1
|
Peng Y, Xiong R, Wang B, Chen X, Ning Y, Zhao Y, Yang N, Zhang J, Li C, Zhou Y, Li P. The Essential Role of Angiogenesis in Adenosine 2A Receptor Deficiency-mediated Impairment of Wound Healing Involving c-Ski via the ERK/CREB Pathways. Int J Biol Sci 2024; 20:4532-4550. [PMID: 39247808 PMCID: PMC11380447 DOI: 10.7150/ijbs.98856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Adenosine receptor-mediated signaling, especially adenosine A2A receptor (A2AR) signaling, has been implicated in wound healing. However, the role of endothelial cells (ECs) in A2AR-mediated wound healing and the mechanism underlying this effect are still unclear. Here, we showed that the expression of A2AR substantially increased after wounding and was especially prominent in granulation tissue. The delaying effects of A2AR knockout (KO) on wound healing are due mainly to the effect of A2AR on endothelial cells, as shown with A2AR-KO and EC-A2AR-KO mice. Moreover, the expression of c-Ski, which is especially prominent in CD31-positive cells in granulation tissue, increased after wounding and was decreased by both EC-A2AR KO and A2AR KO. In human microvascular ECs (HMECs), A2AR activation induced EC proliferation, migration, tubule formation and c-Ski expression, whereas c-Ski depletion by RNAi abolished these effects. Mechanistically, A2AR activation promotes the expression of c-Ski through an ERK/CREB-dependent pathway. Thus, A2AR-mediated angiogenesis plays a critical role in wound healing, and c-Ski is involved mainly in the regulation of angiogenesis by A2AR via the ERK/CREB pathway. These findings identify A2AR as a therapeutic target in wound repair and other angiogenesis-dependent tissue repair processes.
Collapse
Affiliation(s)
- Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Renping Xiong
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Bo Wang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Xing Chen
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Yalei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Nan Yang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Jing Zhang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Changhong Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Yuanguo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| |
Collapse
|
2
|
Fu L, Liu R, Ma V, Shi YB. Upregulation of proto-oncogene ski by thyroid hormone in the intestine and tail during Xenopus metamorphosis. Gen Comp Endocrinol 2022; 328:114102. [PMID: 35944650 PMCID: PMC9530006 DOI: 10.1016/j.ygcen.2022.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Thyroid hormone (T3) is important for adult organ function and vertebrate development, particularly during the postembryonic period when many organs develop/mature into their adult forms. Amphibian metamorphosis is totally dependent on T3 and can be easily manipulated, thus offering a unique opportunity for studying how T3 controls postembryonic development in vertebrates. Numerous early studies have demonstrated that T3 affects frog metamorphosis through T3 receptor (TR)-mediated regulation of T3 response genes, where TR forms a heterodimer with RXR (9-cis retinoic acid receptor) and binds to T3 response elements (TREs) in T3 response genes to regulate their expression. We have previously identified many candidate direct T3 response genes in Xenopus tropicalis tadpole intestine. Among them is the proto-oncogene Ski, which encodes a nuclear protein with complex function in regulating cell fate. We show here that Ski is upregulated in the intestine and tail of premetamorphic tadpoles upon T3 treatment and its expression peaks at stage 62, the climax of metamorphosis. We have further discovered a putative TRE in the first exon that can bind to TR/RXR in vitro and mediate T3 regulation of the promoter in vivo. These data demonstrate that Ski is activated by T3 through TR binding to a TRE in the first exon during Xenopus tropicalis metamorphosis, implicating a role of Ski in regulating cell fate during metamorphosis.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Liu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Vincent Ma
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Thielen N, Neefjes M, Wiegertjes R, van den Akker G, Vitters E, van Beuningen H, Blaney Davidson E, Koenders M, van Lent P, van de Loo F, van Caam A, van der Kraan P. Osteoarthritis-Related Inflammation Blocks TGF-β's Protective Effect on Chondrocyte Hypertrophy via (de)Phosphorylation of the SMAD2/3 Linker Region. Int J Mol Sci 2021; 22:ijms22158124. [PMID: 34360888 PMCID: PMC8347103 DOI: 10.3390/ijms22158124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by irreversible cartilage damage, inflammation and altered chondrocyte phenotype. Transforming growth factor-β (TGF-β) signaling via SMAD2/3 is crucial for blocking hypertrophy. The post-translational modifications of these SMAD proteins in the linker domain regulate their function and these can be triggered by inflammation through the activation of kinases or phosphatases. Therefore, we investigated if OA-related inflammation affects TGF-β signaling via SMAD2/3 linker-modifications in chondrocytes. We found that both Interleukin (IL)-1β and OA-synovium conditioned medium negated SMAD2/3 transcriptional activity in chondrocytes. This inhibition of TGF-β signaling was enhanced if SMAD3 could not be phosphorylated on Ser213 in the linker region and the inhibition by IL-1β was less if the SMAD3 linker could not be phosphorylated at Ser204. Our study shows evidence that inflammation inhibits SMAD2/3 signaling in chondrocytes via SMAD linker (de)-phosphorylation. The involvement of linker region modifications may represent a new therapeutic target for OA.
Collapse
Affiliation(s)
- Nathalie Thielen
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Margot Neefjes
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Renske Wiegertjes
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Guus van den Akker
- Department of Orthopedic Surgery, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Elly Vitters
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Henk van Beuningen
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Esmeralda Blaney Davidson
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Marije Koenders
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Peter van Lent
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Fons van de Loo
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Arjan van Caam
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
| | - Peter van der Kraan
- Department of Experimental Rheumatology, Radboud University Medical Center, 6500 MD Nijmegen, The Netherlands; (N.T.); (M.N.); (R.W.); (E.V.); (H.v.B.); (E.B.D.); (M.K.); (P.v.L.); (F.v.d.L.); (A.v.C.)
- Correspondence:
| |
Collapse
|
4
|
Li P, Wang QS, Zhai Y, Xiong RP, Chen X, Liu P, Peng Y, Zhao Y, Ning YL, Yang N, Zhou YG. Ski mediates TGF-β1-induced fibrosarcoma cell proliferation and promotes tumor growth. J Cancer 2020; 11:5929-5940. [PMID: 32922535 PMCID: PMC7477421 DOI: 10.7150/jca.46074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/20/2020] [Indexed: 11/05/2022] Open
Abstract
Background: TGF-β1 promotes cell proliferation in only some tumors and exerts bidirectional regulatory effects on the proliferation of fibroblasts. This study intends to explore whether the mechanism is related to increased expression of Ski. Methods: Cell proliferation of the fibrosarcoma cell line L929 was assessed with an ELISA BrdU kit. The mRNA and protein expression levels of the corresponding factors were measured by RT-qPCR, immunohistochemistry or Western blotting in vitro and in vivo. Additionally, c-Ski was knocked down using RNAi. The expression of Ski in human dermatofibrosarcoma protuberans (DFSP) specimens was measured by immunohistochemistry. Results: TGF-β1 promoted the continued proliferation of L929 cells in a dose-dependent manner, with increased c-Ski expression levels. Conversely, inhibition of c-Ski significantly abrogated this unidirectional effect, significantly inhibited the decrease in p21 protein levels and did not affect the increase in p-Smad2/3 levels upon TGF-β1 treatment. Similarly, inhibition of c-Ski significantly abrogated the growth-promoting effect of TGF-β1 on xenograft tumors. Furthermore, we found that high expression of Ski in DFSP was correlated with a low degree of tumor differentiation. Conclusions: Our data reveal that high c-Ski expression is a cause of TGF-β1-promoted proliferation in fibrosarcoma tumor cells and show that inhibiting Ski expression might be effective for treating tumors with high Ski levels.
Collapse
Affiliation(s)
- Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Qiu-Shi Wang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China.,Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yu Zhai
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Ren-Ping Xiong
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Xing Chen
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Ping Liu
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Ya-Lei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Nan Yang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| |
Collapse
|
5
|
Zhao X, Fang Y, Wang X, Yang Z, Li D, Tian M, Kang P. Knockdown of Ski decreases osteosarcoma cell proliferation and migration by suppressing the PI3K/Akt signaling pathway. Int J Oncol 2019; 56:206-218. [PMID: 31746363 PMCID: PMC6910224 DOI: 10.3892/ijo.2019.4914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
Ski, an evolutionary conserved protein, is involved in the development of a number of tumors, such as Barrett's esophagus, leukemia, colorectal cancer, gastric cancer, pancreatic cancer, hemangiomas and melanoma. However, studies on the functions of Ski in osteosarcoma (OS) are limited. In this study, firstly the differential expression of Ski in OS tissues and osteochondroma tissues was detected, and the expression of Ski in both human OS cell lines (MG63 and U2OS) and normal osteoblasts (hFoB1.19) was then detected. The results demonstrated that Ski expression was significantly upregulated in both human OS tissues and cell lines. The results led us to hypothesize that Ski may play an essential role in the pathological process of OS. Thus, Ski specific small interfere RNA (Ski-siRNA) was used. The results revealed that OS cell proliferation was markedly inhibited following the knockdown of Ski, which was identified by CCK8 assay, EdU staining and cell cycle analysis. In addition, OS cell migration was significantly suppressed following Ski knockdown, which was identified by wound healing assay. Moreover, the protein levels of p-PI3K and p-Akt in OS cells declined prominently following Ski knockdown. On the whole, the findings of this study revealed that Ski expression was significantly upregulated in OS tissue and OS cells. The knockdown of Ski decreased OS cell proliferation and migration, which was mediated by blocking the PI3K/Akt signaling pathway. Thus, Ski may act as a tumor promoter gene in tumorigenesis, and Ski may prove to be a potential therapeutic target for the treatment of OS.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuying Fang
- Weifang Maternal and Child Health Hospital, Weifang, Shandong 261000, P.R. China
| | - Xingwen Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Zhouyuan Yang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Donghai Li
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meng Tian
- Neurosurgery Research Laboratory, West China Hospital, Sichuan Univerisity, Chengdu, Sichuan 610041, P.R. China
| | - Pengde Kang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
6
|
Feld C, Sahu P, Frech M, Finkernagel F, Nist A, Stiewe T, Bauer UM, Neubauer A. Combined cistrome and transcriptome analysis of SKI in AML cells identifies SKI as a co-repressor for RUNX1. Nucleic Acids Res 2019; 46:3412-3428. [PMID: 29471413 PMCID: PMC5909421 DOI: 10.1093/nar/gky119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/09/2018] [Indexed: 11/16/2022] Open
Abstract
SKI is a transcriptional co-regulator and overexpressed in various human tumors, for example in acute myeloid leukemia (AML). SKI contributes to the origin and maintenance of the leukemic phenotype. Here, we use ChIP-seq and RNA-seq analysis to identify the epigenetic alterations induced by SKI overexpression in AML cells. We show that approximately two thirds of differentially expressed genes are up-regulated upon SKI deletion, of which >40% harbor SKI binding sites in their proximity, primarily in enhancer regions. Gene ontology analysis reveals that many of the differentially expressed genes are annotated to hematopoietic cell differentiation and inflammatory response, corroborating our finding that SKI contributes to a myeloid differentiation block in HL60 cells. We find that SKI peaks are enriched for RUNX1 consensus motifs, particularly in up-regulated SKI targets upon SKI deletion. RUNX1 ChIP-seq displays that nearly 70% of RUNX1 binding sites overlap with SKI peaks, mainly at enhancer regions. SKI and RUNX1 occupy the same genomic sites and cooperate in gene silencing. Our work demonstrates for the first time the predominant co-repressive function of SKI in AML cells on a genome-wide scale and uncovers the transcription factor RUNX1 as an important mediator of SKI-dependent transcriptional repression.
Collapse
Affiliation(s)
- Christine Feld
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany.,Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| | - Peeyush Sahu
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Miriam Frech
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany.,Institute of Molecular Oncology, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Uta-Maria Bauer
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Andreas Neubauer
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| |
Collapse
|
7
|
Gamage TKJB, Schierding W, Hurley D, Tsai P, Ludgate JL, Bhoothpur C, Chamley LW, Weeks RJ, Macaulay EC, James JL. The role of DNA methylation in human trophoblast differentiation. Epigenetics 2018; 13:1154-1173. [PMID: 30475094 DOI: 10.1080/15592294.2018.1549462] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The placenta is a vital fetal exchange organ connecting mother and baby. Specialised placental epithelial cells, called trophoblasts, are essential for adequate placental function. Trophoblasts transform the maternal vasculature to allow efficient blood flow to the placenta and facilitate adequate nutrient uptake. Placental development is in part regulated by epigenetic mechanisms. However, our understanding of how DNA methylation contributes to human trophoblast differentiation is limited. To better understand how genome-wide methylation differences affect trophoblast differentiation, reduced representation bisulfite sequencing (RRBS) was conducted on four matched sets of trophoblasts; side-population trophoblasts (a candidate human trophoblast stem cell population), cytotrophoblasts (an intermediate progenitor population), and extravillous trophoblasts (EVT, a terminally differentiated population) each isolated from the same first trimester placenta. Each trophoblast population had a distinct methylome. In line with their close differentiation relationship, the methylation profile of side-population trophoblasts was most similar to cytotrophoblasts, whilst EVT had the most distinct methylome. In comparison to mature trophoblast populations, side-population trophoblasts exhibited differential methylation of genes and miRNAs involved in cell cycle regulation, differentiation, and regulation of pluripotency. A combined methylomic and transcriptomic approach was taken to better understand cytotrophoblast differentiation to EVT. This revealed methylation of 41 genes involved in epithelial to mesenchymal transition and metastatic cancer pathways, which likely contributes to the acquisition of an invasive EVT phenotype. However, the methylation status of a gene did not always predict gene expression. Therefore, while CpG methylation plays a role in trophoblast differentiation, it is likely not the only regulatory mechanism involved in this process.
Collapse
Affiliation(s)
- Teena K J B Gamage
- a Department of Obstetrics and Gynaecology , The University of Auckland , Auckland , New Zealand
| | - William Schierding
- a Department of Obstetrics and Gynaecology , The University of Auckland , Auckland , New Zealand
| | - Daniel Hurley
- b Systems Biology Laboratory, Melbourne School of Engineering , University of Melbourne , Melbourne , Australia
| | - Peter Tsai
- a Department of Obstetrics and Gynaecology , The University of Auckland , Auckland , New Zealand
| | - Jackie L Ludgate
- c Department of Pathology, Dunedin School of Medicine , University of Otago , Dunedin , New Zealand
| | | | - Lawrence W Chamley
- a Department of Obstetrics and Gynaecology , The University of Auckland , Auckland , New Zealand
| | - Robert J Weeks
- c Department of Pathology, Dunedin School of Medicine , University of Otago , Dunedin , New Zealand
| | - Erin C Macaulay
- c Department of Pathology, Dunedin School of Medicine , University of Otago , Dunedin , New Zealand
| | - Joanna L James
- a Department of Obstetrics and Gynaecology , The University of Auckland , Auckland , New Zealand
| |
Collapse
|
8
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
9
|
Zhao X, Wang XW, Zhou KS, Nan W, Guo YQ, Kou JL, Wang J, Xia YY, Zhang HH. Expression of Ski and its role in astrocyte proliferation and migration. Neuroscience 2017; 362:1-12. [DOI: 10.1016/j.neuroscience.2017.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 10/19/2022]
|
10
|
Walton E, Pingault JB, Cecil CAM, Gaunt TR, Relton C, Mill J, Barker ED. Epigenetic profiling of ADHD symptoms trajectories: a prospective, methylome-wide study. Mol Psychiatry 2017; 22:250-256. [PMID: 27217153 PMCID: PMC5014094 DOI: 10.1038/mp.2016.85] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/09/2016] [Accepted: 04/15/2016] [Indexed: 12/16/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent developmental disorder, associated with a range of long-term impairments. Variation in DNA methylation, an epigenetic mechanism, is implicated in both neurobiological functioning and psychiatric health. However, the potential role of DNA methylation in ADHD symptoms is currently unclear. In this study, we examined data from the Avon Longitudinal Study of Parents and Children (ALSPAC)-specifically the subsample forming the Accessible Resource for Integrated Epigenomics Studies (ARIES)-that includes (1) peripheral measures of DNA methylation (Illumina 450k) at birth (n=817, 49% male) and age 7 (n=892, 50% male) and (2) trajectories of ADHD symptoms (7-15 years). We first employed a genome-wide analysis to test whether DNA methylation at birth associates with later ADHD trajectories; and then followed up at age 7 to investigate the stability of associations across early childhood. We found that DNA methylation at birth differentiated ADHD trajectories across multiple genomic locations, including probes annotated to SKI (involved in neural tube development), ZNF544 (previously implicated in ADHD), ST3GAL3 (linked to intellectual disability) and PEX2 (related to perixosomal processes). None of these probes maintained an association with ADHD trajectories at age 7. Findings lend novel insights into the epigenetic landscape of ADHD symptoms, highlighting the potential importance of DNA methylation variation in genes related to neurodevelopmental and peroxisomal processes that play a key role in the maturation and stability of cortical circuits.
Collapse
Affiliation(s)
- Esther Walton
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Jean-Baptiste Pingault
- Division of Psychology and Language Sciences, University College London, UK
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Charlotte AM Cecil
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Tom R. Gaunt
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Caroline Relton
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Jonathan Mill
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Edward D. Barker
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| |
Collapse
|
11
|
Song L, Chen X, Gao S, Zhang C, Qu C, Wang P, Liu L. Ski modulate the characteristics of pancreatic cancer stem cells via regulating sonic hedgehog signaling pathway. Tumour Biol 2016; 37:10.1007/s13277-016-5461-8. [PMID: 27734340 DOI: 10.1007/s13277-016-5461-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/23/2016] [Indexed: 01/03/2023] Open
Abstract
Evidence from in vitro and in vivo studies shows that Ski may act as both a tumor proliferation-promoting factor and a metastatic suppressor in human pancreatic cancer and also may be a therapeutic target of integrative therapies. At present, pancreatic cancer stem cells (CSCs) are responsible for tumor recurrence accompanied by resistance to conventional therapies. Sonic hedgehog (Shh) signaling pathway is found to be aberrantly activated in CSCs. The objectives of this study were to investigate the role of Ski in modulating pancreatic CSCs and to examine the molecular mechanisms involved in pancreatic cancer treatment both in vivo and in vitro. In in vitro study, the results showed that enhanced Ski expression could increase the expression of pluripotency maintaining markers, such as CD24, CD44, Sox-2, and Oct-4, and also components of Shh signaling pathway, such as Shh, Ptch-1, Smo, Gli-1, and Gli-2, whereas depletion of Ski to the contrary. Then, we investigated the underlying mechanism and found that inhibiting Gli-2 expression by short interfering RNA (siRNA) can decrease the effects of Ski on the maintenance of pancreatic CSCs, indicating that Ski mediates the pluripotency of pancreatic CSCs mainly through Shh pathway. The conclusion is that Ski may be an important factor in maintaining the stemness of pancreatic CSCs through modulating Shh pathway.
Collapse
Affiliation(s)
- Libin Song
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiangyuan Chen
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Anaesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Song Gao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenyue Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Qu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Luming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Smith MP, Brunton H, Rowling EJ, Ferguson J, Arozarena I, Miskolczi Z, Lee JL, Girotti MR, Marais R, Levesque MP, Dummer R, Frederick DT, Flaherty KT, Cooper ZA, Wargo JA, Wellbrock C. Inhibiting Drivers of Non-mutational Drug Tolerance Is a Salvage Strategy for Targeted Melanoma Therapy. Cancer Cell 2016; 29:270-284. [PMID: 26977879 PMCID: PMC4796027 DOI: 10.1016/j.ccell.2016.02.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/18/2015] [Accepted: 02/08/2016] [Indexed: 01/19/2023]
Abstract
Once melanomas have progressed with acquired resistance to mitogen-activated protein kinase (MAPK)-targeted therapy, mutational heterogeneity presents a major challenge. We therefore examined the therapy phase before acquired resistance had developed and discovered the melanoma survival oncogene MITF as a driver of an early non-mutational and reversible drug-tolerance state, which is induced by PAX3-mediated upregulation of MITF. A drug-repositioning screen identified the HIV1-protease inhibitor nelfinavir as potent suppressor of PAX3 and MITF expression. Nelfinavir profoundly sensitizes BRAF and NRAS mutant melanoma cells to MAPK-pathway inhibitors. Moreover, nelfinavir is effective in BRAF and NRAS mutant melanoma cells isolated from patients progressed on MAPK inhibitor (MAPKi) therapy and in BRAF/NRAS/PTEN mutant tumors. We demonstrate that inhibiting a driver of MAPKi-induced drug tolerance could improve current approaches of targeted melanoma therapy.
Collapse
Affiliation(s)
- Michael P Smith
- Manchester Cancer Research Centre, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Holly Brunton
- Manchester Cancer Research Centre, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Emily J Rowling
- Manchester Cancer Research Centre, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Jennifer Ferguson
- Manchester Cancer Research Centre, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Imanol Arozarena
- Manchester Cancer Research Centre, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Zsofia Miskolczi
- Manchester Cancer Research Centre, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Jessica L Lee
- Manchester Cancer Research Centre, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Maria R Girotti
- Molecular Oncology Group, CRUK Manchester Institute for Cancer Research, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4BX, UK
| | - Richard Marais
- Molecular Oncology Group, CRUK Manchester Institute for Cancer Research, Manchester Cancer Research Centre, Wilmslow Road, Manchester, M20 4BX, UK
| | - Mitchell P Levesque
- Department of Dermatology, UniversitätsSpital Zürich, University of Zürich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, UniversitätsSpital Zürich, University of Zürich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Dennie T Frederick
- Department of Medicine, Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA 02114-2696, USA
| | - Keith T Flaherty
- Department of Medicine, Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA 02114-2696, USA
| | - Zachary A Cooper
- Divison of Surgical Oncology, University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Divison of Surgical Oncology, University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
13
|
Martinez-Cardús A, Vizoso M, Moran S, Manzano JL. Epigenetic mechanisms involved in melanoma pathogenesis and chemoresistance. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:209. [PMID: 26488005 DOI: 10.3978/j.issn.2305-5839.2015.06.20] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The discovery of highly recurrent mutations in melanoma, such as BRAF(V600E), completely changed the clinical management including therapy of melanoma patients. In the era of Personalized Medicine targeted melanoma therapies showed high response rates, currently evidenced by BRAF inhibitors or immune-stimulating therapies. In addition to genetic biomarkers, epigenetic knowledge in melanoma has undergone a major step forward in recent years. In particular, epigenetics is unveiling new perspectives to fight this disease, providing an encouraging number of DNA methylation based biomarkers that will likely improve patient stratification for prognosis and treatment. In this regard, putative targetable biomarkers or those with predictive value for the outcome of currently applied therapies are promising tools for future precision oncology strategies. In addition, the progress made in genetic and epigenetic profiling technologies and their reconfiguration to real-time clinical screening approaches makes personalized medicine in melanoma an achievable objective in upcoming years.
Collapse
Affiliation(s)
- Anna Martinez-Cardús
- 1 Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain ; 2 Medical Oncology Service, Catalan Institute of Oncology, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Miguel Vizoso
- 1 Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain ; 2 Medical Oncology Service, Catalan Institute of Oncology, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Sebastian Moran
- 1 Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain ; 2 Medical Oncology Service, Catalan Institute of Oncology, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Jose Luis Manzano
- 1 Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain ; 2 Medical Oncology Service, Catalan Institute of Oncology, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| |
Collapse
|
14
|
TGF-β signal shifting between tumor suppression and fibro-carcinogenesis in human chronic liver diseases. J Gastroenterol 2014; 49:971-81. [PMID: 24263677 DOI: 10.1007/s00535-013-0910-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/04/2013] [Indexed: 02/04/2023]
Abstract
Perturbation of transforming growth factor (TGF)-β signaling in hepatocytes persistently infected with hepatitis viruses promotes both fibrogenesis and carcinogenesis (fibro-carcinogenesis). Insights into hepatocytic fibro-carcinogenesis have emerged from recent detailed analyses of context-dependent and cell type-specific TGF-β signaling processes directed by multiple phosphorylated forms (phospho-isoforms) of Smad mediators. In the course of hepatitis virus-related chronic liver diseases, chronic inflammation, ongoing viral infection, and host genetic/epigenetic alterations additively shift hepatocytic Smad phospho-isoform signaling from tumor suppression to fibro-carcinogenesis, accelerating liver fibrosis and increasing risk of hepatocellular carcinoma (HCC). After successful antiviral therapy, patients with chronic hepatitis can experience less risk of HCC occurrence by reversing Smad phospho-isoform signaling from fibro-carcinogenesis to tumor suppression. However, patients with cirrhosis can still develop HCC owing to sustained, intense fibro-carcinogenic signaling. Recent progress in understanding Smad phospho-isoform signaling should permit use of Smad phosphorylation as a tool predicting the likelihood of liver disease progression, and as a biomarker for assessing the effectiveness of interventions aimed at reducing fibrosis and cancer risk.
Collapse
|
15
|
Matsuzaki K. Smad phospho-isoforms direct context-dependent TGF-β signaling. Cytokine Growth Factor Rev 2013; 24:385-99. [PMID: 23871609 DOI: 10.1016/j.cytogfr.2013.06.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/12/2013] [Indexed: 02/06/2023]
Abstract
Better understanding of TGF-β signaling has deepened our appreciation of normal epithelial cell homeostasis and its dysfunction in such human disorders as cancer and fibrosis. Smad proteins, which convey signals from TGF-β receptors to the nucleus, possess intermediate linker regions connecting Mad homology domains. Membrane-bound, cytoplasmic, and nuclear protein kinases differentially phosphorylate Smad2 and Smad3 to create C-tail (C), the linker (L), or dually (L/C) phosphorylated (p, phospho-) isoforms. According to domain-specific phosphorylation, distinct transcriptional responses, and selective metabolism, Smad phospho-isoform pathways can be grouped into 4 types: cytostatic pSmad3C signaling, mitogenic pSmad3L (Ser-213) signaling, invasive/fibrogenic pSmad2L (Ser-245/250/255)/C or pSmad3L (Ser-204)/C signaling, and mitogenic/migratory pSmad2/3L (Thr-220/179)/C signaling. We outline how responses to TGF-β change through the multiple Smad phospho-isoforms as normal epithelial cells mature from stem cells through progenitors to differentiated cells, and further reflect upon how constitutive Ras-activating mutants favor the Smad phospho-isoform pathway promoting tumor progression. Finally, clinical analyses of reversible Smad phospho-isoform signaling during human carcinogenesis could assess effectiveness of interventions aimed at reducing human cancer risk. Spatiotemporally separate, functionally different Smad phospho-isoforms have been identified in specific cells and tissues, answering long-standing questions about context-dependent TGF-β signaling.
Collapse
Affiliation(s)
- Koichi Matsuzaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, 10-15 Fumizonocho, Moriguchi, Osaka 570-8506, Japan.
| |
Collapse
|
16
|
Perrot CY, Javelaud D, Mauviel A. Insights into the Transforming Growth Factor-β Signaling Pathway in Cutaneous Melanoma. Ann Dermatol 2013; 25:135-44. [PMID: 23717002 PMCID: PMC3662904 DOI: 10.5021/ad.2013.25.2.135] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a pleiotropic growth factor with broad tissue distribution that plays critical roles during embryonic development, normal tissue homeostasis, and cancer. While its cytostatic activity on normal epithelial cells initially defined TGF-β signaling as a tumor suppressor pathway, there is ample evidence indicating that TGF-β is a potent pro-tumorigenic agent, acting via autocrine and paracrine mechanisms to promote peri-tumoral angiogenesis, together with tumor cell migration, immune escape, and dissemination to metastatic sites. This review summarizes the current knowledge on the implication of TGF-β signaling in melanoma.
Collapse
Affiliation(s)
- Carole Yolande Perrot
- Institut Curie, Team "TGF-β and Oncogenesis", Equipe Labellisée Ligue Contre le Cancer, Orsay, France
- INSERM U1021 Orsay, France
- CNRS UMR 3347, Orsay, France
| | - Delphine Javelaud
- Institut Curie, Team "TGF-β and Oncogenesis", Equipe Labellisée Ligue Contre le Cancer, Orsay, France
- INSERM U1021 Orsay, France
- CNRS UMR 3347, Orsay, France
| | - Alain Mauviel
- Institut Curie, Team "TGF-β and Oncogenesis", Equipe Labellisée Ligue Contre le Cancer, Orsay, France
- INSERM U1021 Orsay, France
- CNRS UMR 3347, Orsay, France
| |
Collapse
|
17
|
Klein RM, Bernstein D, Higgins SP, Higgins CE, Higgins PJ. SERPINE1 expression discriminates site-specific metastasis in human melanoma. Exp Dermatol 2012; 21:551-4. [PMID: 22716255 DOI: 10.1111/j.1600-0625.2012.01523.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Depth of invasion, a quantifier of vertical growth, is a major cutaneous melanoma staging factor. Stromal penetrance requires pericellular proteolysis regulated by the serine protease and matrix metalloproteinase cascades. The serine protease inhibitor SERPINE1, a poor prognosis biomarker in various cancers, promotes tumor progression likely by titrating the extent and local of plasmin-initiated matrix remodelling. SERPINE1 in human melanoma was assessed using tissue arrays that included primary/metastatic tumors and normal skin. SERPINE1 was basal layer-restricted in the normal epidermis. SERPINE1 immunoreactivity was evident in 27/28 primary (96%) and 24/26 metastatic tumors (92%); cutaneous metastases (80%) had significantly elevated SERPINE1 levels compared with low signals characteristic of lymph node lesions. Moderate SERPINE1 expression was a general finding in primary melanoma, whereas reduced or increased SERPINE1 immunolocalization typified metastatic deposits. The amplitude of SERPINE1 expression may impact melanoma site-specific dissemination, with cutaneous metastases representing a high-SERPINE1 tumor subtype.
Collapse
|
18
|
Humbert L, Lebrun JJ. TGF-beta inhibits human cutaneous melanoma cell migration and invasion through regulation of the plasminogen activator system. Cell Signal 2012; 25:490-500. [PMID: 23085456 DOI: 10.1016/j.cellsig.2012.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/09/2012] [Accepted: 10/16/2012] [Indexed: 11/24/2022]
Abstract
Over the past decades, the incidence of cutaneous melanoma in developed countries has increased faster than any other cancer. Although most patients have localized disease at the time of diagnosis and are cured by surgical excision of the primary tumor, melanoma can be highly malignant and the survival dramatically decreases for advanced stage melanomas. It is thus necessary to understand the progression of this disease. Cell migration and invasion promote tumor metastasis, the major cause of melanoma cancer morbidity and death. In this study, we investigated the role of the TGFβ/Smad signaling pathway in melanoma tumor progression and found TGFβ to potently inhibit both cell migration and invasion in human melanoma cell lines, established from different patients. Furthermore, we elucidated the molecular mechanisms by which TGFβ exerts its effects and found the plasminogen activation system (PAS) to play a central role in the regulation of these effects. We found TGFβ to strongly up-regulate the Plasminogen Activator Inhibitor-1 (PAI-1) in melanoma cells, leading to reduced plasmin generation and activity and, in turn to inhibition of cell migration and invasion. Together, our results define TGFβ as a potent suppressor of tumor progression in cutaneous melanoma, inhibiting both cell migration and invasion.
Collapse
Affiliation(s)
- Laure Humbert
- Division of Medical Oncology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | | |
Collapse
|
19
|
Abushahba W, Olabisi OO, Jeong BS, Boregowda RK, Wen Y, Liu F, Goydos JS, Lasfar A, Cohen-Solal KA. Non-canonical Smads phosphorylation induced by the glutamate release inhibitor, riluzole, through GSK3 activation in melanoma. PLoS One 2012; 7:e47312. [PMID: 23077590 PMCID: PMC3470581 DOI: 10.1371/journal.pone.0047312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/11/2012] [Indexed: 12/25/2022] Open
Abstract
Riluzole, an inhibitor of glutamate release, has shown the ability to inhibit melanoma cell xenograft growth. A phase 0 clinical trial of riluzole as a single agent in patients with melanoma resulted in involution of tumors associated with inhibition of both the mitogen-activated protein kinase (MAPK) and phophoinositide-3-kinase/AKT (PI3K/AKT) pathways in 34% of patients. In the present study, we demonstrate that riluzole inhibits AKT-mediated glycogen synthase kinase 3 (GSK3) phosphorylation in melanoma cell lines. Because we have demonstrated that GSK3 is involved in the phosphorylation of two downstream effectors of transforming growth factor beta (TGFβ), Smad2 and Smad3, at their linker domain, our aim was to determine whether riluzole could induce GSK3β-mediated linker phosphorylation of Smad2 and Smad3. We present evidence that riluzole increases Smad2 and Smad3 linker phosphorylation at the cluster of serines 245/250/255 and serine 204 respectively. Using GSK3 inhibitors and siRNA knock-down, we demonstrate that the mechanism of riluzole-induced Smad phosphorylation involved GSK3β. In addition, GSK3β could phosphorylate the same linker sites in vitro. The riluzole-induced Smad linker phosphorylation is mechanistically different from the Smad linker phosphorylation induced by TGFβ. We also demonstrate that riluzole-induced Smad linker phosphorylation is independent of the expression of the metabotropic glutamate receptor 1 (GRM1), which is one of the glutamate receptors whose involvement in human melanoma has been documented. We further show that riluzole upregulates the expression of INHBB and PLAU, two genes associated with the TGFβ signaling pathway. The non-canonical increase in Smad linker phosphorylation induced by riluzole could contribute to the modulation of the pro-oncogenic functions of Smads in late stage melanomas.
Collapse
Affiliation(s)
- Walid Abushahba
- Department of Medicine, Division of Medical Oncology, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Oyenike O. Olabisi
- Department of Medicine, Division of Medical Oncology, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Byeong-Seon Jeong
- Department of Surgery, Division of Surgical Oncology, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Rajeev K. Boregowda
- Department of Medicine, Division of Medical Oncology, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Yu Wen
- Department of Surgery, Division of Surgical Oncology, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Fang Liu
- Center for Advanced Biotechnology and Medicine, Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - James S. Goydos
- Department of Surgery, Division of Surgical Oncology, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Karine A. Cohen-Solal
- Department of Medicine, Division of Medical Oncology, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
20
|
Pierrat MJ, Marsaud V, Mauviel A, Javelaud D. Expression of microphthalmia-associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor-β. J Biol Chem 2012; 287:17996-8004. [PMID: 22496449 DOI: 10.1074/jbc.m112.358341] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The melanocyte-specific transcription factor M-MITF is involved in numerous aspects of melanoblast lineage biology including pigmentation, survival, and migration. It plays complex roles at all stages of melanoma progression and metastasis. We established previously that GLI2, a Kruppel-like transcription factor that acts downstream of Hedgehog signaling, is a direct transcriptional target of the TGF-β/SMAD pathway and contributes to melanoma progression, exerting antagonistic activities against M-MITF to control melanoma cell invasiveness. Herein, we dissected the molecular mechanisms underlying both TGF-β and GLI2-driven M-MITF gene repression. Using transient cell transfection experiments with M-MITF promoter constructs, chromatin immunoprecipitation, site-directed mutagenesis, and electrophoretic mobility shift assays, we identified a GLI2 binding site within the -334/-296 region of the M-MITF promoter, critical for GLI2-driven transcriptional repression. This region is, however, not needed for inhibition of M-MITF promoter activity by TGF-β. We determined that TGF-β rapidly repressed protein kinase A activity, thus reducing both phospho-cAMP-response element-binding protein (CREB) levels and CREB-dependent transcription of the M-MITF promoter. Increased GLI2 binding to its cognate cis-element, associated with reduced CREB-dependent transcription, allowed maximal inhibition of the M-MITF promoter via two distinct mechanisms.
Collapse
Affiliation(s)
- Marie-Jeanne Pierrat
- Institut Curie, Centre de Recherche, INSERM U1021, CNRS UMR3347, and Université Paris XI, 91400 Orsay, France
| | | | | | | |
Collapse
|
21
|
Ding B, Sun Y, Huang J. Overexpression of SKI oncoprotein leads to p53 degradation through regulation of MDM2 protein sumoylation. J Biol Chem 2012; 287:14621-30. [PMID: 22411991 DOI: 10.1074/jbc.m111.301523] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protooncogene Ski was identified based on its ability to transform avian fibroblasts in vitro. In support of its oncogenic activity, SKI was found to be overexpressed in a variety of human cancers, although the exact molecular mechanism(s) responsible for its oncogenic activity is not fully understood. We found that SKI can negatively regulate p53 by decreasing its level through up-regulation of MDM2 activity, which is mediated by the ability of SKI to enhance sumoylation of MDM2. This stimulation of MDM2 sumoylation is accomplished through a direct interaction of SKI with SUMO-conjugating enzyme E2, Ubc9, resulting in enhanced thioester bond formation and mono-sumoylation of Ubc9. A mutant SKI defective in transformation fails to increase p53 ubiquitination and is unable to increase MDM2 levels and to increase mono-sumoylation of Ubc9, suggesting that the ability of SKI to enhance Ubc9 activity is essential for its transforming function. These results established a detailed molecular mechanism that underlies the ability of SKI to cause cellular transformation while unraveling a novel connection between sumoylation and tumorigenesis, providing potential new therapeutic targets for cancer.
Collapse
Affiliation(s)
- Boxiao Ding
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
22
|
Ye F, Lemieux H, Hoppel CL, Hanson RW, Hakimi P, Croniger CM, Puchowicz M, Anderson VE, Fujioka H, Stavnezer E. Peroxisome proliferator-activated receptor γ (PPARγ) mediates a Ski oncogene-induced shift from glycolysis to oxidative energy metabolism. J Biol Chem 2011; 286:40013-24. [PMID: 21917928 DOI: 10.1074/jbc.m111.292029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the Ski oncogene induces oncogenic transformation of chicken embryo fibroblasts (CEFs). However, unlike most other oncogene-transformed cells, Ski-transformed CEFs (Ski-CEFs) do not display the classical Warburg effect. On the contrary, Ski transformation reduced lactate production and glucose utilization in CEFs. Compared with CEFs, Ski-CEFs exhibited enhanced TCA cycle activity, fatty acid catabolism through β-oxidation, glutamate oxidation, oxygen consumption, as well as increased numbers and mass of mitochondria. Interestingly, expression of PPARγ, a key transcription factor that regulates adipogenesis and lipid metabolism, was dramatically elevated at both the mRNA and protein levels in Ski-CEFs. Accordingly, PPARγ target genes that are involved in lipid uptake, transport, and oxidation were also markedly up-regulated by Ski. Knocking down PPARγ in Ski-CEFs by RNA interference reversed the elevated expression of these PPARγ target genes, as well as the shift to oxidative metabolism and the increased mitochondrial biogenesis. Moreover, we found that Ski co-immunoprecipitates with PPARγ and co-activates PPARγ-driven transcription.
Collapse
Affiliation(s)
- Fang Ye
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Levati L, Pagani E, Romani S, Castiglia D, Piccinni E, Covaciu C, Caporaso P, Bondanza S, Antonetti FR, Bonmassar E, Martelli F, Alvino E, D'Atri S. MicroRNA-155 targets the SKI gene in human melanoma cell lines. Pigment Cell Melanoma Res 2011; 24:538-50. [PMID: 21466664 DOI: 10.1111/j.1755-148x.2011.00857.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The SKI protein is a transcriptional coregulator over-expressed in melanoma. Experimentally induced down-regulation of SKI inhibits melanoma cell growth in vitro and in vivo. MicroRNAs (miRNAs) negatively modulate gene expression and have been implicated in oncogenesis. We previously showed that microRNA-155 (miR-155) is down-regulated in melanoma cells as compared with normal melanocytes and that its ectopic expression impairs proliferation and induces apoptosis. Here, we investigated whether miR-155 could mediate melanoma growth inhibition via SKI gene silencing. Luciferase reporter assays demonstrated that miR-155 interacted with SKI 3'UTR and impaired gene expression. Transfection of melanoma cells with miR-155 reduced SKI levels, while inhibition of endogenous miR-155 up-regulated SKI expression. Specifically designed small interfering RNAs reduced SKI expression and inhibited proliferation. However, melanoma cells over-expressing a 3'UTR-deleted SKI were still susceptible to the antiproliferative effect of miR-155. Our data demonstrate for the first time that SKI is a target of miR-155 in melanoma. However, impairment of SKI expression is not the leading mechanism involved in the growth-suppressive effect of miR-155 found in this malignancy.
Collapse
Affiliation(s)
- Lauretta Levati
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, Via dei Monti di Creta, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cohen-Solal KA, Merrigan KT, Chan JLK, Goydos JS, Chen W, Foran DJ, Liu F, Lasfar A, Reiss M. Constitutive Smad linker phosphorylation in melanoma: a mechanism of resistance to transforming growth factor-β-mediated growth inhibition. Pigment Cell Melanoma Res 2011; 24:512-24. [PMID: 21477078 DOI: 10.1111/j.1755-148x.2011.00858.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Melanoma cells are resistant to transforming growth factor-β (TGFβ)-induced cell-cycle arrest. In this study, we investigated a mechanism of resistance involving a regulatory domain, called linker region, in Smad2 and Smad3, main downstream effectors of TGFβ. Melanoma cells in culture and tumor samples exhibited constitutive Smad2 and Smad3 linker phosphorylation. Treatment of melanoma cells with the MEK1/2 inhibitor, U0126, or the two pan-CDK and GSK3 inhibitors, Flavopiridol and R547, resulted in decreased linker phosphorylation of Smad2 and Smad3. Overexpression of the linker phosphorylation-resistant Smad3 EPSM mutant in melanoma cells resulted in an increase in expression of p15(INK4B) and p21(WAF1) , as compared with cells transfected with wild-type (WT) Smad3. In addition, the cell numbers of EPSM Smad3-expressing melanoma cells were significantly reduced compared with WT Smad3-expressing cells. These results suggest that the linker phosphorylation of Smad3 contributes to the resistance of melanoma cells to TGFβ-mediated growth inhibition.
Collapse
Affiliation(s)
- Karine A Cohen-Solal
- Department of Medicine, Division of Medical Oncology, UMDNJ-Robert Wood Johnson Medical School, the Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kawamata S, Matsuzaki K, Murata M, Seki T, Matsuoka K, Iwao Y, Hibi T, Okazaki K. Oncogenic Smad3 signaling induced by chronic inflammation is an early event in ulcerative colitis-associated carcinogenesis. Inflamm Bowel Dis 2011; 17:683-95. [PMID: 20602465 DOI: 10.1002/ibd.21395] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Both chronic inflammation and somatic mutations likely contribute to the pathogenesis of ulcerative colitis (UC)-associated dysplasia and cancer. On the other hand, both tumor suppression and oncogenesis can result from transforming growth factor (TGF)-β signaling. TGF-β type I receptor (TβRI) and Ras-associated kinases differentially phosphorylate a mediator, Smad3, to become C-terminally phosphorylated Smad3 (pSmad3C), linker phosphorylated Smad3 (pSmad3L), and both C-terminally and linker phosphorylated Smad3 (pSmad3L/C). The pSmad3C/p21(WAF1) pathway transmits a cytostatic TGF-β signal, while pSmad3L and pSmad3L/C promote cell proliferation by upregulating c-Myc oncoprotein. The purpose of this study was to clarify the alteration of Smad3 signaling during UC-associated carcinogenesis. METHODS By immunostaining and immunofluorescence, we compared pSmad3C-, pSmad3L-, and pSmad3L/C-mediated signaling in colorectal specimens representing colitis, dysplasia, or cancer from eight UC patients with signaling in normal colonic crypts. We also investigated p53 expression and mutations of p53 and K-ras genes. We further sought functional meaning of the phosphorylated Smad3-mediated signaling in vitro. RESULTS As enterocytes in normal crypts migrated upward toward the lumen, cytostatic pSmad3C/p21(WAF1) tended to increase, while pSmad3L/c-Myc shown by progenitor cells gradually decreased. Colitis specimens showed prominence of pSmad3L/C/c-Myc, mediated by TGF-β and tumor necrosis factor (TNF)-α, in all enterocyte nuclei throughout entire crypts. In proportion with increases in frequency of p53 and K-ras mutations during progression from dysplasia to cancer, the oncogenic pSmad3L/c-Myc pathway came to be dominant with suppression of the pSmad3C/p21(WAF1) pathway. CONCLUSIONS Oncogenic Smad3 signaling, altered by chronic inflammation and eventually somatic mutations, promotes UC-associated neoplastic progression by upregulating growth-related protein.
Collapse
Affiliation(s)
- Seiji Kawamata
- Department of Gastroenterology and Hepatology, Kansai Medical University, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hathaway JD, Haque A. Insights into the Role of PAX-3 in the Development of Melanocytes and Melanoma. ACTA ACUST UNITED AC 2011; 4:1-6. [PMID: 24790680 DOI: 10.2174/1874079001104010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanoma is the deadliest form of skin cancer in the United States with an increasing prevalence. However, the development of melanoma from a melanocyte precursor is still poorly defined. Understanding the molecules responsible for melanoma progression may lead to improved targeted therapy. One potential molecule is the paired box-3 (PAX-3) protein, which has been implicated in the development of melanocytes and malignant melanoma. In melanoma, the expression of PAX-3 is believed to be differentially regulated, and has been linked with malignancies and staging of the disease. The loss of PAX-3 regulation has also been associated with the loss of transforming growth factor-beta (TGF-β) activity, but its effect on PAX-3 in differentiated melanocytes as well as metastatic melanoma remains unclear. Understanding PAX-3 regulation could potentially shift melanoma to a less aggressive and less metastatic disease. This review summarizes our current knowledge on PAX-3 during melanocyte development, its regulation, and its implications in the development of novel chemo-immunotherapeutics against metastatic melanoma.
Collapse
Affiliation(s)
- Jessica Diann Hathaway
- Department of Microbiology and Immunology, Charles Darby Children's Research Institute, and Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Azizul Haque
- Department of Microbiology and Immunology, Charles Darby Children's Research Institute, and Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| |
Collapse
|
27
|
Javelaud D, van Kempen L, Alexaki VI, Le Scolan E, Luo K, Mauviel A. Efficient TGF-β/SMAD signaling in human melanoma cells associated with high c-SKI/SnoN expression. Mol Cancer 2011; 10:2. [PMID: 21211030 PMCID: PMC3025974 DOI: 10.1186/1476-4598-10-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 01/06/2011] [Indexed: 11/22/2022] Open
Abstract
Background SKI and SnoN proteins have been shown to inhibit TGF-β signaling, acting both as transcriptional co-repressors in the cell nucleus, and as sequestrators of SMAD proteins in the cytoplasm. TGF-β, on the other hand, induces rapid, proteasome-mediated, degradation of both proteins. How elevated SKI and SnoN protein levels co-exist with active autocrine TGF-β signaling in cancer cells is yet to be understood. Results In this study, we found elevated SKI and SnoN protein levels in a panel of melanoma cell lines, as compared to normal melanocytes. There was no correlation between SKI protein content and the capacity of melanoma cells to invade Matrigel™, to form subcutaneous tumors, or to metastasize to bone after intracardiac inoculation into nude mice. Nor did we find a correlation between SKI expression and histopathological staging of human melanoma. TGF-β induced a rapid and dose-dependent degradation of SKI protein, associated with SMAD3/4 specific transcriptional response and induction of pro-metastatic target genes, partially prevented by pharmacologic blockade of proteasome activity. SKI knockdown in 1205Lu melanoma cells did not alter their invasive capacity or transcriptional responses to TGF-β, and did not allow p21 expression in response to TGF-β or reveal any growth inhibitory activity of TGF-β. Conclusions Despite high expression in melanoma cells, the role of SKI in melanoma remains elusive: SKI does not efficiently interfere with the pro-oncogenic activities of TGF-β, unless stabilized by proteasome blockade. Its highly labile nature makes it an unlikely target for therapeutic intervention.
Collapse
|
28
|
Inoue Y, Iemura SI, Natsume T, Miyazawa K, Imamura T. Suppression of p53 activity through the cooperative action of Ski and histone deacetylase SIRT1. J Biol Chem 2010; 286:6311-20. [PMID: 21149449 DOI: 10.1074/jbc.m110.177683] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ski was originally identified as an oncogene based on the fact that Ski overexpression transformed chicken and quail embryo fibroblasts. Consistent with these proposed oncogenic roles, Ski is overexpressed in various human tumors. However, whether and how Ski functions in mammalian tumorigenesis has not been fully investigated. Here, we show that Ski interacts with p53 and attenuates the biological functions of p53. Ski overexpression attenuated p53-dependent transactivation, whereas Ski knockdown enhanced the transcriptional activity of p53. Interestingly, Ski bound to the histone deacetylase SIRT1 and stabilized p53-SIRT1 interaction to promote p53 deacetylation, which subsequently decreased the DNA binding activity of p53. Consistent with the ability of Ski to inactivate p53, overexpressing Ski desensitized cells to genotoxic drugs and Nutlin-3, a small-molecule antagonist of Mdm2 that stabilizes p53 and activates the p53 pathway, whereas knocking down Ski increased the cellular sensitivity to these agents. These results indicate that Ski negatively regulates p53 and suggest that the p53-Ski-SIRT1 axis is an attractive target for cancer therapy.
Collapse
Affiliation(s)
- Yasumichi Inoue
- Division of Biochemistry, Cancer Institute of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | | | | | | | | |
Collapse
|
29
|
Lasfar A, Cohen-Solal KA. Resistance to transforming growth factor β-mediated tumor suppression in melanoma: are multiple mechanisms in place? Carcinogenesis 2010; 31:1710-7. [PMID: 20656791 DOI: 10.1093/carcin/bgq155] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Resistance to transforming growth factor (TGF) β-mediated tumor suppression in melanoma appears to be a crucial step in tumor aggressiveness since it is usually coupled with the ability of TGFβ to drive the oncogenic process via autocrine and paracrine effects. In this review, we will focus mainly on the mechanisms of escape from TGFβ-induced cell cycle arrest because the mechanisms of resistance to TGFβ-mediated apoptosis are still essentially speculative. As expected, some of these mechanisms can directly affect the function of the main downstream effectors of TGFβ, Smad2 and Smad3, resulting in compromised Smad-mediated antiproliferative activity. Other mechanisms can counteract or overcome TGFβ-mediated cell cycle arrest independently of the Smads. In melanoma, some models of resistance to TGFβ have been suggested and will be described. In addition, we propose additional models of resistance taking into consideration the information available on the dysregulation of fundamental cellular effectors and signaling pathways in melanoma.
Collapse
Affiliation(s)
- Ahmed Lasfar
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, University Hospital Cancer Center, 205 South Orange Avenue, Newark, NJ 07103, USA
| | | |
Collapse
|
30
|
Lin Q, Chen D, Timchenko NA, Medrano EE. SKI promotes Smad3 linker phosphorylations associated with the tumor-promoting trait of TGFbeta. Cell Cycle 2010; 9:1684-9. [PMID: 20404506 DOI: 10.4161/cc.9.9.11292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The transcriptional co-regulator SKI is a potent inhibitor of TGFbeta-growth inhibitory signals. SKI binds to receptor-activated Smads in the nucleus, forming repressor complexes containing HDACs, mSin3, NCoR, and other protein partners. Alternatively, SKI binds to activated Smads in the cytoplasm, preventing their nuclear translocation. SKI is necessary for anchorage-independent growth of melanoma cells in vitro, and most important, for human melanoma xenograft growth in vivo. We recently identified a novel role of SKI in TGFbeta signaling. SKI promotes the switch of Smad3 from repressor of proliferation to activator of oncogenesis by facilitating phosphorylations in the linker domain. High levels of endogenous SKI are required by the tumor promoting trait of TGFbeta to induce expression of the plasminogen-activator inhibitor-1 (PAI-1), sustained expression of C-Myc and for aborting upregulation of p21(Waf-1). Here we discuss how SKI diversifies and amplifies its functions by associating with multiple protein partners and by promoting Smad3 linker phosphorylation(s) in response to TGFbeta signaling in melanoma cells.
Collapse
Affiliation(s)
- Qiushi Lin
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|