuiyangChina
| | - Jiang Zhou
- School of Karst Science, Guizhou Normal University, Guiyang, ChinaSchool of Karst Science, Guizhou Normal UniversityGuiyangChina
| |
Collapse
|
10
|
Wang J, Bourke AFG. Parentage exclusion of close relatives in haplodiploid species. Theor Popul Biol 2023; 154:40-50. [PMID: 37640113 DOI: 10.1016/j.tpb.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Parentage exclusion probability is usually calculated to evaluate the informativeness of a set of markers for, and the statistical power of, a parentage analysis. Equations for parentage exclusion probability have been derived in various scenarios such as paternity exclusion when maternity is known or unknown or when candidate males are unrelated or loosely related (being from the same subpopulation) to the father. All previous work assumes a diploid species. Although marker-based parentage analyses have been conducted in haploidiploid species (such as ants, bees and wasps) for diploid offspring at the individual level or haploid offspring at the class level, rigorously derived formulations of parentage exclusion probability for haploid offspring at the individual level are lacking, which prevents the precise evaluation of the informativeness for and the statistical power of a parentage analysis. In this study we derive equations for the exclusion probability of maternity of a haploid male when multiple mother candidates (workers or queens) are unrelated or fullsibs to the mother. The usefulness of the equations is exemplified by numerical examples, and the results are discussed in the context of the study of worker reproductivity in eusocial haplodiploid species. The results are especially valuable for an optimal experimental design in determining sampling intensities (e.g. number of markers and number of individuals) to achieve satisfactory statistical power of a parentage analysis in investigating workers' reproductivity in eusocial haplodiploid species.
Collapse
Affiliation(s)
- Jinliang Wang
- Institute of Zoology, Zoological Society of London, London NW1 4RY, United Kingdom.
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
11
|
Ludwig S, Pimentel JDSM, Cardoso Resende L, Kalapothakis E. Eco-evolutionary factors that influence its demographic oscillations in Prochilodus costatus (Actinopterygii: Characiformes) populations evidenced through a genetic spatial-temporal evaluation. Evol Appl 2023; 16:895-910. [PMID: 37124086 PMCID: PMC10130561 DOI: 10.1111/eva.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 05/02/2023] Open
Abstract
The human activity impact on wild animal populations is indicated by eco-evolutionary and demographic processes, along with their survival and capacity to evolve; consequently, such data can contribute toward enhancing genetic-based conservation programs. In this context, knowledge on the life-history and the eco-evolutionary processes is required to understand extant patterns of population structure in Prochilodus costatus a Neotropical migratory fish that has been threatened due to loss and fragmentation of its natural habitat since 1960s promoted by the expansion of hydroelectric power plant construction programs. This study evaluated the eco-evolutionary parameters that cause oscillations in the demography and structure of P. costatus populations. An integrated approach was used, including temporal and spatial sampling, next-generation sequencing of eight microsatellite loci, multivariate genetic analysis, and demographic life-history reconstruction. The results provided evidence of the complex interplay of ecological-evolutionary and human-interference events on the life history of this species in the upper basin. In particular, spawning wave behavior might have ecological triggers resulting in an overlapping of distinct genetic generations, and arising distinct migratory and nonmigratory genetic patterns living in the same area. An abrupt decrease in the effective population size of the P. costatus populations in the recent past (1960-80) was likely driven by environment fragmentation promoted by the construction of the Três Marias hydropower dam. The low allelic diversity that resulted from this event is still detected today; thus, active stocking programs are not effective at expanding the genetic diversity of this species in the river basin. Finally, this study highlights the importance of using mixed methods to understand spatial and temporal variation in genetic structure for effective mitigation and conservation programs for threatened species that are directly affected by human actions.
Collapse
Affiliation(s)
- Sandra Ludwig
- Departament of Genetics, Ecology and EvolutionFederal University of Minas GeraisBelo HorizonteBrazil
| | | | - Leonardo Cardoso Resende
- Departament of Genetics, Ecology and EvolutionFederal University of Minas GeraisBelo HorizonteBrazil
| | - Evanguedes Kalapothakis
- Departament of Genetics, Ecology and EvolutionFederal University of Minas GeraisBelo HorizonteBrazil
| |
Collapse
|
12
|
Belvedere S, Arnone S, Cristofaro M, La Marca A, De Biase A. Paternity Analyses for the Planning of SIT Projects against the Red Palm Weevil. INSECTS 2023; 14:326. [PMID: 37103141 PMCID: PMC10144754 DOI: 10.3390/insects14040326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The red palm weevil Rhynchophorus ferrugineus is an invasive pest from southeastern Asia and Melanesia that has spread widely across the Middle East and the Mediterranean Basin over the last 30 years. Its endophagous larvae cause huge amounts of damage to several palm tree species from the Arecaceae family. Many of these palms are economically important for agricultural and ornamental purposes. Therefore, a lot of attention has recently been focused on studying this species with the aim of identifying sustainable and effective eradication strategies. Sterile insect techniques are biological control strategies that are currently being investigated for their potential to eradicate this pest in selected invasion areas. Mating system features (e.g., polyandry and related features) can affect the success and suitability of these approaches. The main goal of this research was to assess the performance of a previously developed microsatellite panel in terms of the paternity assignment of progeny from laboratory mating experiments. Using a simulation approach, we evaluated the reliability of the microsatellite markers in the paternity tests both in complex laboratory experiment scenarios and on the progeny of wild-caught gravid females to help future studies on the RPW mating system. As a case study of the simulation results, we performed two double-mating experiments, genotyped the progeny and estimated the P2 values to compare to the expected progeny genotypes according to the crossing scheme of each experiment. The results of our simulations on laboratory experiments showed that it was possible to carry out paternity assignments for all progeny with reliable statistical confidence using our 13 microsatellites set. On the contrary the low genetic variability measured in red palm weevil populations in invaded areas made the resolution power of our loci too low to carry out paternity analyses on natural populations. Results of laboratory crossing were completely congruent with the expectations from the Mendelian laws.
Collapse
Affiliation(s)
- Silvia Belvedere
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Viale dell’Università 32, 00185 Rome, Italy;
| | - Silvia Arnone
- ENEA C.R. Casaccia TERIN-BBC-BIC, Via Anguillarese 301, 00123 Rome, Italy;
| | - Massimo Cristofaro
- BBCA-Onlus, Via Angelo Signorelli 105, 00123 Rome, Italy; (M.C.); (A.L.M.)
| | | | - Alessio De Biase
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Viale dell’Università 32, 00185 Rome, Italy;
| |
Collapse
|
13
|
Characterization of 25 new microsatellite markers for the green turtle (Chelonia mydas) and cross-species amplification in other marine turtle species. Mol Biol Rep 2023; 50:4145-4154. [PMID: 36877349 DOI: 10.1007/s11033-023-08341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/15/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND The green sea turtle, Chelonia mydas, is a migratory species with a strong natal homing behavior leading to a complex population structure worldwide. The species has suffered severe declines in local populations; it is therefore crucial to understand its population dynamics and genetic structure to adopt appropriate management policies. Here, we describe the development of 25 new microsatellite markers specific to C. mydas and suitable for these analyses. METHODS AND RESULTS They were tested on 107 specimens from French Polynesia. An average allelic diversity of 8 alleles per locus was reported and observed heterozygosity ranged from 0.187 to 0.860. Ten loci were significantly deviant from the Hardy-Weinberg equilibrium, and 16 loci showed a moderate to high level of linkage disequilibrium (4-22%). The overall Fis was positive (0.034, p-value < 0.001), and sibship analysis revealed 12 half- or full-sibling dyads, suggesting possible inbreeding in this population. Cross-amplification tests were performed on two other marine turtle species, Caretta caretta and Eretmochelys imbricata. All loci successfully amplified on these two species, though 1 to 5 loci were monomorphic. CONCLUSION These new markers will not only be relevant for further analyses on the population structure of the green turtle and the two other species, but they will also be invaluable for parentage studies, for which a high number of polymorphic loci are necessary. This can provide important insight into male reproductive behavior and migration, an aspect of sea turtle biology that is of critical importance for the conservation of the species.
Collapse
|
14
|
Depecker J, Verleysen L, Asimonyio JA, Hatangi Y, Kambale JL, Mwanga Mwanga I, Ebele T, Dhed'a B, Bawin Y, Staelens A, Stoffelen P, Ruttink T, Vandelook F, Honnay O. Genetic diversity and structure in wild Robusta coffee (Coffea canephora A. Froehner) populations in Yangambi (DR Congo) and their relation to forest disturbance. Heredity (Edinb) 2023; 130:145-153. [PMID: 36596880 PMCID: PMC9981769 DOI: 10.1038/s41437-022-00588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Degradation and regeneration of tropical forests can strongly affect gene flow in understorey species, resulting in genetic erosion and changes in genetic structure. Yet, these processes remain poorly studied in tropical Africa. Coffea canephora is an economically important species, found in the understorey of tropical rainforests of Central and West Africa, and the genetic diversity harboured in its wild populations is vital for sustainable coffee production worldwide. Here, we aimed to quantify genetic diversity, genetic structure, and pedigree relations in wild C. canephora populations, and we investigated associations between these descriptors and forest disturbance and regeneration. Therefore, we sampled 256 C. canephora individuals within 24 plots across three forest categories in Yangambi (DR Congo), and used genotyping-by-sequencing to identify 18,894 SNPs. Overall, we found high genetic diversity, and no evidence of genetic erosion in C. canephora in disturbed old-growth forest, as compared to undisturbed old-growth forest. In addition, an overall heterozygosity excess was found in all populations, which was expected for a self-incompatible species. Genetic structure was mainly a result of isolation-by-distance, reflecting geographical location, with low to moderate relatedness at finer scales. Populations in regrowth forest had lower allelic richness than populations in old-growth forest and were characterised by a lower inter-individual relatedness and a lack of isolation-by-distance, suggesting that they originated from different neighbouring populations and were subject to founder effects. Wild Robusta coffee populations in the study area still harbour high levels of genetic diversity, yet careful monitoring of their response to ongoing forest degradation remains required.
Collapse
Affiliation(s)
- Jonas Depecker
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium.
- Meise Botanic Garden, Meise, Belgium.
- KU Leuven Plant Institute, Leuven, Belgium.
| | - Lauren Verleysen
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium.
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium.
| | - Justin A Asimonyio
- Centre de Surveillance de la Biodiversité et Université de Kisangani, Kisangani, Democratic Republic of the Congo
| | - Yves Hatangi
- Meise Botanic Garden, Meise, Belgium
- Université de Kisangani, Kisangani, Democratic Republic of the Congo
| | - Jean-Léon Kambale
- Centre de Surveillance de la Biodiversité et Université de Kisangani, Kisangani, Democratic Republic of the Congo
| | - Ithe Mwanga Mwanga
- Centre de Recherche en Science Naturelles, Lwiro, Democratic Republic of the Congo
| | - Tshimi Ebele
- Institut National des Etudes et Recherches, Agronomique, Democratic Republic of the Congo
| | - Benoit Dhed'a
- Université de Kisangani, Kisangani, Democratic Republic of the Congo
| | - Yves Bawin
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Ariane Staelens
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | | | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | - Filip Vandelook
- Meise Botanic Garden, Meise, Belgium
- KU Leuven Plant Institute, Leuven, Belgium
| | - Olivier Honnay
- Division of Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Leuven, Belgium
| |
Collapse
|
15
|
Wąs-Barcz A, Bernaś R. Parentage-based tagging and parentage analyses of stocked sea trout in Vistula River commercial catches. J Appl Genet 2023; 64:341-350. [PMID: 36746881 PMCID: PMC10076402 DOI: 10.1007/s13353-023-00749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
The longest Baltic River, the Vistula, historically hosted numerous sea trout populations. However, dam construction in the twentieth century drastically reduced the spawning migration rate. Reduced natural reproduction has resulted in a population collapse and, consequentially, a substantial reduction in catches. In response, like other Baltic countries, Poland has initiated an intensive stocking program, mainly involving smolt. Initially, stocking was conducted primarily with offspring of sea trout caught during spawning migration. Currently, due to difficulties in obtaining fish, most stocking involves fish from breeding stocks. Therefore, determining the proportion of fish derived from stocking has become an important issue. Experiments based on traditional tagging did not provide sufficient material for analysis; hence, we decided to use genetic methods based on analysis of relatedness. In this study, we performed parentage-based tagging and an analysis of the origins of parent animals used for artificial spawning in 2013, and offspring returning to the Vistula in subsequent years. We based the analysis on three different algorithms and compared the results, showing that the presented methods were effective for estimating mass stocking success. The study also indicated that a certain level of natural reproduction in the Vistula continues to occur. The proportion of sea trout from spawning in 2013 in Vistula sea trout catches from 2017 to 2018 was approximately 30%.
Collapse
Affiliation(s)
- Anna Wąs-Barcz
- National Marine Fisheries Research Institute, Department of Fisheries Resources, Kołłątaja 1, 81-332, Gdynia, Poland
| | - Rafał Bernaś
- National Inland Fisheries Research Institute, Department of Migratory Fish, Rutki 49, 83-330, Żukowo, Poland.
| |
Collapse
|
16
|
Torres-Vanegas F, Hadley AS, Kormann UG, Jones FA, Betts MG, Wagner HH. Pollinator foraging tactics have divergent consequences for the mating system of a tropical plant. THE NEW PHYTOLOGIST 2023; 237:1050-1066. [PMID: 36285370 DOI: 10.1111/nph.18574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Resolving the consequences of pollinator foraging behaviour for plant mating systems is a fundamental challenge in evolutionary ecology. Pollinators may adopt particular foraging tactics: complete trapline foraging (repeated movements along a fixed route), sample-and-shift trapline foraging (a variable route that incorporates information from previous experiences) and territorial foraging (stochastic movements within a restricted area). Studies that integrate these pollinator foraging tactics with plant mating systems are generally lacking. We investigate the consequences of particular pollinator foraging tactics for Heliconia tortuosa. We combine parentage and sibship inference analysis with simulation modelling to: estimate mating system parameters; infer the foraging tactic adopted by the pollinators; and quantify the impact of pollinator foraging tactics on mating system parameters. We found high outcrossing rates, ubiquitous multiple paternity and a pronounced departure from near-neighbour mating. We also found that plants repeatedly receive pollen from a series of particular donors. We infer that the pollinators primarily adopt complete trapline foraging and occasionally engage in sample-and-shift trapline foraging. This enhances multiple paternity without a substantial increase in near-neighbour mating. The particular pollinator foraging tactics have divergent consequences for multiple paternity and near-neighbour mating. Thus, pollinator foraging behaviour is an important driver of the ecology and evolution of plant mating systems.
Collapse
Affiliation(s)
- Felipe Torres-Vanegas
- Department of Ecology and Evolutionary Biology, University of Toronto, Mississauga, ON, L5L 1C6, Canada
| | - Adam S Hadley
- Department of Ecology and Evolutionary Biology, University of Toronto, Mississauga, ON, L5L 1C6, Canada
- Forest Biodiversity Research Network, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5704, USA
- Biodiversity Section, Department of Natural Resources and Energy Development, Fredericton, NB, E3C 2G6, Canada
| | - Urs G Kormann
- Swiss Ornithological Institute, Sempach, CH-6204, Switzerland
| | - Frank Andrew Jones
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
- Smithsonian Tropical Research Institute, Panama City, 0843-03092, Panama
| | - Matthew G Betts
- Forest Biodiversity Research Network, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5704, USA
| | - Helene H Wagner
- Department of Ecology and Evolutionary Biology, University of Toronto, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
17
|
Larroque J, Balkenhol N. A simulation-based evaluation of methods for estimating census population size of terrestrial game species from genetically-identified parent-offspring pairs. PeerJ 2023; 11:e15151. [PMID: 37070094 PMCID: PMC10105560 DOI: 10.7717/peerj.15151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/09/2023] [Indexed: 04/19/2023] Open
Abstract
Estimates of wildlife population size are critical for conservation and management, but accurate estimates are difficult to obtain for many species. Several methods have recently been developed that estimate abundance using kinship relationships observed in genetic samples, particularly parent-offspring pairs. While these methods are similar to traditional Capture-Mark-Recapture, they do not need physical recapture, as individuals are considered recaptured if a sample contains one or more close relatives. This makes methods based on genetically-identified parent-offspring pairs particularly interesting for species for which releasing marked animals back into the population is not desirable or not possible (e.g., harvested fish or game species). However, while these methods have successfully been applied in commercially important fish species, in the absence of life-history data, they are making several assumptions unlikely to be met for harvested terrestrial species. They assume that a sample contains only one generation of parents and one generation of juveniles of the year, while more than two generations can coexist in the hunting bags of long-lived species, or that the sampling probability is the same for each individual, an assumption that is violated when fecundity and/or survival depend on sex or other individual traits. In order to assess the usefulness of kin-based methods to estimate population sizes of terrestrial game species, we simulated population pedigrees of two different species with contrasting demographic strategies (wild boar and red deer), applied four different methods and compared the accuracy and precision of their estimates. We also performed a sensitivity analysis, simulating population pedigrees with varying fecundity characteristics and various levels of harvesting to identify optimal conditions of applicability of each method. We showed that all these methods reached the required levels of accuracy and precision to be effective in wildlife management under simulated circumstances (i.e., for species within a given range of fecundity and for a given range of sampling intensity), while being robust to fecundity variation. Despite the potential usefulness of the methods for terrestrial game species, care is needed as several biases linked to hunting practices still need to be investigated (e.g., when hunting bags are biased toward a particular group of individuals).
Collapse
Affiliation(s)
- Jeremy Larroque
- Wildlife Sciences, University of Goettingen, Goettingen, Germany
| | - Niko Balkenhol
- Wildlife Sciences, University of Goettingen, Goettingen, Germany
| |
Collapse
|
18
|
Johnston SE, Chen N, Josephs EB. Taking quantitative genomics into the wild. Proc Biol Sci 2022; 289:20221930. [PMID: 36541172 PMCID: PMC9768650 DOI: 10.1098/rspb.2022.1930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
We organized this special issue to highlight new work and review recent advances at the cutting edge of 'wild quantitative genomics'. In this editorial, we will present some history of wild quantitative genetic and genomic studies, before discussing the main themes in the papers published in this special issue and highlighting the future outlook of this dynamic field.
Collapse
Affiliation(s)
- Susan E. Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, Edinburgh EH9 3FL, UK
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, 14627, NY, USA
| | - Emily B. Josephs
- Department of Plant Biology and Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, 48824, MI, USA
| |
Collapse
|
19
|
Davidović S, Marinković S, Hribšek I, Patenković A, Stamenković-Radak M, Tanasković M. Sex ratio and relatedness in the Griffon vulture ( Gyps fulvus) population of Serbia. PeerJ 2022; 10:e14477. [PMID: 36523455 PMCID: PMC9745909 DOI: 10.7717/peerj.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Background Once a widespread species across the region of Southeast Europe, the Griffon vulture is now confined to small and isolated populations across the Balkan Peninsula. The population from Serbia represents its biggest and most viable population that can serve as an important reservoir of genetic diversity from which the birds can be used for the region's reintroduction programmes. The available genetic data for this valuable population are scarce and as a protected species that belongs to the highly endangered vulture group, it needs to be well described so that it can be properly managed and used as a restocking population. Considering the serious recent bottleneck event that the Griffon vulture population from Serbia experienced we estimated the overall relatedness among the birds from this population. Sex ratio, another important parameter that shows the vitality and strength of the population was evaluated as well. Methods During the annual monitoring that was performed in the period from 2013-2021, we collected blood samples from individual birds that were marked in the nests. In total, 169 samples were collected and each was used for molecular sexing while 58 presumably unrelated birds from different nests were used for inbreeding and relatedness analyses. The relatedness was estimated using both biparentally (10 microsatellite loci) and uniparentally (Cytb and D-loop I of mitochondrial DNA) inherited markers. Results The level of inbreeding was relatively high and on average it was 8.3% while the mean number of relatives for each bird was close to three. The sex ratio was close to 1:1 and for the analysed period of 9 years, it didn't demonstrate a statistically significant deviation from the expected ratio of 1:1, suggesting that this is a stable and healthy population. Our data suggest that, even though a relatively high level of inbreeding can be detected among the individual birds, the Griffon vulture population from Serbia can be used as a source population for restocking and reintroduction programmes in the region. These data combined with previously observed genetic differentiation between the populations from the Iberian and Balkan Peninsulas suggest that the introduction of foreign birds should be avoided and that local birds should be used instead.
Collapse
Affiliation(s)
- Slobodan Davidović
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia,Birds of Prey Protection Foundation, Belgrade, Serbia
| | - Saša Marinković
- Birds of Prey Protection Foundation, Belgrade, Serbia,Department of Ecology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Irena Hribšek
- Birds of Prey Protection Foundation, Belgrade, Serbia,Natural History Museum Belgrade, Belgrade, Serbia
| | - Aleksandra Patenković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marina Stamenković-Radak
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia,Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Tanasković
- Department of Genetics of Populations and Ecogenotoxicology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
20
|
Reed WJ, Ison JL, Waananen A, Shaw FH, Wagenius S, Shaw RG. Genetic variation in reproductive timing in a long-lived herbaceous perennial. AMERICAN JOURNAL OF BOTANY 2022; 109:1861-1874. [PMID: 36112607 DOI: 10.1002/ajb2.16072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Reproductive fitness of individual plants depends on the timing of flowering, especially in mate-limited populations, such as those in fragmented habitats. When flowering time traits are associated with differential reproductive success, the narrow-sense heritability (h2 ) of traits will determine how rapidly trait means evolve in response to selection. Heritability of flowering time is documented in many annual plants. However, estimating h2 of flowering time in perennials presents additional methodological challenges, often including paternity assignment and trait expression over multiple years. METHODS We evaluated the h2 of onset and duration of flowering using offspring-midparent regressions and restricted maximum likelihood methods in an experimental population of an iterocarpic, perennial, herbaceous plant, Echinacea angustifolia, growing in natural conditions. We assessed the flowering time of the parental cohort in 2005 and 2006; the offspring in 2014 through 2017. We also examined the effects of the paternity assignment from Cervus and MasterBayes on estimates of h2 . RESULTS We found substantial h2 for onset and duration of flowering. We also observed variation in estimates among years. The most reliable estimates for both traits fell in the range of 0.1-0.17. We found evidence of a genotype by year interaction for onset of flowering and strong evidence that genotypes are consistent in their duration of flowering across years. CONCLUSIONS Substantial heritabilities in this population imply the capacity for a response to natural selection, while also suggesting the potential for differential contributions to adaptive evolution among seasons.
Collapse
Affiliation(s)
- Will J Reed
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant Street, Boulder, CO, 80309, USA
| | - Jennifer L Ison
- Biology Department, College of Wooster, 1189 Beall Avenue, Wooster, OH, 44691, USA
| | - Amy Waananen
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Frank H Shaw
- Math Department, Hamline University, 1536 Hewitt Avenue, Saint Paul, MN, 55104, USA
| | - Stuart Wagenius
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL, 60022, USA
| | - Ruth G Shaw
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| |
Collapse
|
21
|
Sánchez-Velásquez JJ, Pinedo-Bernal PN, Reyes-Flores LE, Yzásiga-Barrera C, Zelada-Mázmela E. Genetic diversity and relatedness inferred from microsatellite loci as a tool for broodstock management of fine flounder Paralichthys adspersus. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Isberg SR. How many fathers? Study design implications when inferring multiple paternity in crocodilians. Ecol Evol 2022; 12:e9379. [PMID: 36225824 PMCID: PMC9534745 DOI: 10.1002/ece3.9379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
Up to 10 males were reported to sire clutches of crocodilian eggs but review of the underlying study designs raised questions of potential upward bias of inferred sire numbers. To test this premise, different scenarios were explored using a published dataset of 16 known single-sire saltwater crocodile pairs and their offspring which were originally confirmed using a 11 loci microsatellite panel in CERVUS. Varying the number of microsatellites, omitting one or both parental genotypes and using different parentage analysis techniques revealed that total allele number, rather than number of loci, determined inferred sire accuracy in two opposing ways. Using the single-locus minimum method and GERUD, which both require prior knowledge of family groupings (i.e., nests), fewer alleles (and loci) accurately inferred only one father. In contrast, CERVUS and COLONY required all 11 loci (65 alleles) and both parental genotypes to (a) assign correct family groups and (b) infer the correct sire number, except in one family where two sires were equally assigned based on their number of homozygous loci. When less genotype information was provided, CERVUS and COLONY inferred up to six and seven sires, respectively. Given this data is from confirmed single-sire matings, and yet up to seven sires could be inferred, the significance of inappropriate study design is clearly demonstrated. Consideration should be carefully given to genotype data, particularly those collected specifically for population diversity studies, which are also used to infer multiple paternity because the underlying data collection assumptions are not equivalent between the two outcomes.
Collapse
Affiliation(s)
- Sally R. Isberg
- Centre for Crocodile ResearchNoonamahNorthern TerritoryAustralia
| |
Collapse
|
23
|
Li M, Zhou H, Bai J, Zhang T, Liu Y, Ran J. Distribution of Breeding Population and Predicting Future Habitat under Climate Change of Black-Necked Crane (Grus nigricollis Przevalski, 1876) in Shaluli Mountains. Animals (Basel) 2022; 12:ani12192594. [PMID: 36230335 PMCID: PMC9558536 DOI: 10.3390/ani12192594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
Climate change is affecting biodiversity by altering the geographical distribution range of species, and this effect is amplified in climate-sensitive areas. Studying the geographic distribution of flagship species in response to climate change is important for the long-term conservation of species and the maintenance of regional biodiversity. Therefore, we collected field survey records from 2016 to 2020 and conducted field surveys of black-necked cranes in the Shaluli Mountains (SLLMs) in May–June and August–October 2021; 103 breeding records were acquired totally, and the geographical distribution range under the current and four future climate scenarios was modeled with the MaxEnt model to predict the impact of climate change on its distribution and habitat quality. The results showed that 152 black-necked cranes were surveyed in seven counties of SLLMs in total; the estimated number of black-necked cranes in the entire SLLMs was about 200. The currently suitable habitat area is 27,122 km2, mainly distributed in gentle meadows and wetland habitats along the lake where the Annual Mean Temperature is −1 °C and the Mean Diurnal Range (16 °C) and Precipitation Seasonality (105) are comparatively large. Furthermore, the breeding range would expand to varying degrees under future climate scenarios and showed a migration trend toward the northwest and higher elevation. Besides, as time goes by, the habitat for black-necked cranes in SLLMs would become more homogeneous and more suitable. The conservation effectiveness of the existing reserve network would keep stable with climate change, although there are large conservation gaps between protected areas, and these gaps will gradually expand over time. Overall, this study provides a preliminary understanding of the population and distribution and predicts the future distribution of black-necked cranes in the SLLMs. It also demonstrates the importance of SLLMs for protecting the central population of black-necked cranes and maintaining regional biodiversity. Therefore, we recommend long-term monitoring and conservation of the black-necked crane population and wetland resources in the region.
Collapse
Affiliation(s)
- Mingming Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Huaming Zhou
- Ganzi Tibetan Autonomous Prefecture Forestry Science Institute, Kangding 626000, China
| | - Jun Bai
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China
- Department of Science and Technology Consulting Service, Forestry Exploration and Design Institute of Sichuan, Chengdu 610084, China
| | - Taxing Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Yuxin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Jianghong Ran
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China
- Correspondence: ; Tel.: +86-133-0802-6600
| |
Collapse
|
24
|
Pimid M, Krishnan KT, Ahmad AH, Mohd Naim D, Chambers GK, Mohd Nor SA, Ab Majid AH. Parentage Assignment Using Microsatellites Reveals Multiple Mating in Aedes aegypti (Diptera: Culicidae): Implications for Mating Dynamics. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1525-1533. [PMID: 35733165 DOI: 10.1093/jme/tjac081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 06/15/2023]
Abstract
The mosquito Aedes aegypti is the primary vector of the dengue, yellow fever, and chikungunya viruses. Evidence shows that Ae. aegypti males are polyandrous whereas Ae. aegypti females are monandrous in mating. However, the degree to which Ae. aegypti males and females can mate with different partners has not been rigorously tested. Therefore, this study examined the rates of polyandry via parentage assignment in three sets of competitive mating experiments using wild-type male and female Ae. aegypti. Parentage assignment was monitored using nine microsatellite DNA markers. All Ae. aegypti offspring were successfully assigned to parents with 80% or 95% confidence using CERVUS software. The results showed that both male and female Ae. aegypti mated with up to 3-4 different partners. Adults contributed differentially to the emergent offspring, with reproductive outputs ranging from 1 to 25 viable progeny. This study demonstrates a new perspective on the capabilities of male and female Ae. aegypti in mating. These findings are significant because successful deployment of reproductive control methods using genetic modification or sterile Ae. aegypti must consider the following criteria regarding their mating fitness: 1) choosing Ae. aegypti males that can mate with many different females; 2) testing how transformed Ae. aegypti male perform with polyandrous females; and 3) prioritizing the selection of polyandrous males and/or females Ae. aegypti that have the most offspring.
Collapse
Affiliation(s)
- Marcela Pimid
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Kelantan, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kumara Thevan Krishnan
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Kelantan, Malaysia
| | - Abu Hassan Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Darlina Mohd Naim
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Geoffrey K Chambers
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, 6140 Wellington, New Zealand
| | - Siti Azizah Mohd Nor
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia
| | - Abdul Hafiz Ab Majid
- Household & Structural Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
25
|
Colour Variation in the Crocodile Lizard (Shinisaurus crocodilurus) and Its Relationship to Individual Quality. BIOLOGY 2022; 11:biology11091314. [PMID: 36138793 PMCID: PMC9495974 DOI: 10.3390/biology11091314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary This study examines colour variation in the highly endangered crocodile lizard, Shinisaurus crocodilurus. Both males and females vary in the extent to which their throats and venters are red. Their colouration is easily visible to a lizard receiver, and we found evidence that colour signals individual quality. Females with red venters had larger heads while females with red throats had greater bite force. In males, redder individuals were older. Finally, we found links between colour and fitness in males but not females. Aspects of male colouration were linked to reproductive output such that they sired offspring from heavier litters. The potential fitness consequences of colour should be considered in captive breeding and release programs. Abstract Colour plays a key role in animal social communication including as an indicator of individual quality. Using spectrophotometry, we examined colour variation in the throat and venter of the crocodile lizard (Shinisaurus crocodilurus), an endangered species native to southern China and northern Vietnam. We detected two broad colour variants, individuals with and without red, for each body region and each sex. A cluster analysis of spectral colour measurements (hue, chroma, luminance) revealed discrete throat and ventral morphs when measured in a single snapshot in time. However, photographic evidence revealed that the amount of red relative to body size increased as they got older. Individuals with red were equally likely to be male or female and throat colour was unrelated to ventral colour. Therefore, it is premature to claim that crocodile lizards have discrete colour morphs. We used visual modelling to show that the throat and venter were easily discriminable to a lizard visual system, suggesting they function in social communication. We also asked whether colour variation signalled individual quality. Females with red throats had greater bite force while males with red throats were older. In addition, females with red venters had larger heads. We also detected differences in morphology linked to colour. Females with red throats had slender bodies and longer tails, while individuals lacking red on their throats were stouter and had shorter tails. Finally, throat and ventral colour were unrelated to reproductive output (litter size and mass) in females. Males with greater ventral luminance contrast sired offspring from litters with greater litter mass (including stillborns), while males with greater ventral chromatic contrast sired offspring whose collective live mass (excluding stillborns) was greater. Males with greater luminance contrast also sired more live offspring (excluding stillborns). Collectively, these results suggest that male ventral colour signals individual quality in males. Conservation initiatives should take colour variation into account when planning future captive breeding and release programs for this endangered species.
Collapse
|
26
|
Ke F, Li J, Vasseur L, You M, You S. Temporal sampling and network analysis reveal rapid population turnover and dynamic migration pattern in overwintering regions of a cosmopolitan pest. Front Genet 2022; 13:986724. [PMID: 36110208 PMCID: PMC9469019 DOI: 10.3389/fgene.2022.986724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic makeup of insect pest is informative for source-sink dynamics, spreading of insecticide resistant genes, and effective management. However, collecting samples from field populations without considering temporal resolution and calculating parameters related to historical gene flow may not capture contemporary genetic pattern and metapopulation dynamics of highly dispersive pests. Plutella xylostella (L.), the most widely distributed Lepidopteran pest that developed resistance to almost all current insecticides, migrates heterogeneously across space and time. To investigate its real-time genetic pattern and dynamics, we executed four samplings over two consecutive years across Southern China and Southeast Asia, and constructed population network based on contemporary gene flow. Across 48 populations, genetic structure analysis identified two differentiated insect swarms, of which the one with higher genetic variation was replaced by the other over time. We further inferred gene flow by estimation of kinship relationship and constructed migration network in each sampling time. Interestingly, we found mean migration distance at around 1,000 km. Such distance might have contributed to the formation of step-stone migration and migration circuit over large geographical scale. Probing network clustering across sampling times, we found a dynamic P. xylostella metapopulation with more active migration in spring than in winter, and identified a consistent pattern that some regions are sources (e.g., Yunnan in China, Myanmar and Vietnam) while several others are sinks (e.g., Guangdong and Fujian in China) over 2 years. Rapid turnover of insect swarms and highly dynamic metapopulation highlight the importance of temporal sampling and network analysis in investigation of source-sink relationships and thus effective pest management of P. xylostella, and other highly dispersive insect pests.
Collapse
Affiliation(s)
- Fushi Ke
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Jianyu Li
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Minsheng You, ; Shijun You,
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- BGI-Sanya, Sanya, China
- *Correspondence: Minsheng You, ; Shijun You,
| |
Collapse
|
27
|
Nishiyama S, Sato K, Tao R. Integer programming for selecting set of informative markers in paternity inference. BMC Bioinformatics 2022; 23:265. [PMID: 35804290 PMCID: PMC9264695 DOI: 10.1186/s12859-022-04801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Parentage information is fundamental to various life sciences. Recent advances in sequencing technologies have made it possible to accurately infer parentage even in non-model species. The optimization of sets of genome-wide markers is valuable for cost-effective applications but requires extremely large amounts of computation, which presses for the development of new efficient algorithms. Results Here, for a closed half-sib population, we generalized the process of marker loci selection as a binary integer programming problem. The proposed systematic formulation considered marker localization and the family structure of the potential parental population, resulting in an accurate assignment with a small set of markers. We also proposed an efficient heuristic approach, which effectively improved the number of markers, localization, and tolerance to missing data of the set. Applying this method to the actual genotypes of apple (Malus × domestica) germplasm, we identified a set of 34 SNP markers that distinguished 300 potential parents crossed to a particular cultivar with a greater than 99% accuracy. Conclusions We present a novel approach for selecting informative markers based on binary integer programming. Since the data generated by high-throughput sequencing technology far exceeds the requirement for parentage assignment, a combination of the systematic marker selection with targeted SNP genotyping, such as KASP, allows flexibly enlarging the analysis up to a scale that has been unrealistic in various species. The method developed in this study can be directly applied to unsolved large-scale problems in breeding, reproduction, and ecological research, and is expected to lead to novel knowledge in various biological fields. The implementation is available at https://github.com/SoNishiyama/IP-SIMPAT. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04801-z.
Collapse
Affiliation(s)
| | - Kengo Sato
- School of System Design and Technology, Tokyo Denki University, Tokyo, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
White SL, Sard NM, Brundage HM, Johnson RL, Lubinski BA, Eackles MS, Park IA, Fox DA, Kazyak DC. Evaluating sources of bias in pedigree-based estimates of breeding population size. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2602. [PMID: 35384108 DOI: 10.1002/eap.2602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Applications of genetic-based estimates of population size are expanding, especially for species for which traditional demographic estimation methods are intractable due to the rarity of adult encounters. Estimates of breeding population size (NS ) are particularly amenable to genetic-based approaches as the parameter can be estimated using pedigrees reconstructed from genetic data gathered from discrete juvenile cohorts, therefore eliminating the need to sample adults in the population. However, a critical evaluation of how genotyping and sampling effort influence bias in pedigree reconstruction, and how these biases subsequently influence estimates of NS , is needed to evaluate the efficacy of the approach under a range of scenarios. We simulated a model system to understand the interactive effects of genotyping and sampling effort on error in genetic pedigrees reconstructed from the program COLONY. We then evaluated how errors in pedigree reconstruction influenced bias and precision in estimates of NS using three different rarefaction estimators. Results indicated that pedigree error can be minimal when adequate genetic data are available, such as when juvenile sample sizes are large and/or individuals are genotyped at many informative loci. However, even in cases for which data are limited, using results of the simulation analysis to understand the magnitude and sources of bias in reconstructed pedigrees can still be informative when estimating NS . We applied results of the simulation analysis to evaluate N ̂ $$ \hat{N} $$ S for a population of federally endangered Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) in the Delaware River, USA. Our results indicated that NS is likely to be three orders of magnitude lower compared with historic breeding population sizes, which is a considerable advancement in our understanding of the population status of Atlantic sturgeon in the Delaware River. Our analyses are broadly applicable in the design and interpretation of studies seeking to estimate NS and can help to guide conservation decisions when ecological uncertainty is high. The utility of these results is expected to grow as rapid advances in genetic technologies increase the popularity of genetic population monitoring and estimation.
Collapse
Affiliation(s)
- Shannon L White
- Akima Systems Engineers, Under Contract to the US Geological Survey, Kearneysville, West Virginia, USA
| | - Nicholas M Sard
- Department of Biological Sciences, State University of New York-Oswego, Oswego, New York, USA
| | | | - Robin L Johnson
- US Geological Survey Eastern Ecological Science Center, Kearneysville, West Virginia, USA
| | - Barbara A Lubinski
- US Geological Survey Eastern Ecological Science Center, Kearneysville, West Virginia, USA
| | - Michael S Eackles
- US Geological Survey Eastern Ecological Science Center, Kearneysville, West Virginia, USA
| | - Ian A Park
- Delaware Division of Fish and Wildlife, Dover, Delaware, USA
| | - Dewayne A Fox
- Department of Agriculture and Natural Resources, Delaware State University, Dover, Delaware, USA
| | - David C Kazyak
- US Geological Survey Eastern Ecological Science Center, Kearneysville, West Virginia, USA
| |
Collapse
|
29
|
Delph LF, Brown KE, Ríos LD, Kelly JK. Sex‐specific natural selection on SNPs in
Silene latifolia. Evol Lett 2022; 6:308-318. [PMID: 35937470 PMCID: PMC9346077 DOI: 10.1002/evl3.283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 02/24/2022] [Accepted: 03/13/2022] [Indexed: 01/15/2023] Open
Affiliation(s)
- Lynda F. Delph
- Department of Biology Indiana University Bloomington Indiana USA
| | - Keely E. Brown
- Department of Ecology and Evolutionary Biology University of Kansas Lawrence Kansas USA
| | - Luis Diego Ríos
- Department of Biology Indiana University Bloomington Indiana USA
| | - John K. Kelly
- Department of Ecology and Evolutionary Biology University of Kansas Lawrence Kansas USA
| |
Collapse
|
30
|
Szafranski K, Wetzel M, Holtze S, Büntjen I, Lieckfeldt D, Ludwig A, Huse K, Platzer M, Hildebrandt T. The Mating Pattern of Captive Naked Mole-Rats Is Best Described by a Monogamy Model. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.855688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Naked mole-rats form colonies with a single reproductively active female surrounded by subordinate workers. Workers perform offspring care, construction and defense of the burrow system, and food supply. Such division of labor, called “cooperative breeding,” is strongly associated with the evolution of monogamous mating behavior, as seen in several mammalian lineages. This association is explained by the evolutionary theory of kin selection, according to which a subordinate adult may help to raise other’s offspring if they are in full sibling relationship. In conflict with this theory, the naked mole-rat is widely considered to be polyandrous, based on reports on multiple males contributing to a colony’s progeny. In order to resolve this contrast, we undertook an in-depth microsatellite-based kinship analysis on captive colonies. Four independent colonies comprising a total of 265 animals were genotyped using a panel of 73 newly established microsatellite markers. Our results show that each mole-rat colony contains a single monogamous breeder pair, which translates to a reproductive skew of 100% for both sexes. This finding, also in conjunction with previously published parental data, favors monogamy as the best-fitting model to describe naked mole-rat reproduction patterns. Polyandry or other polygamous reproduction models are disfavored and should be considered as exceptional. Overall, the empirical genetic data are in agreement with the kin selection theory.
Collapse
|
31
|
Steele CA, Delomas TA, Campbell MR, Powell JH. Single‐parentage assignments reveal negative‐assortative mating in an endangered salmonid. Ecol Evol 2022; 12:e8846. [PMID: 35494502 PMCID: PMC9036198 DOI: 10.1002/ece3.8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022] Open
Abstract
Understanding reproductive patterns in endangered species is critical for supporting their recovery efforts. In this study we use a combination of paired‐parent and single‐parent assignments to examine the reproductive patterns in an endangered population of sockeye salmon (Oncorhynchus nerka) that uses Redfish Lake in central Idaho as a spawning and nursery lake. Recovery efforts include the release of maturing adults into the lake for volitional spawning. The lake is also inhabited by a population of resident O. nerka that is genetically indistinguishable, but phenotypically smaller, to the maturing adults released into the lake. The resident population is difficult to sample and the reproductive patterns between the two groups are unknown. We used results of paired‐ and single‐parentage assignments to specifically examine the reproductive patterns of male fish released into the lake under an equal sex ratio and a male‐biased sex ratio. Assignment results of offspring leaving the lake indicated a reproductive shift by males under the two scenarios. Males displayed an assortative mating pattern under an equal sex ratio and spawned almost exclusively with the released females. Under a male‐biased sex ratio most males shifted to a negative‐assortative mating pattern and spawned with smaller females from the resident population. These males were younger and smaller than males that spawned with released females suggesting they were unable to compete with larger males for spawning opportunities with the larger, released females. The results provided insights into the reproductive behavior of this endangered population and has implications for recovery efforts.
Collapse
Affiliation(s)
- Craig A. Steele
- Pacific States Marine Fisheries Commission Eagle Fish Genetics Lab Eagle Idaho USA
| | - Thomas A. Delomas
- Pacific States Marine Fisheries Commission Eagle Fish Genetics Lab Eagle Idaho USA
| | | | | |
Collapse
|
32
|
Lee K, Kim IS, Kang KS. Pedigree reconstruction and spatial analysis for genetic testing and selection in a Larix kaempferi (Lamb.) Carrière plantation. BMC PLANT BIOLOGY 2022; 22:152. [PMID: 35346034 PMCID: PMC8962119 DOI: 10.1186/s12870-022-03530-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Larix kaempferi is one of the major timber species in Northeast Asia. Demand for the reforestation of the species is rising in South Korea due to an increase in large timber production and utilization. However, progeny trials for the species have not been explored, making it challenging to foster advanced generations of tree improvement. In the present study, genetic testing and selection for diameter growth were conducted using pedigree reconstruction and phenotypic spatial distribution analysis in a plantation of L. kaempferi. The aim of the present study was to select the superior larch individuals using the pedigree reconstruction and phenotypic spatial distribution to substitute progeny trials. The plantation of seed orchard crops was established in 1990 and one-hundred and eighty-eight trees were selected as the study material. Genetic variation was investigated first to validate its adequacy as breeding material. Genetic testing was carried out using a model considering pedigree information and spatial autoregression of the phenotypes. RESULTS The expected heterozygosity of the mother trees and offspring were 0.672 and 0.681 presenting the corresponding level of genetic variation between two groups. The pedigree reconstruction using maternity analysis assigned one to six progenies to ninety-two candidate mothers. The accuracy of genetic testing was exceedingly increased with the animal model considering AR1 ⊗ AR1 structure compared to the animal model only. The estimated genetic variance of the former was 9.086 whereas that of the latter was 4.9E-5 for DBH. The predicted breeding values of the offspring for DBH were ranged from -5.937 cm to 5.655 cm and the estimated heritability of diameter growth was 0.344. CONCLUSIONS The genetic testing approach based on pedigree reconstruction and phenotypic spatial distribution analysis was considered a useful analytical scheme that could replace or supplement progeny trials.
Collapse
Affiliation(s)
- Kyungmi Lee
- Division of Tree Improvement and Biotechnology, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, 16631, Republic of Korea
| | - In-Sik Kim
- Division of Tree Improvement and Biotechnology, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, 16631, Republic of Korea
| | - Kyu-Suk Kang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
33
|
Genetic Diversity Maximization as a Strategy for Resilient Forest Ecosystems: A Case Study on Norway Spruce. FORESTS 2022. [DOI: 10.3390/f13030489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Norway spruce, economically and ecologically one of the most important European forest tree species, rapidly declines due to massive bark beetle outbreaks across many countries. As a prerequisite of ecosystem stability facing climate changes of uncertain predictions, the reforestation management promoting locally adapted resources of broad genetic diversity should be prioritized, especially in nature conservation areas. In our case study carried out in the national park, Krkonoše Mountains (the Giant Mountains, the Czech Republic), we demonstrated a tree breeding strategy aiming at maximizing genetic diversity. More than four hundred unique Norway spruce accessions were genotyped on 15 microsatellite loci (Ne = 5.764, I = 1.713 and He = 0.685). Two core collection selection approaches were proposed to establish a new deployment population providing local gene sources of high genetic diversity. Namely, the Core Hunter selection algorithm, with average entry-to-nearest-entry distance (EN) optimization, was applied to identify the most diverse core collection set with the highest genetic diversity parameters obtained for 57 selected individuals (Ne = 6.507, I = 1.807, and He = 0.731). The latter core collection method proposed is innovative, based on choosing appropriate genotypes from a clustered heatmap. For simplicity, we demonstrated the principle of selection strategy on a reduced dataset. It is vital to promote panmixia of a newly established production population from a core collection to complete the conservation breeding effort. Thus, we demonstrated the utilization of the Optimum Neighborhood Algorithm (ONA) deployment that outperformed other deployment algorithms, especially in the case of balanced clone representation and uneven shapes of planting plots. We believe that the case study presented can be generalized and considered as a guideline for analogical tree breeding intentions.
Collapse
|
34
|
Shedd KR, Lescak EA, Habicht C, Knudsen EE, Dann TH, Hoyt HA, Prince DJ, Templin WD. Reduced relative fitness in hatchery-origin Pink Salmon in two streams in Prince William Sound, Alaska. Evol Appl 2022; 15:429-446. [PMID: 35386398 PMCID: PMC8965367 DOI: 10.1111/eva.13356] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Previous studies generally report that hatchery-origin Pacific Salmon (Oncorhynchus spp.) have lower relative reproductive success (RRS) than their natural-origin counterparts. We estimated the RRS of Pink Salmon (O. gorbuscha) in Prince William Sound (PWS), Alaska using incomplete pedigrees. In contrast to other RRS studies, Pink Salmon have a short freshwater life history, freshwater habitats in PWS are largely unaltered by development, and sampling was conducted without the aid of dams or weirs resulting in incomplete sampling of spawning individuals. Pink Salmon released from large-scale hatchery programs in PWS have interacted with wild populations for more than 15 generations. Hatchery populations were established from PWS populations but have subsequently been managed as separate broodstocks. Gene flow is primarily directional, from hatchery strays to wild populations. We used genetic-based parentage analysis to estimate the RRS of a single generation of stray hatchery-origin Pink Salmon in two streams, and across the odd- and even-year lineages. Despite incomplete sampling, we assigned 1745 offspring to at least one parent. Reproductive success (RS), measured as sampled adult offspring that returned to their natal stream, was significantly lower for hatchery- vs. natural-origin parents in both lineages, with RRS ranging from 0.03 to 0.47 for females and 0.05 to 0.86 for males. Generalized linear modeling for the even-year lineage indicated that RRS was lower for hatchery-origin fish, ranging from 0.42 to 0.60, after accounting for sample date (run timing), sample location within the stream, and fish length. Our results strongly suggest that hatchery-origin strays have lower fitness in the wild. The consequences of reduced RRS on wild productivity depend on whether the mechanisms underlying reduced RRS are environmentally driven, and likely ephemeral, or genetically driven, and likely persistent across generations.
Collapse
|
35
|
Peyran C, Boissin E, Morage T, Nebot‐Colomer E, Iwankow G, Planes S. Investigating population dynamics from parentage analysis in the highly endangered fan mussel Pinna nobilis. Ecol Evol 2022; 12:e8482. [PMID: 35127019 PMCID: PMC8796933 DOI: 10.1002/ece3.8482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/09/2022] Open
Abstract
Understanding dispersal patterns is a major focus for conservation biology as it influences local survival and resilience in case of local disturbance, particularly for sessile species. Dispersal can be assessed through parentage analyses by estimating family structure and self-recruitment. This study documents the family structure of a pelagic spawner, Pinna nobilis, which is facing a major crisis that threatens its survival as most of its populations have been decimated by a parasite, Haplosporidium pinnae. In this context, we focused on a single population (Peyrefite, Banyuls-sur-mer, France) where 640 individuals were sampled in 2011, 2015, and 2018 and genotyped for 22 microsatellite markers. Genetic diversity was high and homogeneous among years, with mean allele numbers ranging between 13.6 and 14.8 and observed heterozygosities (H o) between 0.7121 and 0.7331. Low, but significant, genetic differentiations were found between 2011-2015 and 2015-2018. A parentage analysis described 11 clusters, including one prevailing, and revealed that 46.9% of individuals were involved in half-sib relationships, even between years, suggesting that source populations were recurrent year after year. There were few individuals resampled between years (30 in 2015 and 14 in 2018), indicating a rapid turnover. Considering the large number of half-sib relationships but the low number of relations per individual, we conclude that P. nobilis exhibit homogeneous reproductive success. Self-recruitment was not detected, making this population highly vulnerable as replenishment only relies on connectivity from neighboring populations. In the context of the pandemic caused by H. pinnae, these results will have to be considered when choosing a location to reintroduce individuals in potential future rescue plans.
Collapse
Affiliation(s)
- Claire Peyran
- EPHE – UPVD – CNRSUSR 3278 CRIOBEPSL Research UniversityPerpignanFrance
| | - Emilie Boissin
- EPHE – UPVD – CNRSUSR 3278 CRIOBEPSL Research UniversityPerpignanFrance
- Laboratoire d'Excellence «CORAIL»PerpignanFrance
| | - Titouan Morage
- EPHE – UPVD – CNRSUSR 3278 CRIOBEPSL Research UniversityPerpignanFrance
| | - Elisabet Nebot‐Colomer
- EPHE – UPVD – CNRSUSR 3278 CRIOBEPSL Research UniversityPerpignanFrance
- Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de BalearesPalma de MallorcaSpain
| | - Guillaume Iwankow
- EPHE – UPVD – CNRSUSR 3278 CRIOBEPSL Research UniversityPerpignanFrance
| | - Serge Planes
- EPHE – UPVD – CNRSUSR 3278 CRIOBEPSL Research UniversityPerpignanFrance
- Laboratoire d'Excellence «CORAIL»PerpignanFrance
| |
Collapse
|
36
|
Segami JC, Lind MI, Qvarnström A. Should females prefer old males? Evol Lett 2021; 5:507-520. [PMID: 34621537 PMCID: PMC8484724 DOI: 10.1002/evl3.250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/05/2022] Open
Abstract
Whether females should prefer to mate with old males is controversial. Old males may sire offspring of low quality because of an aging germline, but their proven ability to reach an old age can also be an excellent indicator of superior genetic quality, especially in natural populations. These genetic effects are, however, hard to study in nature, because they are often confounded with direct benefits offered by old males to the female, such as experience and high territory quality. We, therefore, used naturally occurring extra‐pair young to disentangle different aspects of male age on female fitness in a natural population of collared flycatchers because any difference between within‐ and extra‐pair young within a nest should be caused by paternal genetic effects only. Based on 18 years of long‐term data, we found that females paired with older males as social partners experienced an overall reproductive advantage. However, offspring sired by old males were of lower quality as compared to their extra‐pair half‐siblings, whereas the opposite was found in nests attended by young males. These results imply a negative genetic effect of old paternal age, given that extra‐pair males are competitive middle‐age males. Thus, offspring may benefit from being sired by young males but raised by old males, to maximize both genetic and direct effects. Our results show that direct and genetic benefits from pairing with old males may act in opposing directions and that the quality of the germline may deteriorate before other signs of senescence become obvious.
Collapse
Affiliation(s)
- Julia Carolina Segami
- Department of Ecology and Genetics, Animal Ecology Uppsala University Uppsala SE-75236 Sweden
| | - Martin I Lind
- Department of Ecology and Genetics, Animal Ecology Uppsala University Uppsala SE-75236 Sweden
| | - Anna Qvarnström
- Department of Ecology and Genetics, Animal Ecology Uppsala University Uppsala SE-75236 Sweden
| |
Collapse
|
37
|
Evaluation of novel genomic markers for pedigree construction in an isolated population of Weddell Seals (Leptonychotes weddellii) at White Island, Antarctica. CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-021-01237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Komiya R, Ogawa S, Aonuma T, Satoh M. Performance of using opposing homozygotes for paternity testing in Japanese Black cattle. J Anim Breed Genet 2021; 139:113-124. [PMID: 34499371 DOI: 10.1111/jbg.12649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
Genome-wide single nucleotide polymorphism (SNP) markers in Japanese Black cattle enable genomic prediction and verifying parent-offspring relationships. We assessed the performance of opposing homozygotes (OH) for paternity testing in Japanese Black cattle, using SNP genotype information of 50 sires and 3,420 fattened animals, 1,945 of which were fathered by the 50 genotyped sires. The number of OH was counted for each sire-progeny pair in 28,764 SNPs with minor allele frequencies of ≥0.05 in this population. Across all pairs of animals, the number of OH tended to increase as the pedigree-based coefficient of relationship decreased. With a threshold of 288 (1% of SNPs) for paternity testing, most sire-progeny pairs were detected as true relationships. The frequency of Mendelian inconsistencies was 2.4%, reflecting the high accuracy of pedigree information in Japanese Black cattle population. The results indicate the utility of OH for paternity testing in Japanese Black cattle.
Collapse
Affiliation(s)
- Ryota Komiya
- Faculty of Agriculture, Tohoku University, Sendai, Japan
| | - Shinichiro Ogawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tatsuya Aonuma
- Miyagi Prefectural Livestock Experiment Station, Osaki, Japan
| | - Masahiro Satoh
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
39
|
Sard NM, Hunter RD, Roseman EF, Hayes DB, DeBruyne RL, Scribner KT. Pedigree accumulation analysis: Combining methods from community ecology and population genetics for breeding adult estimation. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Nicholas M. Sard
- Department of Biological Sciences State University of New York‐Oswego Oswego NY USA
| | - Robert D. Hunter
- Department of Fisheries and Wildlife Michigan State University East Lansing MI USA
- Department of Environmental Sciences University of Toledo Lake Erie Center Oregon OH USA
| | | | - Daniel B. Hayes
- Department of Fisheries and Wildlife Michigan State University East Lansing MI USA
| | - Robin L. DeBruyne
- Department of Environmental Sciences University of Toledo Lake Erie Center Oregon OH USA
| | - Kim T. Scribner
- Department of Fisheries and Wildlife Michigan State University East Lansing MI USA
- Department of Integrative Biology Michigan State University East Lansing MI USA
| |
Collapse
|
40
|
Nash CS, Darby PC, Frazier BS, Hendon JM, Higgs JM, Hoffmayer ER, Daly‐Engel TS. Multiple paternity in two populations of finetooth sharks ( Carcharhinus isodon) with varying reproductive periodicity. Ecol Evol 2021; 11:11799-11807. [PMID: 34522342 PMCID: PMC8427605 DOI: 10.1002/ece3.7948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/11/2022] Open
Abstract
The mechanisms underlying polyandry and female mate choice in certain taxonomic groups remain widely debated. In elasmobranchs, several species have shown varying rates of polyandry based on genetic studies of multiple paternity (MP). We investigated MP in the finetooth shark, Carcharhinus isodon, in order to directly test the encounter rate hypothesis (ERH), which predicts that MP is a result of the frequency of encounters between mature conspecifics during the breeding season, and should therefore increase when more time is available for copulation and sperm storage. Female finetooth sharks in the northern Gulf of Mexico (GoM) have been found to reproduce with both annual periodicity and biennial periodicity, while finetooth sharks from the northwestern Atlantic Ocean have only been found to reproduce biennially, allowing us to compare mating opportunity to frequency of MP. Our results show high rates of MP with no significant difference in frequency between females in the GoM (83.0%) and Atlantic (88.2%, p = .8718) and varying but nonsignificant rates of MP between females in the GoM reproducing annually (93.0%) and biennially (76.6%, p = .2760). While the ERH is not supported by this study, it remains possible that reproductive periodicity and other physiological factors play a role in determining rates of MP in elasmobranchs, with potential benefits to individuals and populations.
Collapse
Affiliation(s)
- Cody S. Nash
- Department of BiologyUniversity of West FloridaPensacolaFLUSA
| | - Philip C. Darby
- Department of BiologyUniversity of West FloridaPensacolaFLUSA
| | - Bryan S. Frazier
- South Carolina Department of Natural ResourcesMarine Resources Research InstituteCharlestonSCUSA
| | - Jill M. Hendon
- Center for Fisheries Research & DevelopmentGulf Coast Research LaboratoryThe University of Southern MississippiOcean SpringsMSUSA
| | - Jeremy M. Higgs
- Center for Fisheries Research & DevelopmentGulf Coast Research LaboratoryThe University of Southern MississippiOcean SpringsMSUSA
| | - Eric R. Hoffmayer
- National Oceanic and Atmospheric AdministrationNational Marine Fisheries Service Southeast Fisheries Science CenterMississippi LaboratoriesPascagoulaMSUSA
| | - Toby S. Daly‐Engel
- Department of Ocean Engineering and Marine SciencesFlorida Institute of TechnologyMelbourneFLUSA
| |
Collapse
|
41
|
Samaha G, Wade CM, Mazrier H, Grueber CE, Haase B. Exploiting genomic synteny in Felidae: cross-species genome alignments and SNV discovery can aid conservation management. BMC Genomics 2021; 22:601. [PMID: 34362297 PMCID: PMC8348863 DOI: 10.1186/s12864-021-07899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background While recent advances in genomics has enabled vast improvements in the quantification of genome-wide diversity and the identification of adaptive and deleterious alleles in model species, wildlife and non-model species have largely not reaped the same benefits. This has been attributed to the resources and infrastructure required to develop essential genomic datasets such as reference genomes. In the absence of a high-quality reference genome, cross-species alignments can provide reliable, cost-effective methods for single nucleotide variant (SNV) discovery. Here, we demonstrated the utility of cross-species genome alignment methods in gaining insights into population structure and functional genomic features in cheetah (Acinonyx jubatas), snow leopard (Panthera uncia) and Sumatran tiger (Panthera tigris sumatrae), relative to the domestic cat (Felis catus). Results Alignment of big cats to the domestic cat reference assembly yielded nearly complete sequence coverage of the reference genome. From this, 38,839,061 variants in cheetah, 15,504,143 in snow leopard and 13,414,953 in Sumatran tiger were discovered and annotated. This method was able to delineate population structure but limited in its ability to adequately detect rare variants. Enrichment analysis of fixed and species-specific SNVs revealed insights into adaptive traits, evolutionary history and the pathogenesis of heritable diseases. Conclusions The high degree of synteny among felid genomes enabled the successful application of the domestic cat reference in high-quality SNV detection. The datasets presented here provide a useful resource for future studies into population dynamics, evolutionary history and genetic and disease management of big cats. This cross-species method of variant discovery provides genomic context for identifying annotated gene regions essential to understanding adaptive and deleterious variants that can improve conservation outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07899-2.
Collapse
Affiliation(s)
- Georgina Samaha
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia.
| | - Claire M Wade
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Hamutal Mazrier
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Catherine E Grueber
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Bianca Haase
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
42
|
Hargrove JS, McCane J, Roth CJ, High B, Campbell MR. Mating systems and predictors of relative reproductive success in a Cutthroat Trout subspecies of conservation concern. Ecol Evol 2021; 11:11295-11309. [PMID: 34429919 PMCID: PMC8366873 DOI: 10.1002/ece3.7914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
Abstract
Mating systems and patterns of reproductive success in fishes play an important role in ecology and evolution. While information on the reproductive ecology of many anadromous salmonids (Oncorhynchus spp.) is well detailed, there is less information for nonanadromous species including the Yellowstone Cutthroat Trout (O. clarkii bouvieri), a subspecies of recreational angling importance and conservation concern. Using data from a parentage-based tagging study, we described the genetic mating system of a migratory population of Yellowstone Cutthroat Trout, tested for evidence of sexual selection, and identified predictors of mating and reproductive success. The standardized variance in mating success (i.e., opportunity for sexual selection) was significantly greater for males relative to females, and while the relationship between mating success and reproductive success (i.e., Bateman gradient) was significantly positive for both sexes, a greater proportion of reproductive success was explained by mating success for males (r 2 = 0.80) than females (r 2 = 0.59). Overall, the population displayed a polygynandrous mating system, whereby both sexes experienced variation in mating success due to multiple mating, and sexual selection was variable across sexes. Tests for evidence of sexual selection indicated the interaction between mating success and total length best-predicted relative reproductive success. We failed to detect a signal of inbreeding avoidance among breeding adults, but the group of parents that produced progeny were on average slightly less related than adults that did not produce progeny. Lastly, we estimated the effective number of breeders (N b) and effective population size (N e) and identified while N b was lower than N e, both are sufficiently high to suggest Yellowstone Cutthroat Trout in Burns Creek represent a genetically stable and diverse population.
Collapse
Affiliation(s)
| | - Jesse McCane
- Pacific States Marine Fisheries Commission Eagle ID USA
| | | | - Brett High
- Idaho Department of Fish and Game Idaho Falls ID USA
| | | |
Collapse
|
43
|
Koch IJ, Narum SR. An evaluation of the potential factors affecting lifetime reproductive success in salmonids. Evol Appl 2021; 14:1929-1957. [PMID: 34429740 PMCID: PMC8372082 DOI: 10.1111/eva.13263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 01/24/2023] Open
Abstract
Lifetime reproductive success (LRS), the number of offspring produced over an organism's lifetime, is a fundamental component of Darwinian fitness. For taxa such as salmonids with multiple species of conservation concern, understanding the factors affecting LRS is critical for the development and implementation of successful conservation management practices. Here, we reviewed the published literature to synthesize factors affecting LRS in salmonids including significant effects of hatchery rearing, life history, and phenotypic variation, and behavioral and spawning interactions. Additionally, we found that LRS is affected by competitive behavior on the spawning grounds, genetic compatibility, local adaptation, and hybridization. Our review of existing literature revealed limitations of LRS studies, and we emphasize the following areas that warrant further attention in future research: (1) expanding the range of studies assessing LRS across different life-history strategies, specifically accounting for distinct reproductive and migratory phenotypes; (2) broadening the variety of species represented in salmonid fitness studies; (3) constructing multigenerational pedigrees to track long-term fitness effects; (4) conducting LRS studies that investigate the effects of aquatic stressors, such as anthropogenic effects, pathogens, environmental factors in both freshwater and marine environments, and assessing overall body condition, and (5) utilizing appropriate statistical approaches to determine the factors that explain the greatest variation in fitness and providing information regarding biological significance, power limitations, and potential sources of error in salmonid parentage studies. Overall, this review emphasizes that studies of LRS have profoundly advanced scientific understanding of salmonid fitness, but substantial challenges need to be overcome to assist with long-term recovery of these keystone species in aquatic ecosystems.
Collapse
Affiliation(s)
- Ilana J. Koch
- Columbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| |
Collapse
|
44
|
Thow CM, Eadie JM, Wells CP, Lyon BE. Pedigree simulations reveal that maternity assignment is reliable in populations with conspecific brood parasitism, incomplete parental sampling and kin structure. Mol Ecol Resour 2021; 22:180-198. [PMID: 34260147 DOI: 10.1111/1755-0998.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 11/28/2022]
Abstract
Modern genetic parentage methods reveal that alternative reproductive strategies are common in both males and females. Under ideal conditions, genetic methods accurately connect the parents to offspring produced by extra-pair matings or conspecific brood parasitism. However, some breeding systems and sampling scenarios present significant complications for accurate parentage assignment. We used simulated genetic pedigrees to assess the reliability of parentage assignment for a series of challenging sampling regimes that reflect realistic conditions for many brood-parasitic birds: absence of genetic samples from sires, absence of samples from brood parasites and female kin-structured populations. Using 18 microsatellite markers and empirical allele frequencies from two populations of a conspecific brood parasite, the wood duck (Aix sponsa), we simulated brood parasitism and determined maternity using two widely used programs, cervus and colony. Errors in assignment were generally modest for most sampling scenarios but differed by program: cervus suffered from false assignment of parasitic offspring, whereas colony sometimes failed to assign offspring to their known mothers. Notably, colony was able to accurately infer unsampled parents. Reducing the number of markers (nine loci rather than 18) caused the assignment error to slightly worsen with colony but balloon with cervus. One potential error with important biological implications was rare in all cases-few nesting females were incorrectly excluded as the mother of their own offspring, an error that could falsely indicate brood parasitism. We consider the implications of our findings for both a retrospective assessment of previous studies and suggestions for best practices for future studies.
Collapse
Affiliation(s)
- Caroline M Thow
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
| | - John M Eadie
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, California, USA
| | - Caitlin P Wells
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, California, USA.,Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Bruce E Lyon
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
| |
Collapse
|
45
|
Weng Z, Yang Y, Wang X, Wu L, Hua S, Zhang H, Meng Z. Parentage Analysis in Giant Grouper ( Epinephelus lanceolatus) Using Microsatellite and SNP Markers from Genotyping-by-Sequencing Data. Genes (Basel) 2021; 12:genes12071042. [PMID: 34356058 PMCID: PMC8304347 DOI: 10.3390/genes12071042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/18/2022] Open
Abstract
Pedigree information is necessary for the maintenance of diversity for wild and captive populations. Accurate pedigree is determined by molecular marker-based parentage analysis, which may be influenced by the polymorphism and number of markers, integrity of samples, relatedness of parents, or different analysis programs. Here, we described the first development of 208 single nucleotide polymorphisms (SNPs) and 11 microsatellites for giant grouper (Epinephelus lanceolatus) taking advantage of Genotyping-by-sequencing (GBS), and compared the power of SNPs and microsatellites for parentage and relatedness analysis, based on a mixed family composed of 4 candidate females, 4 candidate males and 289 offspring. CERVUS, PAPA and COLONY were used for mutually verification. We found that SNPs had a better potential for relatedness estimation, exclusion of non-parentage and individual identification than microsatellites, and > 98% accuracy of parentage assignment could be achieved by 100 polymorphic SNPs (MAF cut-off < 0.4) or 10 polymorphic microsatellites (mean Ho = 0.821, mean PIC = 0.651). This study provides a reference for the development of molecular markers for parentage analysis taking advantage of next-generation sequencing, and contributes to the molecular breeding, fishery management and population conservation.
Collapse
Affiliation(s)
- Zhuoying Weng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Z.W.); (Y.Y.); (X.W.); (L.W.); (S.H.); (H.Z.)
| | - Yang Yang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Z.W.); (Y.Y.); (X.W.); (L.W.); (S.H.); (H.Z.)
| | - Xi Wang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Z.W.); (Y.Y.); (X.W.); (L.W.); (S.H.); (H.Z.)
| | - Lina Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Z.W.); (Y.Y.); (X.W.); (L.W.); (S.H.); (H.Z.)
| | - Sijie Hua
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Z.W.); (Y.Y.); (X.W.); (L.W.); (S.H.); (H.Z.)
| | - Hanfei Zhang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Z.W.); (Y.Y.); (X.W.); (L.W.); (S.H.); (H.Z.)
| | - Zining Meng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; (Z.W.); (Y.Y.); (X.W.); (L.W.); (S.H.); (H.Z.)
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519000, China
- Correspondence:
| |
Collapse
|
46
|
How the west was won: genetic reconstruction of rapid wolf recolonization into Germany's anthropogenic landscapes. Heredity (Edinb) 2021; 127:92-106. [PMID: 33846578 PMCID: PMC8249462 DOI: 10.1038/s41437-021-00429-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Following massive persecution and eradication, strict legal protection facilitated a successful reestablishment of wolf packs in Germany, which has been ongoing since 2000. Here, we describe this recolonization process by mitochondrial DNA control-region sequencing, microsatellite genotyping and sex identification based on 1341 mostly non-invasively collected samples. We reconstructed the genealogy of German wolf packs between 2005 and 2015 to provide information on trends in genetic diversity, dispersal patterns and pack dynamics during the early expansion process. Our results indicate signs of a founder effect at the start of the recolonization. Genetic diversity in German wolves is moderate compared to other European wolf populations. Although dispersal among packs is male-biased in the sense that females are more philopatric, dispersal distances are similar between males and females once only dispersers are accounted for. Breeding with close relatives is regular and none of the six male wolves originating from the Italian/Alpine population reproduced. However, moderate genetic diversity and inbreeding levels of the recolonizing population are preserved by high sociality, dispersal among packs and several immigration events. Our results demonstrate an ongoing, rapid and natural wolf population expansion in an intensively used cultural landscape in Central Europe.
Collapse
|
47
|
Reznick DN, Travis J, Pollux BJA, Furness AI. Reproductive Mode and Conflict Shape the Evolution of Male Attributes and Rate of Speciation in the Fish Family Poeciliidae. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.639751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sexual conflict is caused by differences between the sexes in how fitness is maximized. These differences are shaped by the discrepancy in the investment in gametes, how mates are chosen and how embryos and young are provided for. Fish in the family Poeciliidae vary from completely provisioning eggs before they are fertilized to providing virtually all resources after fertilization via the functional equivalent of a mammalian placenta. This shift in when females provision their young relative to when an egg is fertilized is predicted to cause a fundamental change in when and how sexual conflict is manifested. If eggs are provisioned before fertilization, there should be strong selection for females to choose with whom they mate. Maternal provisioning after fertilization should promote a shift to post-copulatory mate choice. The evolution of maternal provisioning may in turn have cascading effects on the evolution of diverse features of the biology of these fish because of this shift in when mates are chosen. Here we summarize what these consequences are and show that the evolution of maternal provisioning is indeed associated with and appears to govern the evolution of male traits associated with sexual selection. The evolution of placentas and associated conflict does not cause accelerated speciation, contrary to predictions. Accelerated speciation rate is instead correlated with the evolution of male traits associated with sexual selection, which implies a more prominent role of pre-copulatory reproductive isolation in causing speciation in this family.
Collapse
|
48
|
Centeno-Cuadros A, Román J, Sánchez-Recuero A, Lucena-Pérez M, Delibes M, Godoy JA. Mating System, Breeding Success, and Pup Mortality of a Habitat Specialist Rodent: A Field and Molecular-based Approach. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Westphal D, Mancini AN, Baden AL. Primate landscape genetics: A review and practical guide. Evol Anthropol 2021; 30:171-184. [PMID: 33720482 DOI: 10.1002/evan.21891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/12/2020] [Accepted: 02/17/2021] [Indexed: 11/06/2022]
Abstract
Landscape genetics is an emerging field that integrates population genetics, landscape ecology, and spatial statistics to investigate how geographical and environmental features and evolutionary processes such as gene flow, genetic drift, and selection structure genetic variation at both the population and individual levels, with implications for ecology, evolution, and conservation biology. Despite being particularly well suited for primatologists, this method is currently underutilized. Here, we synthesize the current state of research on landscape genetics in primates. We begin by outlining how landscape genetics has been used to disentangle the drivers of diversity, followed by a review of how landscape genetic methods have been applied to primates. This is followed by a section highlighting special considerations when applying the methods to primates, and a practical guide to facilitate further landscape genetics studies using both existing and de novo datasets. We conclude by exploring future avenues of inquiry that could be facilitated by recent developments as well as underdeveloped applications of landscape genetics to primates.
Collapse
Affiliation(s)
- Darice Westphal
- Department of Anthropology, The Graduate Center, City University of New York, New York, New York, USA.,The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
| | - Amanda N Mancini
- Department of Anthropology, The Graduate Center, City University of New York, New York, New York, USA.,The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
| | - Andrea L Baden
- Department of Anthropology, The Graduate Center, City University of New York, New York, New York, USA.,The New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA.,Department of Anthropology, Hunter College, New York, New York, USA
| |
Collapse
|
50
|
Maximum likelihood parentage assignment using quantitative genotypes. Heredity (Edinb) 2021; 126:884-895. [PMID: 33692533 DOI: 10.1038/s41437-021-00421-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/09/2022] Open
Abstract
The cost of parentage assignment precludes its application in many selective breeding programmes and molecular ecology studies, and/or limits the circumstances or number of individuals to which it is applied. Pooling samples from more than one individual, and using appropriate genetic markers and algorithms to determine parental contributions to pools, is one means of reducing the cost of parentage assignment. This paper describes and validates a novel maximum likelihood (ML) parentage-assignment method, that can be used to accurately assign parentage to pooled samples of multiple individuals-previously published ML methods are applicable to samples of single individuals only-using low-density single nucleotide polymorphism (SNP) 'quantitative' (also referred to as 'continuous') genotype data. It is demonstrated with simulated data that, when applied to pools, this 'quantitative maximum likelihood' method assigns parentage with greater accuracy than established maximum likelihood parentage-assignment approaches, which rely on accurate discrete genotype calls; exclusion methods; and estimating parental contributions to pools by solving the weighted least squares problem. Quantitative maximum likelihood can be applied to pools generated using either a 'pooling-for-individual-parentage-assignment' approach, whereby each individual in a pool is tagged or traceable and from a known and mutually exclusive set of possible parents; or a 'pooling-by-phenotype' approach, whereby individuals of the same, or similar, phenotype/s are pooled. Although computationally intensive when applied to large pools, quantitative maximum likelihood has the potential to substantially reduce the cost of parentage assignment, even if applied to pools comprised of few individuals.
Collapse
|