1
|
Nishikiori N, Watanabe M, Sato T, Furuhashi M, Okura M, Hida T, Uhara H, Ohguro H. Significant and Various Effects of ML329-Induced MITF Suppression in the Melanoma Cell Line. Cancers (Basel) 2024; 16:263. [PMID: 38254754 PMCID: PMC10814414 DOI: 10.3390/cancers16020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
To study the inhibitory effects on microphthalmia-associated transcription factor (MITF)-related biological aspects in malignant melanomas (MMs) in the presence or absence of the low-molecular MITF specific inhibitor ML329, cell viability, cellular metabolic functions, and three-dimensional (3D) spheroid formation efficacy were compared among MM cell lines including SK-mel-24, A375, dabrafenib- and trametinib-resistant A375 (A375DT), and WM266-4. Upon exposure to 2 or 10 μM of ML329, cell viability was significantly decreased in WM266-4, SK-mel-24, and A375DT cells, but not A375 cells, in a dose-dependent manner, and these toxic effects of ML329 were most evident in WM266-4 cells. Extracellular flux assays conducted using a Seahorse bioanalyzer revealed that treatment with ML329 increased basal respiration, ATP-linked respiration, proton leakage, and non-mitochondrial respiration in WM266-4 cells and decreased glycolytic function in SK-mel-24 cells, whereas there were no marked effects of ML329 on A375 and A375DT cells. A glycolytic stress assay under conditions of high glucose concentrations also demonstrated that the inhibitory effect of ML329 on the glycolytic function of WM266-4 cells was dose-dependent. In addition, ML329 significantly decreased 3D-spheroid-forming ability, though the effects of ML329 were variable among the MM cell lines. Furthermore, the mRNA expression levels of selected genes, including STAT3 as a possible regulator of 3D spheroid formation, KRAS and SOX2 as oncogenic-signaling-related factors, PCG1a as the main regulator of mitochondrial biogenesis, and HIF1a as a major hypoxia transcriptional regulator, fluctuated among the MM cell lines, possibly supporting the diverse ML329 effects mentioned above. The findings of diverse ML329 effects on various MM cell lines suggest that MITF-associated biological activities are different among various types of MM.
Collapse
Affiliation(s)
- Nami Nishikiori
- Department of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (N.N.); (M.W.)
| | - Megumi Watanabe
- Department of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (N.N.); (M.W.)
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (T.S.); (M.F.)
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (T.S.); (M.F.)
| | - Masae Okura
- Department of Dermatology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (M.O.); (T.H.); (H.U.)
| | - Tokimasa Hida
- Department of Dermatology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (M.O.); (T.H.); (H.U.)
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (M.O.); (T.H.); (H.U.)
| | - Hiroshi Ohguro
- Department of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Spporo 060-8556, Japan; (N.N.); (M.W.)
| |
Collapse
|
2
|
Romhányi D, Szabó K, Kemény L, Groma G. Histone and Histone Acetylation-Related Alterations of Gene Expression in Uninvolved Psoriatic Skin and Their Effects on Cell Proliferation, Differentiation, and Immune Responses. Int J Mol Sci 2023; 24:14551. [PMID: 37833997 PMCID: PMC10572426 DOI: 10.3390/ijms241914551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Psoriasis is a chronic immune-mediated skin disease in which the symptom-free, uninvolved skin carries alterations in gene expression, serving as a basis for lesion formation. Histones and histone acetylation-related processes are key regulators of gene expression, controlling cell proliferation and immune responses. Dysregulation of these processes is likely to play an important role in the pathogenesis of psoriasis. To gain a complete overview of these potential alterations, we performed a meta-analysis of a psoriatic uninvolved skin dataset containing differentially expressed transcripts from nearly 300 individuals and screened for histones and histone acetylation-related molecules. We identified altered expression of the replication-dependent histones HIST2H2AA3 and HIST2H4A and the replication-independent histones H2AFY, H2AFZ, and H3F3A/B. Eight histone chaperones were also identified. Among the histone acetyltransferases, ELP3 and KAT5 and members of the ATAC, NSL, and SAGA acetyltransferase complexes are affected in uninvolved skin. Histone deacetylation-related alterations were found to affect eight HDACs and members of the NCOR/SMRT, NURD, SIN3, and SHIP HDAC complexes. In this article, we discuss how histone and histone acetylation-related expression changes may affect proliferation and differentiation, as well as innate, macrophage-mediated, and T cell-mediated pro- and anti-inflammatory responses, which are known to play a central role in the development of psoriasis.
Collapse
Affiliation(s)
- Dóra Romhányi
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
| | - Kornélia Szabó
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Gergely Groma
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Pelka S, Guha C. Enhancing Immunogenicity in Metastatic Melanoma: Adjuvant Therapies to Promote the Anti-Tumor Immune Response. Biomedicines 2023; 11:2245. [PMID: 37626741 PMCID: PMC10452223 DOI: 10.3390/biomedicines11082245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Advanced melanoma is an aggressive form of skin cancer characterized by low survival rates. Less than 50% of advanced melanoma patients respond to current therapies, and of those patients that do respond, many present with tumor recurrence due to resistance. The immunosuppressive tumor-immune microenvironment (TIME) remains a major obstacle in melanoma therapy. Adjuvant treatment modalities that enhance anti-tumor immune cell function are associated with improved patient response. One potential mechanism to stimulate the anti-tumor immune response is by inducing immunogenic cell death (ICD) in tumors. ICD leads to the release of damage-associated molecular patterns within the TIME, subsequently promoting antigen presentation and anti-tumor immunity. This review summarizes relevant concepts and mechanisms underlying ICD and introduces the potential of non-ablative low-intensity focused ultrasound (LOFU) as an immune-priming therapy that can be combined with ICD-inducing focal ablative therapies to promote an anti-melanoma immune response.
Collapse
Affiliation(s)
- Sandra Pelka
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute of Onco-Physics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Zolghadri S, Beygi M, Mohammad TF, Alijanianzadeh M, Pillaiyar T, Garcia-Molina P, Garcia-Canovas F, Luis Munoz-Munoz J, Akbar Saboury A. Targeting Tyrosinase in Hyperpigmentation: Current Status, Limitations and Future Promises. Biochem Pharmacol 2023; 212:115574. [PMID: 37127249 DOI: 10.1016/j.bcp.2023.115574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Hyperpigmentation is a common and distressing dermatologic condition. Since tyrosinase (TYR) plays an essential role in melanogenesis, its inhibition is considered a logical approach along with other therapeutic methods to prevent the accumulation of melanin in the skin. Thus, TYR inhibitors are a tempting target as the medicinal and cosmetic active agents of hyperpigmentation disorder. Among TYR inhibitors, hydroquinone is a traditional lightening agent that is commonly used in clinical practice. However, despite good efficacy, prolonged use of hydroquinone is associated with side effects. To overcome these shortcomings, new approaches in targeting TYR and treating hyperpigmentation are desperately requiredessentialneeded. In line with this purpose, several non-hydroquinone lightening agents have been developed and suggested as hydroquinone alternatives. In addition to traditional approaches, nanomedicine and nanotheranostic platforms have been recently proposed in the treatment of hyperpigmentation. In this review, we discuss the available strategies for the management of hyperpigmentation with a focus on TYR inhibition. In addition, alternative treatment options to hydroquinone are discussed. Finally, we present nano-based strategies to improve the therapeutic effect of drugs prescribed to patients with skin disorders.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.
| | - Mohammad Beygi
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - Mahdi Alijanianzadeh
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Pablo Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Francisco Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Jose Luis Munoz-Munoz
- Microbial Enzymology Lab, Department of Applied Sciences, Ellison Building A, University of Northumbria, Newcastle Upon Tyne, UK
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Wetterwald L, Riggi N, Kyriazoglou A, Dei Tos G, Dei Tos A, Digklia A. Clear cell sarcoma: state-of-the art and perspectives. Expert Rev Anticancer Ther 2023; 23:235-242. [PMID: 36811446 DOI: 10.1080/14737140.2023.2183846] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION Clear cell sarcoma (CCS) is an ultrarare soft tissue sarcoma (STS) with a poor prognosis due to its propensity to metastasize and its low chemosensitivity. The standard treatment of localized CCS consists of wide surgical excision with or without additive radiotherapy. However, unresectable CCS is generally treated with conventional systemic therapies available for treatment of STS despite the weak scientific evidence to support its use. AREAS COVERED In this review, we discuss the clinicopathologic characteristics of CSS, as well as the current treatment landscape and future therapeutic approaches. EXPERT OPINION The current treatment strategy of advanced CCSs, based on STSs regimens, shows a lack of effective options. Combination therapiesin particular, the association of immunotherapy and TKIs, represent a promising approach. Translational studies are needed in order to decipher the regulatory mechanisms involved in the oncogenesis of this ultrarare sarcoma and identify potential molecular targets.
Collapse
Affiliation(s)
- Laureline Wetterwald
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Lausanne, Switzerland
| | - Nicolò Riggi
- Experimental Pathology, Institute of Pathology, Lausanne University Lausanne, Switzerland
| | | | - Giovanni Dei Tos
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Lausanne, Switzerland
| | - Angelo Dei Tos
- Department of Pathology, Azienda Ospedale-Università Padova Padua, Italy.,Department of Medicine, University of Padua School of Medicine Padua, Italy
| | - Antonia Digklia
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Lausanne, Switzerland.,Sarcoma Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Lausanne, Switzerland
| |
Collapse
|
6
|
Carotenuto P, Romano A, Barbato A, Quadrano P, Brillante S, Volpe M, Ferrante L, Tammaro R, Morleo M, De Cegli R, Iuliano A, Testa M, Andreone F, Ciliberto G, Clery E, Troncone G, Palma G, Arra C, Barbieri A, Capone M, Madonna G, Ascierto PA, Lanfrancone L, Indrieri A, Franco B. Targeting the MITF/APAF-1 axis as salvage therapy for MAPK inhibitors in resistant melanoma. Cell Rep 2022; 41:111601. [DOI: 10.1016/j.celrep.2022.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/09/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
|
7
|
Sundaramurthi H, Giricz Z, Kennedy BN. Evaluation of the Therapeutic Potential of Histone Deacetylase 6 Inhibitors for Primary and Metastatic Uveal Melanoma. Int J Mol Sci 2022; 23:ijms23169378. [PMID: 36012642 PMCID: PMC9409113 DOI: 10.3390/ijms23169378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Patients diagnosed with metastatic uveal melanoma (MUM) have a poor survival prognosis. Unfortunately for this rare disease, there is no known cure and suitable therapeutic options are limited. HDAC6 inhibitors (HDAC6i) are currently in clinical trials for other cancers and show potential beneficial effects against tumor cell survival in vitro and in vivo. In MUM cells, HDAC6i show an anti-proliferative effect in vitro and in preclinical xenograft models. The use of HDAC6 inhibitors as a treatment option for MUM should be explored further. Therefore, this review discusses (1) what is known about HDAC6i in MUM and (2) whether HDAC6 inhibitors offer a potential therapeutic option for MUM.
Collapse
Affiliation(s)
- Husvinee Sundaramurthi
- UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland
- Systems Biology Ireland, University College Dublin, D04 V1W8 Dublin, Ireland
- UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Zoltán Giricz
- Pharmahungary Group, 6720 Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland
- Correspondence:
| |
Collapse
|
8
|
Shabna A, Antony J, Vijayakurup V, Saikia M, Liju VB, Retnakumari AP, Amrutha NA, Alex VV, Swetha M, Aiswarya SU, Jannet S, Unni US, Sundaram S, Sherin DR, Anto NP, Bava SV, Chittalakkottu S, Ran S, Anto RJ. Pharmacological attenuation of melanoma by tryptanthrin pertains to the suppression of MITF-M through MEK/ERK signaling axis. Cell Mol Life Sci 2022; 79:478. [PMID: 35948813 PMCID: PMC11072980 DOI: 10.1007/s00018-022-04476-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022]
Abstract
Melanoma is the most aggressive among all types of skin cancers. The current strategies against melanoma utilize BRAFV600E, as a focal point for targeted therapy. However, therapy resistance developed in melanoma patients against the conventional anti-melanoma drugs hinders the ultimate benefits of targeted therapies. A major mechanism by which melanoma cells attain therapy resistance is via the activation of microphthalmia-associated transcription factor-M (MITF-M), the key transcription factor and oncogene aiding the survival of melanoma cells. We demonstrate that tryptanthrin (Tpn), an indole quinazoline alkaloid, which we isolated and characterized from Wrightia tinctoria, exhibits remarkable anti-tumor activity towards human melanoma through the down-regulation of MITF-M. Microarray analysis of Tpn-treated melanoma cells followed by a STRING protein association network analysis revealed that differential expression of genes in melanoma converges at MITF-M. Furthermore, in vitro and in vivo studies conducted using melanoma cells with differential MITF-M expression status, endogenously or ectopically, demonstrated that the anti-melanoma activity of Tpn is decisively contingent on its efficacy in down-regulating MITF-M expression. Tpn potentiates the degradation of MITF-M via the modulation of MEK1/2-ERK1/2-MITF-M signaling cascades. Murine models demonstrate the efficacy of Tpn in attenuating the migration and metastasis of melanoma cells, while remaining pharmacologically safe. In addition, Tpn suppresses the expression of mutated BRAFV600E and inhibits Casein Kinase 2α, a pro-survival enzyme that regulates ERK1/2 homeostasis in many tumor types, including melanoma. Together, we point to a promising anti-melanoma drug in Tpn, by virtue of its attributes to impede melanoma invasion and metastasis by attenuating MITF-M.
Collapse
Affiliation(s)
- Anwar Shabna
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Jayesh Antony
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Zoology, St. Thomas College, Palai, Kottayam, Kerala, India
| | - Vinod Vijayakurup
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Anatomy and Cell Biology, Cancer and Genetics Research Complex, University of Florida, Gainesville, FL, 32610, USA
| | - Minakshi Saikia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Vijayasteltar B Liju
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Archana P Retnakumari
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Nisthul A Amrutha
- Department of Biotechnology and Microbiology, Thalassery Campus, Kannur University, Kannur, Kerala, 670661, India
| | - Vijai V Alex
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Mundanattu Swetha
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Sreekumar U Aiswarya
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, University of Calicut, Malappuram, Kerala, 673635, India
| | - Somaraj Jannet
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Uma Subramanian Unni
- KRIBS-BioNest, Third Campus of Rajiv Gandhi Centre for Biotechnology (RGCB) Kalamassery, Kochi, Kerala, India
| | - Sankar Sundaram
- Department of Pathology, Government Medical College, Kottayam, Kerala, 686008, India
| | - Daisy R Sherin
- Indian Institute of Information Technology and Management, Karyavattom, Kazhakkoottam, Kerala, 695581, India
| | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Smitha V Bava
- Department of Biotechnology, University of Calicut, Malappuram, Kerala, 673635, India
| | - Sadasivan Chittalakkottu
- Department of Biotechnology and Microbiology, Thalassery Campus, Kannur University, Kannur, Kerala, 670661, India
| | - Sophia Ran
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University-School of Medicine, PO Box 19626, Springfield, IL, USA
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
9
|
Gelmi MC, Houtzagers LE, Strub T, Krossa I, Jager MJ. MITF in Normal Melanocytes, Cutaneous and Uveal Melanoma: A Delicate Balance. Int J Mol Sci 2022; 23:6001. [PMID: 35682684 PMCID: PMC9181002 DOI: 10.3390/ijms23116001] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is an important regulator of melanogenesis and melanocyte development. Although it has been studied extensively in cutaneous melanoma, the role of MITF in uveal melanoma (UM) has not been explored in much detail. We review the literature about the role of MITF in normal melanocytes, in cutaneous melanoma, and in UM. In normal melanocytes, MITF regulates melanocyte development, melanin synthesis, and melanocyte survival. The expression profile and the behaviour of MITF-expressing cells suggest that MITF promotes local proliferation and inhibits invasion, inflammation, and epithelial-to-mesenchymal (EMT) transition. Loss of MITF expression leads to increased invasion and inflammation and is more prevalent in malignant cells. Cutaneous melanoma cells switch between MITF-high and MITF-low states in different phases of tumour development. In UM, MITF loss is associated with loss of BAP1 protein expression, which is a marker of poor prognosis. These data indicate a dual role for MITF in benign and malignant melanocytic cells.
Collapse
Affiliation(s)
- Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Laurien E. Houtzagers
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| | - Thomas Strub
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Imène Krossa
- Université Côte d’Azur, 06103 Nice, France; (T.S.); (I.K.)
- Inserm, Biology and Pathologies of Melanocytes, Team1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, 06204 Nice, France
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.C.G.); (L.E.H.)
| |
Collapse
|
10
|
Uveal Melanoma Cell Line Proliferation Is Inhibited by Ricolinostat, a Histone Deacetylase Inhibitor. Cancers (Basel) 2022; 14:cancers14030782. [PMID: 35159049 PMCID: PMC8833954 DOI: 10.3390/cancers14030782] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/30/2022] [Indexed: 12/26/2022] Open
Abstract
Metastatic uveal melanoma (MUM) is characterized by poor patient survival. Unfortunately, current treatment options demonstrate limited benefits. In this study, we evaluate the efficacy of ACY-1215, a histone deacetylase inhibitor (HDACi), to attenuate growth of primary ocular UM cell lines and, in particular, a liver MUM cell line in vitro and in vivo, and elucidate the underlying molecular mechanisms. A significant (p = 0.0001) dose-dependent reduction in surviving clones of the primary ocular UM cells, Mel270, was observed upon treatment with increasing doses of ACY-1215. Treatment of OMM2.5 MUM cells with ACY-1215 resulted in a significant (p = 0.0001), dose-dependent reduction in cell survival and proliferation in vitro, and in vivo attenuation of primary OMM2.5 xenografts in zebrafish larvae. Furthermore, flow cytometry revealed that ACY-1215 significantly arrested the OMM2.5 cell cycle in S phase (p = 0.0001) following 24 h of treatment, and significant apoptosis was triggered in a time- and dose-dependent manner (p < 0.0001). Additionally, ACY-1215 treatment resulted in a significant reduction in OMM2.5 p-ERK expression levels. Through proteome profiling, the attenuation of the microphthalmia-associated transcription factor (MITF) signaling pathway was linked to the observed anti-cancer effects of ACY-1215. In agreement, pharmacological inhibition of MITF signaling with ML329 significantly reduced OMM2.5 cell survival and viability in vitro (p = 0.0001) and reduced OMM2.5 cells in vivo (p = 0.0006). Our findings provide evidence that ACY-1215 and ML329 are efficacious against growth and survival of OMM2.5 MUM cells.
Collapse
|
11
|
Yokoyama S, Takahashi A, Kikuchi R, Nishibu S, Lo JA, Hejna M, Moon WM, Kato S, Zhou Y, Hodi FS, Song JS, Sakurai H, Fisher DE, Hayakawa Y. SOX10 regulates melanoma immunogenicity through an IRF4-IRF1 axis. Cancer Res 2021; 81:6131-6141. [PMID: 34728538 DOI: 10.1158/0008-5472.can-21-2078] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
Loss-of-function mutations of JAK1/2 impair cancer cell responsiveness to IFN-γ and immunogenicity. Therefore, an understanding of compensatory pathways to activate IFN-γ signaling in cancer cells is clinically important for the success of immunotherapy. Here we demonstrate that the transcription factor SOX10 hinders immunogenicity of melanoma cells through the IRF4-IRF1 axis. Genetic and pharmacological approaches revealed that SOX10 repressed IRF1 transcription via direct induction of a negative regulator, IRF4. The SOX10-IRF4-IRF1 axis regulated PD-L1 expression independently of JAK-STAT pathway activity, and suppression of SOX10 increased the efficacy of combination therapy with an anti-PD-1 antibody and HDAC inhibitor against a clinically relevant melanoma model. Thus, the SOX10-IRF4-IRF1 axis serves as a potential target that can bypass JAK-STAT signaling to immunologically warm up melanoma with a "cold" tumor immune microenvironment.
Collapse
Affiliation(s)
- Satoru Yokoyama
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Atsushi Takahashi
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Ryota Kikuchi
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Soshi Nishibu
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | | | | | | | - Shinichiro Kato
- Dermatology and Medical Oncology, Massachusetts General Hospital
| | - Yue Zhou
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | | | - Jun S Song
- Physics, University of Illinois at Urbana-Champaign
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama
| | - David E Fisher
- Dermatology and Medical Oncology, Massachusetts General Hospital
| | - Yoshihiro Hayakawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama
| |
Collapse
|
12
|
Basu D, Salgado CM, Bauer B, Hoehl RM, Moscinski CN, Schmitt L, Reyes-Múgica M. Histone deacetylase inhibitor Vorinostat (SAHA) suppresses micropthalmia transcription factor expression and induces cell death in nevocytes from large/giant congenital melanocytic nevi. Melanoma Res 2021; 31:319-327. [PMID: 34054057 DOI: 10.1097/cmr.0000000000000749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Large/giant congenital nevi (L/GCMN) are benign neoplasms of the melanocytic neural crest lineage covering extensive areas of skin presenting risk for melanoma. Surgical resection often leads to scarring and trauma. Histone deacetylase inhibitors (iHDACs) as topical therapeutic agents may prove beneficial as an alternative/adjunct to surgery in this disease. Here we describe the effect of in vitro treatment of iHDACs drugs on primary nevocytes isolated from L/GCMN patients. Micropthalmia transcription factor (MITF) expression in L/GCMN patients' lesions was detected by immunohistochemistry, in cultured nevocytes by immunofluorescence, immunoblot and quantitative polymerase chain reaction. Cellular senescence was detected by SA-ß galactosidase activity. Markers for melanocytic differentiation were evaluated by immunoblot analysis and extracted melanin content was estimated spectrophotometrically. Cell death was measured by lactate dehydrogenase (LDH) assay and necrosis confirmed by polymerase (PARP) cleavage and acridine orange staining of the nuclei. MITF was expressed ubiquitously in nevocytes and melanocytes in patients' lesions. In culture, iHDAC treatment suppressed MITF protein and mRNA expression resulting in a senescent-like phenotype with positive ß-galactosidase staining, progressing to necrotic cell death as evidenced by increased LDH activity, appearance of cleaved PARP and necrotic nuclei. This is the first report showing evidence of iHDACs-induced MITF suppression in congenital nevocytes in vitro leading to a morphologic change with positive ß-galactosidase staining, followed by necrotic cell death in nevocytes, indicating that iHDAC drugs could be valuable therapeutic agents for treatment of L/GCMN lesions.
Collapse
Affiliation(s)
- Dipanjan Basu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pennsylvania
| | - Cláudia M Salgado
- Department of Pathology, School of Medicine, University of Pittsburgh, Pennsylvania
| | - Bruce Bauer
- Section of Plastic and Reconstructive Surgery, University of Chicago Medicine, Chicago, Illinois
| | - Ryan M Hoehl
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Catherine N Moscinski
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lori Schmitt
- Department of Pathology, School of Medicine, University of Pittsburgh, Pennsylvania
| | - Miguel Reyes-Múgica
- Department of Pathology, School of Medicine, University of Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Zhou S, Zeng H, Huang J, Lei L, Tong X, Li S, Zhou Y, Guo H, Khan M, Luo L, Xiao R, Chen J, Zeng Q. Epigenetic regulation of melanogenesis. Ageing Res Rev 2021; 69:101349. [PMID: 33984527 DOI: 10.1016/j.arr.2021.101349] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Melanogenesis is a complex process in which melanin is synthesized in melanocytes and transported to keratinocytes, which involves multiple genes and signaling pathways. Epigenetics refers to the potential genetic changes that affect gene expression without involving changes in the original sequence of DNA nucleotides. DNA methylation regulates the expression of key genes such as tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), dopachrome tautomerase (DCT) and microphthalmia-associated transcription factor (MITF), as well as paracrine factors such as stem cell factor (SCF) and endothelin-1 (ET-1) in melanogenesis. Potential DNA methylation sites are present in the genes of melanogenesis-related signaling pathways such as "Wnt", "PI3K/Akt/CREB" and "MAPK". H3K27 acetylation is abundant in melanogenesis-related genes. Both the upstream activation and downstream regulation of MITF depend on histone acetyltransferase CBP/p300, and pH-induced H3K27 acetylation may be the amplifying mechanism of MITF's effect. HDAC1 and HDAC10 catalyze histone deacetylation of melanogenesis-related gene promoters. Chromatin remodelers SWI/SNF complex and ISWI complex use the energy of ATP hydrolysis to rearrange nucleosomes, while their active subunits BRG1, BRM and BPTF, act as activators and cofactors of MITF. MicroRNAs (miRNAs) can directly target a large number of melanogenesis-related genes, while long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) regulate melanogenesis in a variety of ways. Interactions exist among the epigenetic mechanisms of melanogenesis. For example, the methyl CpG binding domain protein 2 (MeCP2) links DNA methylation, histone deacetylation, and histone methylation. Epigenetic-based therapy provides novel opportunities for treating dermatoses that are caused by pigmentation disturbances. This review summarizes the epigenetic regulation mechanisms of melanogenesis, and examines the pathogenesis and treatment of epigenetics in pigmentation disorders.
Collapse
|
14
|
Mitsiogianni M, Anestopoulos I, Kyriakou S, Trafalis DT, Franco R, Pappa A, Panayiotidis MI. Benzyl and phenethyl isothiocyanates as promising epigenetic drug compounds by modulating histone acetylation and methylation marks in malignant melanoma. Invest New Drugs 2021; 39:1460-1468. [PMID: 33963962 DOI: 10.1007/s10637-021-01127-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022]
Abstract
Melanoma is an aggressive skin cancer with increasing incidence rates globally. On the other hand, isothiocyanates are derived from cruciferous vegetables and are known to exert a wide range of anti-cancer activities including, among others, their ability to interact with the epigenome in order to supress cancer progression. The aim of this study was to determine the role of phenethyl and benzyl isothiocyanates in modulating histone acetylation and methylation as a potential epigenetic therapeutic strategy in an in vitro model of malignant melanoma. We report that both isothiocyanates induced cytotoxicity and influenced acetylation and methylation status of specific lysine residues on histones H3 and H4 by modulating the expression of various histone acetyltransferases, deacetylases and methyltransferases in malignant melanoma cells. Our data highlight novel insights on the interaction of isothiocyanates with components of the histone regulatory machinery in order to exert their anti-cancer action in malignant melanoma.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Clinical Pharmacology Unit, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK. .,Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus. .,The Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
15
|
STAT3 promotes melanoma metastasis by CEBP-induced repression of the MITF pathway. Oncogene 2020; 40:1091-1105. [PMID: 33323974 PMCID: PMC7116782 DOI: 10.1038/s41388-020-01584-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 10/30/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022]
Abstract
Metastatic melanoma is hallmarked by its ability of phenotype switching to more slowly proliferating, but highly invasive cells. Here, we tested the impact of signal transducer and activator of transcription 3 (STAT3) on melanoma progression in association with melanocyte inducing transcription factor (MITF) expression levels. We established a mouse melanoma model for deleting Stat3 in melanocytes with specific expression of human hyperactive NRASQ61K in an Ink4a deficient background, two frequent driver mutations in human melanoma. Mice devoid of Stat3 showed early disease onset with higher proliferation in primary tumors, but displayed significantly diminished lung, brain and liver metastases. Whole genome expression profiling of tumor-derived cells also showed a reduced invasion phenotype, which was further corroborated by 3D melanoma model analysis. Notably, loss or knockdown of STAT3 in mouse or human cells resulted in up-regulation of MITF and induction of cell proliferation. Mechanistically we show that STAT3-induced CEBPa/b expression was sufficient to suppress MITF transcription. Epigenetic analysis by ATAC-seq confirmed that CEBPa/b binding to the MITF enhancer region silenced the MITF locus. Finally, by classification of patient-derived melanoma samples, we show that STAT3 and MITF act antagonistically and hence contribute differentially to melanoma progression. We conclude that STAT3 is a driver of the metastatic process in melanoma and able to antagonize MITF via direct induction of CEBP family member transcription.
Collapse
|
16
|
Vanni I, Tanda ET, Dalmasso B, Pastorino L, Andreotti V, Bruno W, Boutros A, Spagnolo F, Ghiorzo P. Non-BRAF Mutant Melanoma: Molecular Features and Therapeutical Implications. Front Mol Biosci 2020; 7:172. [PMID: 32850962 PMCID: PMC7396525 DOI: 10.3389/fmolb.2020.00172] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is one of the most aggressive tumors of the skin, and its incidence is growing worldwide. Historically considered a drug resistant disease, since 2011 the therapeutic landscape of melanoma has radically changed. Indeed, the improved knowledge of the immune system and its interactions with the tumor, and the ever more thorough molecular characterization of the disease, has allowed the development of immunotherapy on the one hand, and molecular target therapies on the other. The increased availability of more performing technologies like Next-Generation Sequencing (NGS), and the availability of increasingly large genetic panels, allows the identification of several potential therapeutic targets. In light of this, numerous clinical and preclinical trials are ongoing, to identify new molecular targets. Here, we review the landscape of mutated non-BRAF skin melanoma, in light of recent data deriving from Whole-Exome Sequencing (WES) or Whole-Genome Sequencing (WGS) studies on melanoma cohorts for which information on the mutation rate of each gene was available, for a total of 10 NGS studies and 992 samples, focusing on available, or in experimentation, targeted therapies beyond those targeting mutated BRAF. Namely, we describe 33 established and candidate driver genes altered with frequency greater than 1.5%, and the current status of targeted therapy for each gene. Only 1.1% of the samples showed no coding mutations, whereas 30% showed at least one mutation in the RAS genes (mostly NRAS) and 70% showed mutations outside of the RAS genes, suggesting potential new roads for targeted therapy. Ongoing clinical trials are available for 33.3% of the most frequently altered genes.
Collapse
Affiliation(s)
- Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | | | - Bruna Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Andrea Boutros
- Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| |
Collapse
|
17
|
Song H, Hwang YJ, Ha JW, Boo YC. Screening of an Epigenetic Drug Library Identifies 4-((hydroxyamino)carbonyl)- N-(2-hydroxyethyl)- N-Phenyl-Benzeneacetamide that Reduces Melanin Synthesis by Inhibiting Tyrosinase Activity Independently of Epigenetic Mechanisms. Int J Mol Sci 2020; 21:ijms21134589. [PMID: 32605171 PMCID: PMC7370187 DOI: 10.3390/ijms21134589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to identify novel antimelanogenic drugs from an epigenetic screening library containing various modulators targeting DNA methyltransferases, histone deacetylases, and other related enzymes/proteins. Of 141 drugs tested, K8 (4-((hydroxyamino)carbonyl)-N-(2-hydroxyethyl)-N-phenyl-benzeneacetamide; HPOB) was found to effectively inhibit the α-melanocyte-stimulating hormone (α-MSH)-induced melanin synthesis in B16-F10 murine melanoma cells without accompanying cytotoxicity. Additional experiments showed that K8 did not significantly reduce the mRNA and protein level of tyrosinase (TYR) or microphthalmia-associated transcription factor (MITF) in cells, but it potently inhibited the catalytic activity TYR in vitro (IC50, 1.1-1.5 µM) as compared to β-arbutin (IC50, 500-700 µM) or kojic acid (IC50, 63 µM). K8 showed copper chelating activity similar to kojic acid. Therefore, these data suggest that K8 inhibits cellular melanin synthesis not by downregulation of TYR protein expression through an epigenetic mechanism, but by direct inhibition of TYR catalytic activity through copper chelation. Metal chelating activity of K8 is not surprising because it is known to inhibit histone deacetylase (HDAC) 6 through zinc chelation. This study identified K8 as a potent inhibitor of cellular melanin synthesis, which may be useful for the treatment of hyperpigmentation disorders.
Collapse
Affiliation(s)
- Hyerim Song
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Yun Jeong Hwang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Jae Won Ha
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4946
| |
Collapse
|
18
|
Ice RJ, Chen M, Sidorov M, Le Ho T, Woo RWL, Rodriguez-Brotons A, Luu T, Jian D, Kim KB, Leong SP, Kim H, Kim A, Stone D, Nazarian A, Oh A, Tranah GJ, Nosrati M, de Semir D, Dar AA, Chang S, Desprez PY, Kashani-Sabet M, Soroceanu L, McAllister SD. Drug responses are conserved across patient-derived xenograft models of melanoma leading to identification of novel drug combination therapies. Br J Cancer 2019; 122:648-657. [PMID: 31857724 PMCID: PMC7054294 DOI: 10.1038/s41416-019-0696-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) mouse tumour models can predict response to therapy in patients. Predictions made from PDX cultures (PDXC) would allow for more rapid and comprehensive evaluation of potential treatment options for patients, including drug combinations. METHODS We developed a PDX library of BRAF-mutant metastatic melanoma, and a high-throughput drug-screening (HTDS) platform utilising clinically relevant drug exposures. We then evaluated 34 antitumor agents across eight melanoma PDXCs, compared drug response to BRAF and MEK inhibitors alone or in combination with PDXC and the corresponding PDX, and investigated novel drug combinations targeting BRAF inhibitor-resistant melanoma. RESULTS The concordance of cancer-driving mutations across patient, matched PDX and subsequent PDX generations increases as variant allele frequency (VAF) increases. There was a high correlation in the magnitude of response to BRAF and MEK inhibitors between PDXCs and corresponding PDXs. PDXCs and corresponding PDXs from metastatic melanoma patients that progressed on standard-of-care therapy demonstrated similar resistance patterns to BRAF and MEK inhibitor therapy. Importantly, HTDS identified novel drug combinations to target BRAF-resistant melanoma. CONCLUSIONS The biological consistency observed between PDXCs and PDXs suggests that PDXCs may allow for a rapid and comprehensive identification of treatments for aggressive cancers, including combination therapies.
Collapse
Affiliation(s)
- Ryan J Ice
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Michelle Chen
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Max Sidorov
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Tam Le Ho
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Rinette W L Woo
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | | | - Tri Luu
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Damon Jian
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Kevin B Kim
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Stanley P Leong
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - HanKyul Kim
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Angela Kim
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Des Stone
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Ari Nazarian
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Alyssia Oh
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Mehdi Nosrati
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - David de Semir
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Altaf A Dar
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Stephen Chang
- University of California at San Francisco, School of Pharmacy, Department of Clinical Pharmacy, San Francisco, CA, 94143, USA
| | - Pierre-Yves Desprez
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | | | - Liliana Soroceanu
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Sean D McAllister
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA.
| |
Collapse
|
19
|
Mi J, Feng Y, Wen J, Su Y, Xu L, Zu T, Liu C, Fisher DE, Wu X. A ROCK inhibitor promotes keratinocyte survival and paracrine secretion, enhancing establishment of primary human melanocytes and melanocyte–keratinocyte co‐cultures. Pigment Cell Melanoma Res 2019; 33:16-29. [PMID: 31386789 DOI: 10.1111/pcmr.12816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
- Cutaneous Biology Research Center Massachusetts General Hospital, Harvard Medical School Boston MA USA
| | - Yang Feng
- Cutaneous Biology Research Center Massachusetts General Hospital, Harvard Medical School Boston MA USA
- Huashan Hospital, Fudan University Shanghai China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
| | - Yiqun Su
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
- Cutaneous Biology Research Center Massachusetts General Hospital, Harvard Medical School Boston MA USA
| | - Lin Xu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
- Department of Stomatology Liaocheng People's Hospital Liaocheng China
| | - Tingjian Zu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
| | - David E. Fisher
- Cutaneous Biology Research Center Massachusetts General Hospital, Harvard Medical School Boston MA USA
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
- Cutaneous Biology Research Center Massachusetts General Hospital, Harvard Medical School Boston MA USA
| |
Collapse
|
20
|
Lombard DB, Cierpicki T, Grembecka J. Combined MAPK Pathway and HDAC Inhibition Breaks Melanoma. Cancer Discov 2019; 9:469-471. [PMID: 30936219 DOI: 10.1158/2159-8290.cd-19-0069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this issue, Maertens and colleagues demonstrate that HDAC3 inhibition potentiates the effects of MAPK pathway inhibitors in melanoma, including difficult-to-treat NRAS- and NF1-driven tumors, with MGMT expression serving as a biomarker for responsiveness to the BRAF/MEK/HDAC inhibitor combination. Mechanistically, this triple cocktail suppresses expression of genes involved in DNA repair, leading to enhanced killing of melanoma cells.See related article by Maertens et al., p. 526.
Collapse
Affiliation(s)
- David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, Michigan. .,Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
21
|
E G, Yang BG, Basang WD, Zhu YB, An TW, Luo XL. Screening for signatures of selection of Tianzhu white yak using genome-wide re-sequencing. Anim Genet 2019; 50:534-538. [PMID: 31246332 DOI: 10.1111/age.12817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
The Tianzhu white yak, a domestic yak indigenous to the Qilian Mountains, migrated inland from the Qinghai-Tibet Plateau. Specific ecological and long-term artificial selection influenced the evolution of its pure white coat and physiological characteristics. Therefore, it is not only a natural population that represents a genomic selective region of environmental adaptability but is also an animal model for studying the pigmentation of the yak coat. A total of 24 261 829 variants, including 22 445 252 SNPs, were obtained from 29 yaks by genome-wide re-sequencing. According to the results of a selective sweep analysis of Tianzhu white yak in comparison to Tibetan yaks, nine candidate genes under selection in Tianzhu white yak were identified by combining π, Tajima's D, πA/πB and FST statistics, with threshold standards of 5%. These genes include PDCD1, NUP210, ABCG8, NEU4, LOC102287650, D2HGDH, COL4A1, RTP5 and HDAC11. Five of the nine genes were classified into 12 molecular signaling pathways, and most of these signaling pathways are involved in environmental information processing, organismal systems and metabolism. A majority of these genes has not been implicated in previous studies of yak coat color and high-altitude animals. Our findings are helpful not only for explaining the molecular mechanism of yak coat pigmentation but also for exploring the genetic changes in Tianzhu white yak due to environmental adaptation.
Collapse
Affiliation(s)
- Guangxin E
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - B-G Yang
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - W-D Basang
- Institute of Animal Husbandryand Veterinary Medicine, Tibet Academy of Agriculture and Animal Husandry Science, Lasa, 850009, China
| | - Y-B Zhu
- Institute of Animal Husbandryand Veterinary Medicine, Tibet Academy of Agriculture and Animal Husandry Science, Lasa, 850009, China
| | - T-W An
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, 611731, China
| | - X-L Luo
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, 611731, China
| |
Collapse
|
22
|
Zhang H, Zhao X, Liu H, Jin H, Ji Y. Trichostatin A inhibits proliferation of PC3 prostate cancer cells by disrupting the EGFR pathway. Oncol Lett 2019; 18:687-693. [PMID: 31289542 PMCID: PMC6546995 DOI: 10.3892/ol.2019.10384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/04/2019] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer (PC) is the most common type of malignancy to exist in men within developed countries. Androgen deprivation therapy is performed for metastatic and advanced PC. However, the majority of cases of prostate cancer become refractory during therapy, leading to castration-resistant PC (CRPC). Histone deacetylases (HDACs) are key factors in regulating gene transcription and have been associated with cancer development. In the present study the small molecule inhibitor trichostatin A (TSA), which targets HDACs, was demonstrated to inhibit the proliferation of CRPC PC3 cells by disrupting the epidermal growth factor receptor (EGFR)-STAT3 pathway. The expression of EGFR and STAT3 was downregulated following TSA treatment, and cell cycle arrest was induced by downregulating the expression of cyclin D1 and CDK6, and via retinoblastoma protein phosphorylation. Furthermore, the transcription of cyclin D1 and CDK6 was suppressed by TSA. Apoptosis of PC3 cells treated with TSA was also investigated, and it was revealed that TSA induced apoptosis by upregulating BAX and downregulating BCL-2. The combination of TSA with doxorubicin exerted a synergistic inhibitory effect on PC3 cell proliferation through the induction of apoptosis. The results of the present study revealed a promising epigenetic-based therapeutic strategy that could be implemented in cases of CRPC.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Clinical Medicine, Changchun Medical College, Changchun, Jilin 130031, P.R. China
| | - Xin Zhao
- Department of Clinical Medicine, Changchun Medical College, Changchun, Jilin 130031, P.R. China
| | - Hongbo Liu
- Department of Clinical Medicine, Changchun Medical College, Changchun, Jilin 130031, P.R. China
| | - Hui Jin
- Department of Pain Medical Center, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Youbo Ji
- Department of Pain Medical Center, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
23
|
Maertens O, Kuzmickas R, Manchester HE, Emerson CE, Gavin AG, Guild CJ, Wong TC, De Raedt T, Bowman-Colin C, Hatchi E, Garraway LA, Flaherty KT, Pathania S, Elledge SJ, Cichowski K. MAPK Pathway Suppression Unmasks Latent DNA Repair Defects and Confers a Chemical Synthetic Vulnerability in BRAF-, NRAS-, and NF1-Mutant Melanomas. Cancer Discov 2019; 9:526-545. [PMID: 30709805 PMCID: PMC10151004 DOI: 10.1158/2159-8290.cd-18-0879] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/05/2018] [Accepted: 01/29/2019] [Indexed: 11/16/2022]
Abstract
Although the majority of BRAF-mutant melanomas respond to BRAF/MEK inhibitors, these agents are not typically curative. Moreover, they are largely ineffective in NRAS- and NF1-mutant tumors. Here we report that genetic and chemical suppression of HDAC3 potently cooperates with MAPK pathway inhibitors in all three RAS pathway-driven tumors. Specifically, we show that entinostat dramatically enhances tumor regression when combined with BRAF/MEK inhibitors, in both models that are sensitive or relatively resistant to these agents. Interestingly, MGMT expression predicts responsiveness and marks tumors with latent defects in DNA repair. BRAF/MEK inhibitors enhance these defects by suppressing homologous recombination genes, inducing a BRCA-like state; however, addition of entinostat triggers the concomitant suppression of nonhomologous end-joining genes, resulting in a chemical synthetic lethality caused by excessive DNA damage. Together, these studies identify melanomas with latent DNA repair defects, describe a promising drug combination that capitalizes on these defects, and reveal a tractable therapeutic biomarker. SIGNIFICANCE: BRAF/MEK inhibitors are not typically curative in BRAF-mutant melanomas and are ineffective in NRAS- and NF1-mutant tumors. We show that HDAC inhibitors dramatically enhance the efficacy of BRAF/MEK inhibitors in sensitive and insensitive RAS pathway-driven melanomas by coordinately suppressing two DNA repair pathways, and identify a clinical biomarker that predicts responsiveness.See related commentary by Lombard et al., p. 469.This article is highlighted in the In This Issue feature, p. 453.
Collapse
Affiliation(s)
- Ophélia Maertens
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| | - Ryan Kuzmickas
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Haley E Manchester
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Chloe E Emerson
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Alessandra G Gavin
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Caroline J Guild
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Terence C Wong
- Department of Medical Oncology, Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Thomas De Raedt
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Christian Bowman-Colin
- Harvard Medical School, Boston, Massachusetts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elodie Hatchi
- Harvard Medical School, Boston, Massachusetts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Levi A Garraway
- Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
- Department of Medical Oncology, Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Keith T Flaherty
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Shailja Pathania
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, Massachusetts
| | - Stephen J Elledge
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
- Department of Genetics, Howard Hughes Medical Institute, Boston, Massachusetts
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| |
Collapse
|
24
|
Konieczkowski DJ, Johannessen CM, Garraway LA. A Convergence-Based Framework for Cancer Drug Resistance. Cancer Cell 2018; 33:801-815. [PMID: 29763622 PMCID: PMC5957297 DOI: 10.1016/j.ccell.2018.03.025] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/02/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023]
Abstract
Despite advances in cancer biology and therapeutics, drug resistance remains problematic. Resistance is often multifactorial, heterogeneous, and prone to undersampling. Nonetheless, many individual mechanisms of targeted therapy resistance may coalesce into a smaller number of convergences, including pathway reactivation (downstream re-engagement of original effectors), pathway bypass (recruitment of a parallel pathway converging on the same downstream output), and pathway indifference (development of a cellular state independent of the initial therapeutic target). Similar convergences may also underpin immunotherapy resistance. Such parsimonious, convergence-based frameworks may help explain resistance across tumor types and therapeutic categories and may also suggest strategies to overcome it.
Collapse
|
25
|
Sini MC, Doneddu V, Paliogiannis P, Casula M, Colombino M, Manca A, Botti G, Ascierto PA, Lissia A, Cossu A, Palmieri G. Genetic alterations in main candidate genes during melanoma progression. Oncotarget 2018; 9:8531-8541. [PMID: 29492214 PMCID: PMC5823576 DOI: 10.18632/oncotarget.23989] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
Cutaneous melanoma is a common and aggressive human skin cancers. Much is actually known about the molecular mechanisms underlying melanoma pathogenesis. The aim of the study was to evaluate any possible correlation between mutations in main growth-controlling genes (BRAF, NRAS, CDKN2A) and copy number variations in frequently amplified candidate genes (MITF, EGFR, CCND1, cMET, and cKIT) during melanoma initiation and progression. A large series of primary and secondary melanoma tissue samples (N = 274) from 232 consecutively-collected patients of Italian origin as well as 32 tumor cell lines derived from primary and metastatic melanomas underwent mutation screening and fluorescence in situ hybridization (FISH) analysis. Overall, BRAF, NRAS, and CDKN2A were found mutated in 62.5%, 12.5% and 59% cell lines and in 47%, 16%, 12% tumor tissues, respectively. Quite identical mutation patterns between primary tumors and metastatic lesions were found for BRAF and NRAS genes; mutations of CDKN2A gene appeared to be instead selected during tumor progression. In cell lines, high rates of gene amplifications were observed (varying from 12.5% for cKIT to 50% for MITF); vast majority of cell lines (75%) presented at least one amplified gene. Conversely, prevalence of gene amplification was significantly and progressively decreasing in melanoma metastases (12%) and primary melanomas (4%). Our findings suggest that gene amplifications may be acquired during the late phases of melanoma evolution and mostly act as "passenger" or "non-causative" alterations.
Collapse
Affiliation(s)
- Maria Cristina Sini
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Valentina Doneddu
- Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari, Italy
| | | | - Milena Casula
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Maria Colombino
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Antonella Manca
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Gerardo Botti
- Istituto Nazionale Tumori, Fondazione Pascale, Napoli, Italy
| | | | - Amelia Lissia
- Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari, Italy
| | - Antonio Cossu
- Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| |
Collapse
|
26
|
Sancisi V, Manzotti G, Gugnoni M, Rossi T, Gandolfi G, Gobbi G, Torricelli F, Catellani F, Faria do Valle I, Remondini D, Castellani G, Ragazzi M, Piana S, Ciarrocchi A. RUNX2 expression in thyroid and breast cancer requires the cooperation of three non-redundant enhancers under the control of BRD4 and c-JUN. Nucleic Acids Res 2017; 45:11249-11267. [PMID: 28981843 PMCID: PMC5737559 DOI: 10.1093/nar/gkx802] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/30/2017] [Indexed: 12/14/2022] Open
Abstract
Aberrant reactivation of embryonic pathways is a common feature of cancer. RUNX2 is a transcription factor crucial during embryogenesis that is aberrantly reactivated in many tumors, including thyroid and breast cancer, where it promotes aggressiveness and metastatic spreading. Currently, the mechanisms driving RUNX2 expression in cancer are still largely unknown. Here we showed that RUNX2 transcription in thyroid and breast cancer requires the cooperation of three distantly located enhancers (ENHs) brought together by chromatin three-dimensional looping. We showed that BRD4 controls RUNX2 by binding to the newly identified ENHs and we demonstrated that the anti-proliferative effects of bromodomain inhibitors (BETi) is associated with RUNX2 transcriptional repression. We demonstrated that each RUNX2 ENH is potentially controlled by a distinct set of TFs and we identified c-JUN as the principal pivot of this regulatory platform. We also observed that accumulation of genetic mutations within these elements correlates with metastatic behavior in human thyroid tumors. Finally, we identified RAINs, a novel family of ENH-associated long non-coding RNAs, transcribed from the identified RUNX2 regulatory unit. Our data provide a new model to explain how RUNX2 expression is reactivated in thyroid and breast cancer and how cancer-driving signaling pathways converge on the regulation of this gene.
Collapse
Affiliation(s)
- Valentina Sancisi
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Gloria Manzotti
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Mila Gugnoni
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Teresa Rossi
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Greta Gandolfi
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Giulia Gobbi
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Francesca Catellani
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | | | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Moira Ragazzi
- Pathology Unit, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Simonetta Piana
- Pathology Unit, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| |
Collapse
|
27
|
Aida S, Sonobe Y, Tanimura H, Oikawa N, Yuhki M, Sakamoto H, Mizuno T. MITF suppression improves the sensitivity of melanoma cells to a BRAF inhibitor. Cancer Lett 2017; 409:116-124. [PMID: 28923400 DOI: 10.1016/j.canlet.2017.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 11/29/2022]
Abstract
Microphthalmia-associated transcription factor (MITF) is expressed in melanomas and has a critical role in melanocyte development and transformation. Because inhibition of MITF inhibits cell growth in melanoma, MITF is a potential therapeutic target molecule. Here, we report the identification of CH6868398, which has a novel chemical structure and suppresses MITF expression at the protein level in melanoma cells. CH6868398 showed cell growth inhibition activity against MITF-dependent melanoma cells both with and without BRAF mutation and also exhibited anti-tumor efficacy in a melanoma xenograft model. Because selective BRAF inhibitors are standard therapeutics for BRAF-mutated melanoma, we investigated the effect of CH6868398 with a BRAF inhibitor, PLX4720, on cell growth inhibition. The addition of CH6868398 enhanced the cell growth inhibition activity of PLX4720 in melanoma cell lines. Furthermore, combination of CH6868398 and PLX4720 efficiently suppressed MITF protein and enhanced cleavage of Caspase3 and poly (ADP-ribose) polymerase (PARP) in melanoma cell lines. These data support the therapeutic potential of CH6868398 as an anti-melanoma agent that reduces MITF protein levels in combination with BRAF inhibitors.
Collapse
Affiliation(s)
- Satoshi Aida
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan.
| | - Yukiko Sonobe
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Hiromi Tanimura
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Nobuhiro Oikawa
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Munehiro Yuhki
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Hiroshi Sakamoto
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Takakazu Mizuno
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| |
Collapse
|
28
|
Oh TI, Lee YM, Lim BO, Lim JH. Inhibition of NAT10 Suppresses Melanogenesis and Melanoma Growth by Attenuating Microphthalmia-Associated Transcription Factor (MITF) Expression. Int J Mol Sci 2017; 18:ijms18091924. [PMID: 28880216 PMCID: PMC5618573 DOI: 10.3390/ijms18091924] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 01/25/2023] Open
Abstract
N-acetyltransferase 10 (NAT10) has been considered a target for the treatment of human diseases such as cancer and laminopathies; however, its functional role in the biology of melanocytes is questionable. Using a small molecule or small interfering RNA targeting NAT10, we examined the effect of NAT10 inhibition on melanogenesis and melanoma growth in human and mouse melanoma cells. Genetic silencing or chemical inhibition of NAT10 resulted in diminished melanin synthesis through the suppression of melanogenesis-stimulating genes such as those encoding dopachrome tautomerase (DCT) and tyrosinase in B16F10 melanoma cells. In addition, NAT10 inhibition significantly increased cell cycle arrest in S-phase, thereby suppressing the growth and proliferation of malignant melanoma cells in vitro and in vivo. These results demonstrate the potential role of NAT10 in melanogenesis and melanoma growth through the regulation of microphthalmia-associated transcription factor (MITF) expression and provide a promising strategy for the treatment of various skin diseases (melanoma) and pigmentation disorders (chloasma and freckles).
Collapse
Affiliation(s)
- Taek-In Oh
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Yoon-Mi Lee
- Department of Food Bioscience, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
- Nanotechnology Research Center, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Beong-Ou Lim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Ji-Hong Lim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
- Nanotechnology Research Center, Konkuk University, Chungju 27478, Chungbuk, Korea.
| |
Collapse
|
29
|
Reddy BY, Miller DM, Tsao H. Somatic driver mutations in melanoma. Cancer 2017; 123:2104-2117. [PMID: 28543693 DOI: 10.1002/cncr.30593] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022]
Abstract
Melanoma has one of the highest somatic mutational burdens among solid malignancies. Although the rapid progress in genomic research has contributed immensely to our understanding of the pathogenesis of melanoma, the clinical significance of the vast array of genomic alterations discovered by next-generation sequencing is far from being fully characterized. Most mutations prevalent in melanoma are simply neutral "passengers," which accompany functionally significant "drivers" under transforming conditions. The delineation of driver mutations from passenger mutations is critical to the development of targeted therapies. Novel advances in genomic data analysis have aided in distinguishing true driver mutations involved in tumor progression. Here, the authors review the current literature on important somatic driver mutations in melanoma, along with the implications for treatment. Cancer 2017;123:2104-17. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Bobby Y Reddy
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David M Miller
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Hensin Tsao
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
Ding F, Zhang S, Gao S, Shang J, Li Y, Cui N, Zhao Q. MRGBP as a potential biomarker for the malignancy of pancreatic ductal adenocarcinoma. Oncotarget 2017; 8:64224-64236. [PMID: 28969065 PMCID: PMC5609997 DOI: 10.18632/oncotarget.19451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/12/2017] [Indexed: 12/30/2022] Open
Abstract
MORF4-related gene-binding protein (MRGBP), which is also known as chromosome 20 open reading frame 20 (C20orf20), is commonly highly expressed in several types of malignant tumors and tumor progression. However, the expression pattern and underlying mechanism of MRGBP in pancreatic ductal adenocarcinoma (PDAC) remain unknown. In the study, we found that MRGBP was frequently upregulated in PDAC tissues and cell lines. In addition, the upregulation of MRGBP was positively associated with TNM stage, T classification, and poor prognosis. Knockdown of MRGBP in the PDAC cell lines ASPC-1 and Mia PaCa-2 by transiently transfected with small interfering RNA (siRNA) drastically attenuated the proliferation, migration, and invasion of those cells, whereas ectopic MRGBP overexpression in BxPC-3 cells produced exactly the opposite effect. Furthermore, we also found that overexpression of MRGBP remarkably led to cell morphological changes and induced an increased expression of mesenchymal marker Vimentin, whereas a decreased expression of epithelial marker E-cadherin. Taken together, this study indicates that MRGBP acts as a tumor oncogene in PDAC and is a promising target of carcinogenesis.
Collapse
Affiliation(s)
- Feng Ding
- Department of Gastroenterology/Hepatology, ZhongNan Hospital of Wuhan University, Wuhan 430071, China.,The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Shuang Zhang
- Laboratory of Clinical Immunology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaoyang Gao
- Department of Pathology, Hubei Cancer Hospital, Wuhan 430079, China
| | - Jian Shang
- Department of Gastroenterology/Hepatology, ZhongNan Hospital of Wuhan University, Wuhan 430071, China.,The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Yanxia Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Cui
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qiu Zhao
- Department of Gastroenterology/Hepatology, ZhongNan Hospital of Wuhan University, Wuhan 430071, China.,The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan 430071, China
| |
Collapse
|
31
|
The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. J Transl Med 2017; 97:649-656. [PMID: 28263292 DOI: 10.1038/labinvest.2017.9] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 12/20/2022] Open
Abstract
Certain transcription factors have vital roles in lineage development, including specification of cell types and control of differentiation. Microphthalmia-associated transcription factor (MITF) is a key transcription factor for melanocyte development and differentiation. MITF regulates expression of numerous pigmentation genes to promote melanocyte differentiation, as well as fundamental genes for maintaining cell homeostasis, including genes encoding proteins involved in apoptosis (eg, BCL2) and the cell cycle (eg, CDK2). Loss-of-function mutations of MITF cause Waardenburg syndrome type IIA, whose phenotypes include depigmentation due to melanocyte loss, whereas amplification or specific mutation of MITF can be an oncogenic event that is seen in a subset of familial or sporadic melanomas. In this article, we review basic features of MITF biological function and highlight key unresolved questions regarding this remarkable transcription factor.
Collapse
|
32
|
Aida S, Sonobe Y, Yuhki M, Sakata K, Fujii T, Sakamoto H, Mizuno T. MITF suppression by CH5552074 inhibits cell growth in melanoma cells. Cancer Chemother Pharmacol 2017; 79:1187-1193. [PMID: 28447210 DOI: 10.1007/s00280-017-3317-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/18/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE Although treatment of melanoma with BRAF inhibitors and immune checkpoint inhibitors achieves a high response rate, a subset of melanoma patients with intrinsic and acquired resistance are insensitive to these therapeutics, so to improve melanoma therapy other target molecules need to be found. Here, we screened our chemical library to identify an anti-melanoma agent and examined its action mechanisms to show cell growth inhibition activity. METHODS We screened a chemical library against multiple skin cancer cell lines and conducted ingenuity pathway analysis (IPA) to investigate the mechanisms of CH5552074 activity. Suppression of microphthalmia-associated transcription factor (MITF) expression levels was determined in melanoma cells treated with CH5552074. Cell growth inhibition activity of CH5552074 was evaluated in MITF-dependent melanoma cell lines. RESULTS We identified an anti-melanoma compound, CH5552074, which showed remarkable cell growth inhibition activity in melanoma cell lines. The IPA results suggested that CH5552074-sensitive cell lines had activated MITF. In further in vitro studies in the melanoma cell lines, a knockdown of MITF with siRNA resulted in cell growth inhibition, which showed that CH5552074 inhibited cell growth by reducing the expression level of MITF protein. CONCLUSIONS These results suggest that CH5552074 can inhibit cell growth in melanoma cells by reducing the protein level of MITF. MITF inhibition by CH5552074 would be an attractive option for melanoma treatment.
Collapse
Affiliation(s)
- Satoshi Aida
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan.
| | - Yukiko Sonobe
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Munehiro Yuhki
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Kiyoaki Sakata
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Toshihiko Fujii
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Hiroshi Sakamoto
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Takakazu Mizuno
- Research Division, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| |
Collapse
|
33
|
Identification of a small molecule that downregulates MITF expression and mediates antimelanoma activity in vitro. Melanoma Res 2017; 26:117-24. [PMID: 26684062 DOI: 10.1097/cmr.0000000000000229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Melanoma is a type of cancer arising from the melanocytes, which are the cells that make up the pigment melanin and are derived from the neural crest. There is no particularly effective therapy once the disease is metastatic, highlighting the need for discovery of novel potent agents. In this investigation, we adopted a zebrafish embryonic pigmentation model to identify antimelanoma agents by screening an in-house small molecule library. With this assay, we found that a small molecule compound, SKLB226, blocked zebrafish pigmentation and pigment cell migration. Mechanism of action studies showed that SKLB226 downregulated MITF mRNA level in both zebrafish embryos and mammalian melanoma cells. Further studies showed that it could efficiently suppress the viability and migration of mammalian melanoma cells. In summary, SKLB226 can be used as a chemical tool to study melanocyte development as well as an antimelanoma lead compound that should be subjected to further structural optimization.
Collapse
|
34
|
Hartman ML, Talar B, Sztiller-Sikorska M, Nejc D, Czyz M. Parthenolide induces MITF-M downregulation and senescence in patient-derived MITF-M(high) melanoma cell populations. Oncotarget 2016; 7:9026-40. [PMID: 26824319 PMCID: PMC4891023 DOI: 10.18632/oncotarget.7030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022] Open
Abstract
The activity of the M isoform of microphthalmia-associated transcription factor (MITF-M) has been attributed to regulation of differentiation, proliferation, survival and senescence of melanoma cells. MITF expression was shown to be antagonized by the activation of transcription factor NF-κB. Parthenolide, an inhibitor of NF-κB, has not been yet reported to affect MITF-M expression. Our results obtained in patient-derived melanoma cell populations indicate that parthenolide efficiently decreases the MITF-M level. This is neither dependent on p65/NF-κB signaling nor RAF/MEK/ERK pathway activity as inhibition of MEK by GSK1120212 (trametinib) and induction of ERK1/2 activity by parthenolide itself do not interfere with parthenolide-triggered depletion of MITF-M in both wild-type BRAF and BRAFV600E melanoma populations. Parthenolide activity is not prevented by inhibitors of caspases, proteasomal and lysosomal pathways. As parthenolide reduces MITF-M transcript level and HDAC1 protein level, parthenolide-activated depletion of MITF-M protein may be considered as a result of transcriptional regulation, however, the influence of parthenolide on other elements of a dynamic control over MITF-M cannot be ruled out. Parthenolide induces diverse effects in melanoma cells, from death to senescence. The mode of the response to parthenolide is bound to the molecular characteristics of melanoma cells, particularly to the basal MITF-M expression level but other cell-autonomous differences such as NF-κB activity and MCL-1 level might also contribute. Our data suggest that parthenolide can be developed as a drug used in combination therapy against melanoma when simultaneous inhibition of MITF-M, NF-κB and HDAC1 is needed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Beata Talar
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | | | - Dariusz Nejc
- Department of Surgical Oncology, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
35
|
Lin WM, Fisher DE. Signaling and Immune Regulation in Melanoma Development and Responses to Therapy. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:75-102. [PMID: 27959628 DOI: 10.1146/annurev-pathol-052016-100208] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Melanoma is a complex and genomically diverse malignancy, and new genes and signaling pathways involved in pathogenesis continue to be discovered. Mechanistic insights into gene and immune regulation in melanoma have led to the development of numerous successful and innovative pharmacologic agents over recent years. Multiple targeted therapies and immunotherapies have already entered the clinic, becoming new standards of care and transforming the prognosis for many patients with malignant melanoma. In this review, we provide an overview of the current understanding of signaling and immune regulation in melanoma and implications for responses to treatment, organized in the framework of hallmark characteristics in cancer.
Collapse
Affiliation(s)
- William M Lin
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114;
| |
Collapse
|
36
|
Ibrahim N, Buchbinder EI, Granter SR, Rodig SJ, Giobbie-Hurder A, Becerra C, Tsiaras A, Gjini E, Fisher DE, Hodi FS. A phase I trial of panobinostat (LBH589) in patients with metastatic melanoma. Cancer Med 2016; 5:3041-3050. [PMID: 27748045 PMCID: PMC5119958 DOI: 10.1002/cam4.862] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/16/2016] [Accepted: 07/17/2016] [Indexed: 01/20/2023] Open
Abstract
Epigenetic alterations by histone/protein deacetylases (HDACs) are one of the many mechanisms that cancer cells use to alter gene expression and promote growth. HDAC inhibitors have proven to be effective in the treatment of specific malignancies, particularly in combination with other anticancer agents. We conducted a phase I trial of panobinostat in patients with unresectable stage III or IV melanoma. Patients were treated with oral panobinostat at a dose of 30 mg daily on Mondays, Wednesdays, and Fridays (Arm A). Three of the six patients on this dose experienced clinically significant thrombocytopenia requiring dose interruption. Due to this, a second treatment arm was opened and the dose was changed to 30 mg oral panobinostat three times a week every other week (Arm B). Six patients were treated on Arm A and 10 patients were enrolled to Arm B with nine patients treated. In nine patients treated on Arm B, the response rate was 0% (90% confidence interval [CI]: 0–28%) and the disease‐control rate was 22% (90% CI: 4–55%). Among all 15 patients treated, the overall response rate was 0% (90% CI: 0–17%) and the disease‐control rate was 27% (90% CI: 10–51%). There was a high rate of toxicity associated with treatment. Correlative studies suggest the presence of immune modifications after HDAC inhibition. Panobinostat is not active as a single agent in the treatment of melanoma. Further exploration of this agent in combination with other therapies may be warranted.
Collapse
Affiliation(s)
- Nageatte Ibrahim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Currently at Merck & Co.,, Kenilworth, New Jersey
| | | | - Scott R Granter
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Department of Biostatistics & Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Carla Becerra
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Argyro Tsiaras
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Evisa Gjini
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
37
|
Díaz-Núñez M, Díez-Torre A, De Wever O, Andrade R, Arluzea J, Silió M, Aréchaga J. Histone deacetylase inhibitors induce invasion of human melanoma cells in vitro via differential regulation of N-cadherin expression and RhoA activity. BMC Cancer 2016; 16:667. [PMID: 27549189 PMCID: PMC4994393 DOI: 10.1186/s12885-016-2693-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/09/2016] [Indexed: 01/11/2023] Open
Abstract
Background Histone deacetylase inhibitors (HDACi) exert multiple cytotoxic actions on cancer cells. Currently, different synthetic HDACi are in clinical use or clinical trials; nevertheless, since both pro-invasive and anti-invasive activities have been described, there is some controversy about the effect of HDACi on melanoma cells. Methods Matrigel and Collagen invasion assays were performed to evaluate the effect of several HDACi (Butyrate, Trichostatin A, Valproic acid and Vorinostat) on two human melanoma cell line invasion (A375 and HT-144). The expression of N- and E-Cadherin and the activity of the RhoA GTPase were analyzed to elucidate the mechanisms involved in the HDACi activity. Results HDACi showed a pro-invasive effect on melanoma cells in vitro. This effect was accompanied by an up-regulation of N-cadherin expression and an inhibition of RhoA activity. Moreover, the down-regulation of N-cadherin through blocking antibodies or siRNA abrogated the pro-invasive effect of the HDACi and, additionally, the inhibition of the Rho/ROCK pathway led to an increase of melanoma cell invasion similar to that observed with the HDACi treatments. Conclusion These results suggest a role of N-cadherin and RhoA in HDACi induced invasion and call into question the suitability of some HDACi as antitumor agents for melanoma patients.
Collapse
Affiliation(s)
- María Díaz-Núñez
- Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology & Histology, Faculty of Medicine & Nursing, University of the Basque Country (UPV/EHU), Leioa, Biscay, Spain
| | - Alejandro Díez-Torre
- Analytical & High Resolution Biomedical Microscopy Core Facility, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Ricardo Andrade
- Analytical & High Resolution Biomedical Microscopy Core Facility, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jon Arluzea
- Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology & Histology, Faculty of Medicine & Nursing, University of the Basque Country (UPV/EHU), Leioa, Biscay, Spain.,Analytical & High Resolution Biomedical Microscopy Core Facility, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Margarita Silió
- Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology & Histology, Faculty of Medicine & Nursing, University of the Basque Country (UPV/EHU), Leioa, Biscay, Spain
| | - Juan Aréchaga
- Laboratory of Stem Cells, Development & Cancer, Department of Cell Biology & Histology, Faculty of Medicine & Nursing, University of the Basque Country (UPV/EHU), Leioa, Biscay, Spain. .,Analytical & High Resolution Biomedical Microscopy Core Facility, University of the Basque Country (UPV/EHU), Leioa, Spain. .,Department of Cell Biology & Histology, Faculty of Medicine & Dentistry, University of the Basque Country, E-48940, Leioa, Spain.
| |
Collapse
|
38
|
Emmons MF, Faião-Flores F, Smalley KSM. The role of phenotypic plasticity in the escape of cancer cells from targeted therapy. Biochem Pharmacol 2016; 122:1-9. [PMID: 27349985 DOI: 10.1016/j.bcp.2016.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
Abstract
Targeted therapy has proven to be beneficial at producing significant responses in patients with a wide variety of cancers. Despite initially impressive responses, most individuals ultimately fail these therapies and show signs of drug resistance. Very few patients are ever cured. Emerging evidence suggests that treatment of cancer cells with kinase inhibitors leads a minor population of cells to undergo a phenotypic switch to a more embryonic-like state. The adoption of this state, which is analogous to an epithelial-to-mesenchymal transition, is associated with drug resistance and increased tumor aggressiveness. In this commentary we will provide a comprehensive analysis of the mechanisms that underlie the embryonic reversion that occurs on targeted cancer therapy and will review potential novel therapeutic strategies designed to eradicate the escaping cells.
Collapse
Affiliation(s)
- Michael F Emmons
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Fernanda Faião-Flores
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA; The Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Keiran S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA; The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, USA.
| |
Collapse
|
39
|
Cornillie J, van Cann T, Wozniak A, Hompes D, Schöffski P. Biology and management of clear cell sarcoma: state of the art and future perspectives. Expert Rev Anticancer Ther 2016; 16:839-45. [PMID: 27253849 DOI: 10.1080/14737140.2016.1197122] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Clear cell sarcoma (CCS) is an aggressive tumor, typically developing in tendons or aponeuroses. The outcome of this orphan disease is poor, with 5-year and 10-year survival rates of localized CCS around 60-70% and 40-50%. Once the disease has metastasized, it is usually fatal due to its chemotherapy-resistant nature. Systemic treatment options are poorly standardized and the use of chemotherapy is based on weak scientific evidence. AREAS COVERED In this review, we systematically discuss the current scientific evidence for the systemic treatment of CCS, including tyrosine kinase inhibitors, immunotherapy and MET inhibitors. Expert commentary: Recent insights in the biology of CCS have identified new potential therapeutic targets, which should be tested in prospective clinical trials. Whenever possible, patients with metastatic CCS should be included in clinical trials with good biological rationale. Innovative trial methodology and new regulatory mechanisms are required to provide patients with uncommon cancers with active drugs.
Collapse
Affiliation(s)
- Jasmien Cornillie
- a Laboratory of Experimental Oncology, Department of Oncology, KU Leuven and Department of General Medical Oncology , University Hospitals Leuven, Leuven Cancer Institute , Leuven , Belgium
| | - Thomas van Cann
- a Laboratory of Experimental Oncology, Department of Oncology, KU Leuven and Department of General Medical Oncology , University Hospitals Leuven, Leuven Cancer Institute , Leuven , Belgium
| | - Agnieszka Wozniak
- a Laboratory of Experimental Oncology, Department of Oncology, KU Leuven and Department of General Medical Oncology , University Hospitals Leuven, Leuven Cancer Institute , Leuven , Belgium
| | - Daphne Hompes
- b Department of Surgical Oncology , KU Leuven and University Hospitals Leuven , Leuven , Belgium
| | - Patrick Schöffski
- a Laboratory of Experimental Oncology, Department of Oncology, KU Leuven and Department of General Medical Oncology , University Hospitals Leuven, Leuven Cancer Institute , Leuven , Belgium
| |
Collapse
|
40
|
Schmidt K, Joyce CE, Buquicchio F, Brown A, Ritz J, Distel RJ, Yoon CH, Novina CD. The lncRNA SLNCR1 Mediates Melanoma Invasion through a Conserved SRA1-like Region. Cell Rep 2016; 15:2025-37. [PMID: 27210747 DOI: 10.1016/j.celrep.2016.04.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/16/2016] [Accepted: 03/31/2016] [Indexed: 02/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in numerous physiological processes and diseases, most notably cancers. However, little is known about the mechanism of many functional lncRNAs. We identified an abundantly expressed lncRNA associated with decreased melanoma patient survival. Increased expression of this lncRNA, SLNCR1, mediates melanoma invasion through a highly conserved sequence similar to that of the lncRNA SRA1. Using a sensitive technique we term RATA (RNA-associated transcription factor array), we show that the brain-specific homeobox protein 3a (Brn3a) and the androgen receptor (AR) bind within and adjacent to SLNCR1's conserved region, respectively. SLNCR1, AR, and Brn3a are specifically required for transcriptional activation of matrix metalloproteinase 9 (MMP9) and increased melanoma invasion. Our observations directly link AR to melanoma invasion, possibly explaining why males experience more melanoma metastases and have an overall lower survival in comparison to females.
Collapse
Affiliation(s)
- Karyn Schmidt
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Cailin E Joyce
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Frank Buquicchio
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Adam Brown
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Justin Ritz
- Harvard School of Public Health, Boston, MA 02115, USA
| | - Robert J Distel
- Belfer Office for Dana-Farber Innovation, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Charles H Yoon
- Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Carl D Novina
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA.
| |
Collapse
|
41
|
High-throughput small molecule screen identifies inhibitors of aberrant chromatin accessibility. Proc Natl Acad Sci U S A 2016; 113:3018-23. [PMID: 26929321 DOI: 10.1073/pnas.1521827113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in chromatin-modifying proteins and transcription factors are commonly associated with a wide variety of cancers. Through gain- or loss-of-function, these mutations may result in characteristic alterations of accessible chromatin, indicative of shifts in the landscape of regulatory elements genome-wide. The identification of compounds that reverse a specific chromatin signature could lead to chemical probes or potential therapies. To explore whether chromatin accessibility could serve as a platform for small molecule screening, we adapted formaldehyde-assisted isolation of regulatory elements (FAIRE), a chemical method to enrich for nucleosome-depleted genomic regions, as a high-throughput, automated assay. After demonstrating the validity and robustness of this approach, we applied this method to screen an epigenetically targeted small molecule library by evaluating regions of aberrant nucleosome depletion mediated by EWSR1-FLI1, the chimeric transcription factor critical for the bone and soft tissue tumor Ewing sarcoma. As a class, histone deacetylase inhibitors were greatly overrepresented among active compounds. These compounds resulted in diminished accessibility at targeted sites by disrupting transcription of EWSR1-FLI1. Capitalizing on precise differences in chromatin accessibility for drug discovery efforts offers significant advantages because it does not depend on the a priori selection of a single molecular target and may detect novel biologically relevant pathways.
Collapse
|
42
|
Gallagher SJ, Tiffen JC, Hersey P. Histone Modifications, Modifiers and Readers in Melanoma Resistance to Targeted and Immune Therapy. Cancers (Basel) 2015; 7:1959-82. [PMID: 26426052 PMCID: PMC4695870 DOI: 10.3390/cancers7040870] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 02/06/2023] Open
Abstract
The treatment of melanoma has been revolutionized by new therapies targeting MAPK signaling or the immune system. Unfortunately these therapies are hindered by either primary resistance or the development of acquired resistance. Resistance mechanisms involving somatic mutations in genes associated with resistance have been identified in some cases of melanoma, however, the cause of resistance remains largely unexplained in other cases. The importance of epigenetic factors targeting histones and histone modifiers in driving the behavior of melanoma is only starting to be unraveled and provides significant opportunity to combat the problems of therapy resistance. There is also an increasing ability to target these epigenetic changes with new drugs that inhibit these modifications to either prevent or overcome resistance to both MAPK inhibitors and immunotherapy. This review focuses on changes in histones, histone reader proteins and histone positioning, which can mediate resistance to new therapeutics and that can be targeted for future therapies.
Collapse
Affiliation(s)
- Stuart J Gallagher
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| | - Jessamy C Tiffen
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| | - Peter Hersey
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| |
Collapse
|
43
|
Palmieri G, Ombra M, Colombino M, Casula M, Sini M, Manca A, Paliogiannis P, Ascierto PA, Cossu A. Multiple Molecular Pathways in Melanomagenesis: Characterization of Therapeutic Targets. Front Oncol 2015; 5:183. [PMID: 26322273 PMCID: PMC4530319 DOI: 10.3389/fonc.2015.00183] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/26/2015] [Indexed: 12/12/2022] Open
Abstract
Molecular mechanisms involved in pathogenesis of malignant melanoma have been widely studied and novel therapeutic treatments developed in recent past years. Molecular targets for therapy have mostly been recognized in the RAS–RAF–MEK–ERK and PI3K–AKT signaling pathways; small-molecule inhibitors were drawn to specifically target key kinases. Unfortunately, these targeted drugs may display intrinsic or acquired resistance and various evidences suggest that inhibition of a single effector of the signal transduction cascades involved in melanoma pathogenesis may be ineffective in blocking the tumor growth. In this sense, a wider comprehension of the multiple molecular alterations accounting for either response or resistance to treatments with targeted inhibitors may be helpful in assessing, which is the most effective combination of such therapies. In the present review, we summarize the known molecular mechanisms underlying either intrinsic and acquired drug resistance either alternative roads to melanoma pathogenesis, which may become targets for innovative anticancer approaches.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Unità di Genetica dei Tumori, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Sassari , Italy
| | - MariaNeve Ombra
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche , Avellino , Italy
| | - Maria Colombino
- Unità di Genetica dei Tumori, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Sassari , Italy
| | - Milena Casula
- Unità di Genetica dei Tumori, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Sassari , Italy
| | - MariaCristina Sini
- Unità di Genetica dei Tumori, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Sassari , Italy
| | - Antonella Manca
- Unità di Genetica dei Tumori, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Sassari , Italy
| | - Panagiotis Paliogiannis
- Dipartimento di Scienze Chirurgiche, Microchirurgiche e Mediche, Università di Sassari , Sassari , Italy
| | | | - Antonio Cossu
- Dipartimento di Scienze Chirurgiche, Microchirurgiche e Mediche, Università di Sassari , Sassari , Italy
| |
Collapse
|
44
|
Sancisi V, Gandolfi G, Ambrosetti DC, Ciarrocchi A. Histone Deacetylase Inhibitors Repress Tumoral Expression of the Proinvasive Factor RUNX2. Cancer Res 2015; 75:1868-82. [PMID: 25769725 DOI: 10.1158/0008-5472.can-14-2087] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/20/2015] [Indexed: 11/16/2022]
Abstract
Aberrant reactivation of embryonic pathways occurs commonly in cancer. The transcription factor RUNX2 plays a fundamental role during embryogenesis and is aberrantly reactivated during progression and metastasization of different types of human tumors. In this study, we attempted to dissect the molecular mechanisms governing RUNX2 expression and its aberrant reactivation. We identified a new regulatory enhancer element, located within the RUNX2 gene, which is responsible for the activation of the RUNX2 promoter and for the regulation of its expression in cancer cells. Furthermore, we have shown that treatment with the anticancer compounds histone deacetylase inhibitor (HDACi) results in a profound inhibition of RUNX2 expression, which is determined by the disruption of the transcription-activating complex on the identified enhancer. These data envisage a possible targeting strategy to counteract the oncongenic function of RUNX2 in cancer cells and provide evidence that the cytotoxic activity of HDACi in cancer is not only dependent on the reactivation of silenced oncosuppressors but also on the repression of oncogenic factors that are necessary for survival and progression.
Collapse
Affiliation(s)
- Valentina Sancisi
- Laboratory of Translational Research, Research and Statistic Infrastructure, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy.
| | - Greta Gandolfi
- Laboratory of Translational Research, Research and Statistic Infrastructure, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Davide Carlo Ambrosetti
- Laboratory of Molecular Biology, Department of Pharmacology and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Research and Statistic Infrastructure, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy.
| |
Collapse
|
45
|
Chen G, Davies MA. Targeted therapy resistance mechanisms and therapeutic implications in melanoma. Hematol Oncol Clin North Am 2015; 28:523-36. [PMID: 24880945 DOI: 10.1016/j.hoc.2014.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although selective mutant BRAF inhibitors have revolutionized the treatment of metastatic melanoma, the magnitude and duration of their clinical benefit are significantly undermined by de novo and acquired resistance. Functional studies, molecular characterization of clinical samples, and clinical trials are providing insights into the landscape of resistance mechanisms in this disease. These findings have implications for the development of rational therapeutic approaches, and have identified several challenges that remain to be overcome if outcomes are to be improved in patients with metastatic melanoma.
Collapse
Affiliation(s)
- Guo Chen
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 904, Houston, TX 77030, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 904, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Hartman ML, Czyz M. MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci 2014; 72:1249-60. [PMID: 25433395 PMCID: PMC4363485 DOI: 10.1007/s00018-014-1791-0] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 02/06/2023]
Abstract
MITF (microphthalmia-associated transcription factor) represents a melanocytic lineage-specific transcription factor whose role is profoundly extended in malignant melanoma. Over the last few years, the function of MITF has been tightly connected to plasticity of melanoma cells. MITF participates in executing diverse melanoma phenotypes defined by distinct gene expression profiles. Mutation-dependent alterations in MITF expression and activity have been found in a relatively small subset of melanomas. MITF activity is rather modulated by its upstream activators and suppressors operating on transcriptional, post-transcriptional and post-translational levels. These regulatory mechanisms also include epigenetic and microenvironmental signals. Several transcription factors and signaling pathways involved in the regulation of MITF expression and/or activity such as the Wnt/β-catenin pathway are broadly utilized by various types of tumors, whereas others, e.g., BRAFV600E/ERK1/2 are more specific for melanoma. Furthermore, the MITF activity can be affected by the availability of transcriptional co-partners that are often redirected by MITF from their own canonical signaling pathways. In this review, we discuss the complexity of a multilevel regulation of MITF expression and activity that underlies distinct context-related phenotypes of melanoma and might explain diverse responses of melanoma patients to currently used therapeutics.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | | |
Collapse
|
47
|
Pro-survival role of MITF in melanoma. J Invest Dermatol 2014; 135:352-358. [PMID: 25142731 DOI: 10.1038/jid.2014.319] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 01/09/2023]
Abstract
Melanoma is a therapy-resistant skin cancer due to numerous mechanisms supporting cell survival. Although components of melanoma cytoprotective mechanisms are overexpressed in many types of tumors, some of their regulators are characteristic for melanoma. Several genes mediating pro-survival functions have been identified as direct targets of microphthalmia-associated transcription factor (MITF), a melanocyte-specific modulator also recognized as a lineage addiction oncogene in melanoma. BRAF(V600E) and other proteins deregulated in melanoma influence MITF expression and activity, or they are the partners of MITF in melanoma response to radiotherapy and chemotherapeutics. In this review, the pro-survival activity of MITF is discussed.
Collapse
|
48
|
Shtivelman E, Davies MA, Hwu P, Yang J, Lotem M, Oren M, Flaherty KT, Fisher DE. Pathways and therapeutic targets in melanoma. Oncotarget 2014; 5:1701-52. [PMID: 24743024 PMCID: PMC4039128 DOI: 10.18632/oncotarget.1892] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/07/2014] [Indexed: 02/07/2023] Open
Abstract
This review aims to summarize the current knowledge of molecular pathways and their clinical relevance in melanoma. Metastatic melanoma was a grim diagnosis, but in recent years tremendous advances have been made in treatments. Chemotherapy provided little benefit in these patients, but development of targeted and new immune approaches made radical changes in prognosis. This would not have happened without remarkable advances in understanding the biology of disease and tremendous progress in the genomic (and other "omics") scale analyses of tumors. The big problems facing the field are no longer focused exclusively on the development of new treatment modalities, though this is a very busy area of clinical research. The focus shifted now to understanding and overcoming resistance to targeted therapies, and understanding the underlying causes of the heterogeneous responses to immune therapy.
Collapse
Affiliation(s)
| | | | - Patrick Hwu
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James Yang
- National Cancer Institute, NIH, Washington DC, USA
| | - Michal Lotem
- Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Moshe Oren
- The Weizmann Institute of Science, Rehovot, Israel
| | | | - David E. Fisher
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| |
Collapse
|
49
|
UV signaling pathways within the skin. J Invest Dermatol 2014; 134:2080-2085. [PMID: 24759085 PMCID: PMC4102648 DOI: 10.1038/jid.2014.161] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/25/2014] [Accepted: 03/12/2014] [Indexed: 11/08/2022]
Abstract
The effects of UVR on the skin include tanning, carcinogenesis, immunomodulation, and synthesis of vitamin D, among others. Melanocortin 1 receptor polymorphisms correlate with skin pigmentation, UV sensitivity, and skin cancer risk. This article reviews pathways through which UVR induces cutaneous stress and the pigmentation response. Modulators of the UV tanning pathway include sunscreen agents, MC1R activators, adenylate cyclase activators, phosphodiesterase 4D3 inhibitors, T oligos, and MITF regulators such as histone deacetylase (HDAC)-inhibitors. UVR, as one of the most ubiquitous carcinogens, represents both a challenge and enormous opportunity in skin cancer prevention.
Collapse
|
50
|
Roider EM, Fisher DE. The impact of MITF on melanoma development: news from bench and bedside. J Invest Dermatol 2014; 134:16-17. [PMID: 24352080 PMCID: PMC3899893 DOI: 10.1038/jid.2013.390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the current issue, two articles highlight the impact of MITF on melanoma development. In the first, Lister et al. (2013) reveal in vivo proof of MITF directly regulating tumor development in BRAFV600E melanomas. In the second, Sturm et al. (2013) present a clinical trial that emphasizes the importance of the recently discovered E318K MITF germline mutation in patients with multiple primary melanomas.
Collapse
Affiliation(s)
- Elisabeth M Roider
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|