1
|
Lu J, Chen Y, Wang Z, Zhao F, Zhong Y, Zeng C, Cao L. Larval Dispersal Modeling Reveals Low Connectivity among National Marine Protected Areas in the Yellow and East China Seas. BIOLOGY 2023; 12:biology12030396. [PMID: 36979088 PMCID: PMC10044727 DOI: 10.3390/biology12030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Marine protected areas (MPAs) are vital for protecting biodiversity, maintaining ecosystem integrity, and tackling future climate change. The effectiveness of MPA networks relies on connectivity, yet connectivity assessments are often skipped in the planning process. Here we employed a multi-species biophysical model to examine the connectivity patterns formed among the 21 national MPAs in the Yellow and East China Seas. We simulated the potential larval dispersal of 14 oviparous species of five classes. Larvae of non-migratory species with pelagic larval duration (PLD) were assumed to be passive floating particles with no explicit vertical migration. A total of 217,000 particles were released according to spawning period, living depth, and species distribution, and they were assumed to move with currents during the PLD. Most larvae were dispersed around the MPAs (0–60 m isobaths) and consistent with the currents. Larval export increased with PLD and current velocity, but if PLD was too long, few larvae survived due to high daily mortality during pelagic dispersal. The overall connectivity pattern exhibited a north-to-south dispersal trend corresponding to coastal currents. Our results indicated that the national MPAs in the Yellow and East China Seas did not form a well-connected network and nearly 30% of them were isolated. These MPAs formed three distinct groups, one in the Yellow Sea ecoregion and two in the East China Sea ecoregion. Four MPAs (all in coastal Zhejiang) emerged as key nodes for ensuring multi-generational connectivity. Under the pressure of future climate change, high self-recruitment and low connectivity present significant challenges for building well-connected MPA networks. We suggest adding new protected areas as stepping stones for bioecological corridors. Focused protection of the Yellow Sea ecoregion could have a good effect on the southern part of the population recruitment downstream. Conservation management should be adjusted according to the life cycles and distributions of vulnerable species, as well as seasonal changes in coastal currents. This study provides a scientific basis for improving ecological connectivity and conservation effectiveness of MPAs in the Yellow and East China Seas.
Collapse
|
2
|
Novi L, Bracco A. Machine learning prediction of connectivity, biodiversity and resilience in the Coral Triangle. Commun Biol 2022; 5:1359. [PMID: 36496519 PMCID: PMC9741626 DOI: 10.1038/s42003-022-04330-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Even optimistic climate scenarios predict catastrophic consequences for coral reef ecosystems by 2100. Understanding how reef connectivity, biodiversity and resilience are shaped by climate variability would improve chances to establish sustainable management practices. In this regard, ecoregionalization and connectivity are pivotal to designating effective marine protected areas. Here, machine learning algorithms and physical intuition are applied to sea surface temperature anomaly data over a twenty-four-year period to extract ecoregions and assess connectivity and bleaching recovery potential in the Coral Triangle and surrounding oceans. Furthermore, the impacts of the El Niño Southern Oscillation (ENSO) on biodiversity and resilience are quantified. We find that resilience is higher for reefs north of the Equator and that the extraordinary biodiversity of the Coral Triangle is dynamic in time and space, and benefits from ENSO. The large-scale exchange of genetic material is enhanced between the Indian Ocean and the Coral Triangle during La Niña years, and between the Coral Triangle and the central Pacific in neutral conditions. Through machine learning the outstanding biodiversity of the Coral Triangle, its evolution and the increase of species richness are contextualized through geological times, while offering new hope for monitoring its future.
Collapse
Affiliation(s)
- Lyuba Novi
- grid.213917.f0000 0001 2097 4943School of Earth and Atmospheric Sciences and Program in Ocean Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Annalisa Bracco
- grid.213917.f0000 0001 2097 4943School of Earth and Atmospheric Sciences and Program in Ocean Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
3
|
Tamaki A. Applicability of the source–sink population concept to marine intertidal macro‐invertebrates with planktonic larval stages. Ecol Res 2022. [DOI: 10.1111/1440-1703.12362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Akio Tamaki
- Graduate School of Fisheries and Environmental Sciences Nagasaki University Nagasaki Japan
| |
Collapse
|
4
|
Kot CY, Åkesson S, Alfaro‐Shigueto J, Amorocho Llanos DF, Antonopoulou M, Balazs GH, Baverstock WR, Blumenthal JM, Broderick AC, Bruno I, Canbolat AF, Casale P, Cejudo D, Coyne MS, Curtice C, DeLand S, DiMatteo A, Dodge K, Dunn DC, Esteban N, Formia A, Fuentes MMPB, Fujioka E, Garnier J, Godfrey MH, Godley BJ, González Carman V, Harrison A, Hart CE, Hawkes LA, Hays GC, Hill N, Hochscheid S, Kaska Y, Levy Y, Ley‐Quiñónez CP, Lockhart GG, López‐Mendilaharsu M, Luschi P, Mangel JC, Margaritoulis D, Maxwell SM, McClellan CM, Metcalfe K, Mingozzi A, Moncada FG, Nichols WJ, Parker DM, Patel SH, Pilcher NJ, Poulin S, Read AJ, Rees ALF, Robinson DP, Robinson NJ, Sandoval‐Lugo AG, Schofield G, Seminoff JA, Seney EE, Snape RTE, Sözbilen D, Tomás J, Varo‐Cruz N, Wallace BP, Wildermann NE, Witt MJ, Zavala‐Norzagaray AA, Halpin PN. Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
McManus LC, Forrest DL, Tekwa EW, Schindler DE, Colton MA, Webster MM, Essington TE, Palumbi SR, Mumby PJ, Pinsky ML. Evolution and connectivity influence the persistence and recovery of coral reefs under climate change in the Caribbean, Southwest Pacific, and Coral Triangle. GLOBAL CHANGE BIOLOGY 2021; 27:4307-4321. [PMID: 34106494 PMCID: PMC8453988 DOI: 10.1111/gcb.15725] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 05/19/2023]
Abstract
Corals are experiencing unprecedented decline from climate change-induced mass bleaching events. Dispersal not only contributes to coral reef persistence through demographic rescue but can also hinder or facilitate evolutionary adaptation. Locations of reefs that are likely to survive future warming therefore remain largely unknown, particularly within the context of both ecological and evolutionary processes across complex seascapes that differ in temperature range, strength of connectivity, network size, and other characteristics. Here, we used eco-evolutionary simulations to examine coral adaptation to warming across reef networks in the Caribbean, the Southwest Pacific, and the Coral Triangle. We assessed the factors associated with coral persistence in multiple reef systems to understand which results are general and which are sensitive to particular geographic contexts. We found that evolution can be critical in preventing extinction and facilitating the long-term recovery of coral communities in all regions. Furthermore, the strength of immigration to a reef (destination strength) and current sea surface temperature robustly predicted reef persistence across all reef networks and across temperature projections. However, we found higher initial coral cover, slower recovery, and more evolutionary lag in the Coral Triangle, which has a greater number of reefs and more larval settlement than the other regions. We also found the lowest projected future coral cover in the Caribbean. These findings suggest that coral reef persistence depends on ecology, evolution, and habitat network characteristics, and that, under an emissions stabilization scenario (RCP 4.5), recovery may be possible over multiple centuries.
Collapse
Affiliation(s)
- Lisa C. McManus
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNJUSA
- Hawaiʻi Institute of Marine BiologyUniversity of Hawaiʻi at ManoaKaneʻoheHIUSA
| | - Daniel L. Forrest
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNJUSA
| | - Edward W. Tekwa
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNJUSA
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| | | | | | | | | | - Stephen R. Palumbi
- Department of BiologyHopkins Marine StationStanford UniversityPacific GroveCAUSA
| | - Peter J. Mumby
- Marine Spatial Ecology LaboratorySchool of Biological SciencesThe University of QueenslandSt LuciaQldAustralia
| | - Malin L. Pinsky
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNJUSA
| |
Collapse
|
6
|
Roberts KE, Cook CN, Beher J, Treml EA. Assessing the current state of ecological connectivity in a large marine protected area system. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:699-710. [PMID: 32623761 PMCID: PMC8048790 DOI: 10.1111/cobi.13580] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 05/28/2023]
Abstract
The establishment of marine protected areas (MPAs) is a critical step in ensuring the continued persistence of marine biodiversity. Although the area protected in MPAs is growing, the movement of individuals (or larvae) among MPAs, termed connectivity, has only recently been included as an objective of many MPAs. As such, assessing connectivity is often neglected or oversimplified in the planning process. For promoting population persistence, it is important to ensure that protected areas in a system are functionally connected through dispersal or adult movement. We devised a multi-species model of larval dispersal for the Australian marine environment to evaluate how much local scale connectivity is protected in MPAs and determine whether the extensive system of MPAs truly functions as a network. We focused on non-migratory species with simplified larval behaviors (i.e., passive larval dispersal) (e.g., no explicit vertical migration) as an illustration. Of all the MPAs analyzed (approximately 2.7 million km2 ), outside the Great Barrier Reef and Ningaloo Reef, <50% of MPAs (46-80% of total MPA area depending on the species considered) were functionally connected. Our results suggest that Australia's MPA system cannot be referred to as a single network, but rather a collection of numerous smaller networks delineated by natural breaks in the connectivity of reef habitat. Depending on the dispersal capacity of the taxa of interest, there may be between 25 and 47 individual ecological networks distributed across the Australian marine environment. The need to first assess the underlying natural connectivity of a study system prior to implementing new MPAs represents a key research priority for strategically enlarging MPA networks. Our findings highlight the benefits of integrating multi-species connectivity into conservation planning to identify opportunities to better incorporate connectivity into the design of MPA systems and thus to increase their capacity to support long-term, sustainable biodiversity outcomes.
Collapse
Affiliation(s)
- Kelsey E. Roberts
- School of Marine and Atmospheric SciencesStony Brook University, Stony BrookNew York
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Carly N. Cook
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Jutta Beher
- School of BioSciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Eric A. Treml
- School of BioSciencesThe University of MelbourneMelbourneVictoriaAustralia
- School of Life and Environmental Sciences, Centre for Integrative EcologyDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
7
|
Underwood JN, Richards Z, Berry O, Oades D, Howard A, Gilmour JP. Extreme seascape drives local recruitment and genetic divergence in brooding and spawning corals in remote north-west Australia. Evol Appl 2020; 13:2404-2421. [PMID: 33005230 PMCID: PMC7513722 DOI: 10.1111/eva.13033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Management strategies designed to conserve coral reefs threatened by climate change need to incorporate knowledge of the spatial distribution of inter- and intra-specific genetic diversity. We characterized patterns of genetic diversity and connectivity using single nucleotide polymorphisms (SNPs) in two reef-building corals to explore the eco-evolutionary processes that sustain populations in north-west Australia. Our sampling focused on the unique reefs of the Kimberley; we collected the broadcast spawning coral Acropora aspera (n = 534) and the brooding coral Isopora brueggemanni (n = 612) across inter-archipelago (tens to hundreds of kilometres), inter-reef (kilometres to tens of kilometres) and within-reef (tens of metres to a few kilometres) scales. Initial analysis of A. aspera identified four highly divergent lineages that were co-occurring but morphologically similar. Subsequent population analyses focused on the most abundant and widespread lineage, Acropora asp-c. Although the overall level of geographic subdivision was greater in the brooder than in the spawner, fundamental similarities in patterns of genetic structure were evident. Most notably, limits to gene flow were observed at scales <35 kilometres. Further, we observed four discrete clusters and a semi-permeable barrier to dispersal that were geographically consistent between species. Finally, sites experiencing bigger tides were more connected to the metapopulation and had greater gene diversity than those experiencing smaller tides. Our data indicate that the inshore reefs of the Kimberley are genetically isolated from neighbouring oceanic bioregions, but occasional dispersal between inshore archipelagos is important for the redistribution of evolutionarily important genetic diversity. Additionally, these results suggest that networks of marine reserves that effectively protect reefs from local pressures should be spaced within a few tens of kilometres to conserve the existing patterns of demographic and genetic connectivity.
Collapse
Affiliation(s)
- Jim N Underwood
- Australian Institute of Marine Science Indian Oceans Marine Research Centre, Crawley Perth WA Australia
- Western Australian Marine Science Institution Indian Ocean Marine Research Centre Crawley WA Australia
| | - Zoe Richards
- Western Australian Marine Science Institution Indian Ocean Marine Research Centre Crawley WA Australia
- Trace and Environmental DNA Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
- Department of Aquatic Zoology Western Australian Museum Welshpool WA Australia
| | - Oliver Berry
- Western Australian Marine Science Institution Indian Ocean Marine Research Centre Crawley WA Australia
- CSIRO Oceans and Atmosphere Indian Oceans Marine Research Centre, Crawley Perth WA Australia
| | - Daniel Oades
- Bardi Jawi Rangers Kimberley Land Council Broome WA Australia
| | - Azton Howard
- Bardi Jawi Rangers Kimberley Land Council Broome WA Australia
| | - James P Gilmour
- Australian Institute of Marine Science Indian Oceans Marine Research Centre, Crawley Perth WA Australia
- Western Australian Marine Science Institution Indian Ocean Marine Research Centre Crawley WA Australia
| |
Collapse
|
8
|
Manea E, Bianchelli S, Fanelli E, Danovaro R, Gissi E. Towards an Ecosystem-Based Marine Spatial Planning in the deep Mediterranean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136884. [PMID: 32018103 DOI: 10.1016/j.scitotenv.2020.136884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/08/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The deep sea covers about 79% of the Mediterranean basin, including habitats potentially able to deliver multiple ecosystem services and numerous resources of high economic value. Thus, the deep Mediterranean Sea represents an important frontier for marine resources exploitation, which is embedded within the European Blue Growth Strategy goals and agendas. The deep sea is crucial for the ecological functioning of the entire basin. For this reason, the deep Mediterranean deserves protection from the potential cumulative impacts derived from existent and developing human activities. Marine Spatial Planning (MSP) has been identified as key instrument for spatially allocating maritime uses in the sea space avoiding spatial conflicts between activities, and between activities and the environment. Indeed, MSP incorporates the ecosystem-based approach (EB-MSP) to balance both socio-economic and environmental objectives, in line with the Maritime Spatial Planning Directive and the Marine Strategy Framework Directive. Despite MSP is under implementation in Europe, the Directive is not applied yet for the managing and monitoring of the environmental status of the deep sea. In the Mediterranean, deep areas fall both in internal and territorial waters, and in High Seas, and its management framework turns out to be complicated. Moreover, a certain level of cumulative impacts in the deep Mediterranean has been already identified and likely underestimated because of paucity of knowledge related with deep-sea ecosystems. Thus, the implementation of scientific knowledge and the establishment of a sustainable management regime of deep-sea resources and space are urgent. This study aims at reflecting on the best available ecological knowledge on the deep Mediterranean to incorporate conservation objectives in EB-MSP. We propose a framework to include key ecological principles in the relevant phases of any EB-MSP processes taking in consideration existing socio-economic and conservation scenarios in the region. We add the uncertainty principle to reflect on the still unexplored and missing knowledge related to the deep Mediterranean. Here, we resume some guidelines to overcome limits and bottlenecks while ensuring protection of deep-sea ecosystems and resources in the Mediterranean Sea.
Collapse
Affiliation(s)
- E Manea
- Department of Architecture and Arts, University Iuav of Venice, Tolentini, Santa Croce 191, 30135 Venice, Italy.
| | - S Bianchelli
- Department of Environmental and Life Science, Polytechnique University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - E Fanelli
- Department of Environmental and Life Science, Polytechnique University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - R Danovaro
- Department of Environmental and Life Science, Polytechnique University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - E Gissi
- Department of Architecture and Arts, University Iuav of Venice, Tolentini, Santa Croce 191, 30135 Venice, Italy
| |
Collapse
|
9
|
Campbell SJ, Darling ES, Pardede S, Ahmadia G, Mangubhai S, Amkieltiela, Estradivari, Maire E. Fishing restrictions and remoteness deliver conservation outcomes for Indonesia's coral reef fisheries. Conserv Lett 2020. [DOI: 10.1111/conl.12698] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Stuart J. Campbell
- Indonesia ProgramWildlife Conservation Society Bogor West Java Indonesia
- Rare Indonesia Bogor West Java Indonesia
| | - Emily S. Darling
- Wildlife Conservation SocietyGlobal Marine Program Bronx New York
- Department of Ecology and Evolutionary BiologyUniversity of Toronto Toronto Ontario Canada
| | - Shinta Pardede
- Indonesia ProgramWildlife Conservation Society Bogor West Java Indonesia
| | | | - Sangeeta Mangubhai
- Wildlife Conservation SocietyGlobal Marine Program Bronx New York
- The Nature Conservancy Sorong West Papua Indonesia
| | - Amkieltiela
- WWF IndonesiaConservation Science Unit Jakarta West Java Indonesia
| | - Estradivari
- WWF IndonesiaConservation Science Unit Jakarta West Java Indonesia
| | - Eva Maire
- MARBECUniv. Montpellier, CNRS, Ifremer, IRD Montpellier France
- Lancaster Environment CentreLancaster University Lancaster UK
| |
Collapse
|
10
|
Tidbury H, Taylor N, Molen J, Garcia L, Posen P, Gill A, Lincoln S, Judd A, Hyder K. Social network analysis as a tool for marine spatial planning: Impacts of decommissioning on connectivity in the North Sea. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hannah Tidbury
- Weymouth Laboratory Centre for Environment, Fisheries & Aquaculture Science (CEFAS) Weymouth UK
| | - Nick Taylor
- Weymouth Laboratory Centre for Environment, Fisheries & Aquaculture Science (CEFAS) Weymouth UK
| | - Johan Molen
- Department of Coastal Systems NIOZ Royal Netherlands Institute for Sea Research and Utrecht University Den Burg The Netherlands
| | - Luz Garcia
- Lowestoft Laboratory Centre for Environment, Fisheries & Aquaculture Science (CEFAS) Lowestoft UK
| | - Paulette Posen
- Weymouth Laboratory Centre for Environment, Fisheries & Aquaculture Science (CEFAS) Weymouth UK
| | - Andrew Gill
- Lowestoft Laboratory Centre for Environment, Fisheries & Aquaculture Science (CEFAS) Lowestoft UK
| | - Susana Lincoln
- Lowestoft Laboratory Centre for Environment, Fisheries & Aquaculture Science (CEFAS) Lowestoft UK
| | - Adrian Judd
- Lowestoft Laboratory Centre for Environment, Fisheries & Aquaculture Science (CEFAS) Lowestoft UK
| | - Kieran Hyder
- Lowestoft Laboratory Centre for Environment, Fisheries & Aquaculture Science (CEFAS) Lowestoft UK
- School of Environmental Sciences University of East AngliaNorwich Research Park Norwich UK
| |
Collapse
|
11
|
Boschetti F, Babcock RC, Doropoulos C, Thomson DP, Feng M, Slawinski D, Berry O, Vanderklift MA. Setting priorities for conservation at the interface between ocean circulation, connectivity, and population dynamics. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02011. [PMID: 31556209 DOI: 10.1002/eap.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 02/04/2019] [Accepted: 04/16/2019] [Indexed: 06/10/2023]
Abstract
Population persistence in the marine environment is driven by patterns of ocean circulation, larval dispersal, ecological interactions, and demographic rates. For habitat-forming organisms in particular, understanding the relationship between larval connectivity and meta-population dynamics aids in planning for marine spatial management. Here, we estimate networks of connectivity between fringing coral reefs in the northwest shelf of Australia by combining a particle tracking model based on shelf circulation with models of subpopulation dynamics of individual reefs. Coral cover data were used as a proxy for overall habitat quality, which can change as a result of natural processes, human-driven impacts, and management initiatives. We obtain three major results of conservation significance. First, the dynamics of the ecological network result from the interplay between network connectivity and ecological processes on individual reefs. The maximum coral cover a zone can sustain imposes a significant nonlinearity on the role an individual reef plays within the dynamics of the network, and thus on the impact of conservation interventions on specific reefs. Second, the role of an individual reef within these network dynamics changes considerably depending on the overall state of the system: a reef's role in sustaining the system's state can be different from the same reef's role in helping the system recover following major disturbance. Third, patterns of network connectivity change significantly as a function of yearly shelf circulation trends, and nonlinearity in network dynamics make mean connectivity a poor representation of yearly variations. From a management perspective, the priority list of reefs that are targets for management interventions depends crucially on what type of stressors (system-wide vs. localized) need addressing. This choice also depends not only on the ultimate purpose of management, but also on future oceanographic, climate change, and development scenarios that will determine the network connectivity and habitat quality.
Collapse
Affiliation(s)
- Fabio Boschetti
- Commonwealth Scientific and Industrial Organisation, Crawley, Western Australia, 6009, Australia
| | - Russell C Babcock
- Commonwealth Scientific and Industrial Organisation, Crawley, Western Australia, 6009, Australia
| | - Christopher Doropoulos
- Commonwealth Scientific and Industrial Organisation, Crawley, Western Australia, 6009, Australia
| | - Damian P Thomson
- Commonwealth Scientific and Industrial Organisation, Crawley, Western Australia, 6009, Australia
| | - Ming Feng
- Commonwealth Scientific and Industrial Organisation, Crawley, Western Australia, 6009, Australia
| | - Dirk Slawinski
- Commonwealth Scientific and Industrial Organisation, Crawley, Western Australia, 6009, Australia
| | - Oliver Berry
- Commonwealth Scientific and Industrial Organisation, Crawley, Western Australia, 6009, Australia
| | - Mathew A Vanderklift
- Commonwealth Scientific and Industrial Organisation, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
12
|
Beger M, Wendt H, Sullivan J, Mason C, LeGrand J, Davey K, Jupiter S, Ceccarelli DM, Dempsey A, Edgar G, Feary DA, Fenner D, Gauna M, Grice H, Kirmani SN, Mangubhai S, Purkis S, Richards ZT, Rotjan R, Stuart-Smith R, Sykes H, Yakub N, Bauman AG, Hughes A, Raubani J, Lewis A, Fernandes L. National-scale marine bioregions for the Southwest Pacific. MARINE POLLUTION BULLETIN 2020; 150:110710. [PMID: 31753567 DOI: 10.1016/j.marpolbul.2019.110710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/29/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Existing marine bioregions covering the Pacific Ocean are conceptualised at spatial scales that are too broad for national marine spatial planning. Here, we developed the first combined oceanic and coastal marine bioregionalisation at national scales, delineating 262 deep-water and 103 reef-associated bioregions across the southwest Pacific. The deep-water bioregions were informed by thirty biophysical environmental variables. For reef-associated environments, records for 806 taxa at 7369 sites were used to predict the probability of observing taxa based on environmental variables. Both deep-water and reef-associated bioregions were defined with cluster analysis applied to the environmental variables and predicted species observation probabilities, respectively to classify areas with high taxonomic similarity. Local experts further refined the delineation of the bioregions at national scales for four countries. This work provides marine bioregions that enable the design of ecologically representative national systems of marine protected areas within offshore and inshore environments in the Pacific.
Collapse
Affiliation(s)
- Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK; Centre for Biodiversity and Conservation Science, School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Hans Wendt
- Oceania Regional Office, IUCN (International Union for Conservation of Nature), 5 Ma'afu Street, Private Mail Bag, Suva, Fiji
| | - Jonah Sullivan
- Oceania Regional Office, IUCN (International Union for Conservation of Nature), 5 Ma'afu Street, Private Mail Bag, Suva, Fiji; Geoscience Australia, Environmental Geoscience Division, 101 Jerrabomberra Ave, Symonston, ACT, 2609, Australia
| | - Claire Mason
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia; Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS, 7004, Australia
| | - Jimaima LeGrand
- Oceania Regional Office, IUCN (International Union for Conservation of Nature), 5 Ma'afu Street, Private Mail Bag, Suva, Fiji; Department of Transport and Main Roads, 131 Sugar Rd, Maroochydore, Queensland, Australia
| | - Kate Davey
- Oceania Regional Office, IUCN (International Union for Conservation of Nature), 5 Ma'afu Street, Private Mail Bag, Suva, Fiji
| | - Stacy Jupiter
- Wildlife Conservation Society, Melanesia Program, 11 Ma'afu Street, Suva, Fiji
| | - Daniela M Ceccarelli
- Marine Ecology Consultant, 36 Barton Street, Magnetic Island QLD, 4819, Australia
| | - Alex Dempsey
- Khaled bin Sultan Living Oceans Foundation, Annapolis, MD, 21403, USA
| | - Graham Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Nubeena Crescent, Taroona, 7053, Australia
| | | | | | - Marian Gauna
- Oceania Regional Office, IUCN (International Union for Conservation of Nature), 5 Ma'afu Street, Private Mail Bag, Suva, Fiji
| | - Hannah Grice
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
| | - Sahar Noor Kirmani
- Oceania Regional Office, IUCN (International Union for Conservation of Nature), 5 Ma'afu Street, Private Mail Bag, Suva, Fiji
| | - Sangeeta Mangubhai
- Wildlife Conservation Society, Melanesia Program, 11 Ma'afu Street, Suva, Fiji
| | - Sam Purkis
- Khaled bin Sultan Living Oceans Foundation, Annapolis, MD, 21403, USA; Department of Marine Geosciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, USA
| | - Zoe T Richards
- Coral Conservation and Research Group, School of Molecular and Life Science, Curtin University, Bentley WA, 6102, Australia; Aquatic Zoology Department, Western Australian Museum, Welshpool, WA, Australia
| | - Randi Rotjan
- Department of Biology, Boston University. 5 Cummington Mall, Boston, MA, 02215, USA
| | - Rick Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Nubeena Crescent, Taroona, 7053, Australia
| | - Helen Sykes
- Marine Ecology Consulting, PO Box 2558, Government Buildings, Suva, Fiji Islands
| | - Naushad Yakub
- Oceania Regional Office, IUCN (International Union for Conservation of Nature), 5 Ma'afu Street, Private Mail Bag, Suva, Fiji
| | - Andrew G Bauman
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Alec Hughes
- Wildlife Conservation Society, Solomon Islands, P.O. Box 98, Munda, Western Province, Solomon Islands
| | - Jason Raubani
- The Pacific Community, 95 Promenade Roger Laroque, BP D5, 98848, Noumea, New Caledonia
| | - Adam Lewis
- Geoscience Australia, Environmental Geoscience Division, 101 Jerrabomberra Ave, Symonston, ACT, 2609, Australia
| | - Leanne Fernandes
- Oceania Regional Office, IUCN (International Union for Conservation of Nature), 5 Ma'afu Street, Private Mail Bag, Suva, Fiji.
| |
Collapse
|
13
|
|
14
|
Quigley KM, Bay LK, van Oppen MJH. The active spread of adaptive variation for reef resilience. Ecol Evol 2019; 9:11122-11135. [PMID: 31641460 PMCID: PMC6802068 DOI: 10.1002/ece3.5616] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
The speed at which species adapt depends partly on the rates of beneficial adaptation generation and how quickly they spread within and among populations. Natural rates of adaptation of corals may not be able to keep pace with climate warming. Several interventions have been proposed to fast-track thermal adaptation, including the intentional translocation of warm-adapted adults or their offspring (assisted gene flow, AGF) and the ex situ crossing of warm-adapted corals with conspecifics from cooler reefs (hybridization or selective breeding) and field deployment of those offspring. The introgression of temperature tolerance loci into the genomic background of cooler-environment corals aims to facilitate adaptation to warming while maintaining fitness under local conditions. Here we use research on selective sweeps and connectivity to understand the spread of adaptive variants as it applies to AGF on the Great Barrier Reef (GBR), focusing on the genus Acropora. Using larval biophysical dispersal modeling, we estimate levels of natural connectivity in warm-adapted northern corals. We then model the spread of adaptive variants from single and multiple reefs and assess if the natural and assisted spread of adaptive variants will occur fast enough to prepare receiving central and southern populations given current rates of warming. We also estimate fixation rates and spatial extent of fixation under multiple release scenarios to inform intervention design. Our results suggest that thermal tolerance is unlikely to spread beyond northern reefs to the central and southern GBR without intervention, and if it does, 30+ generations are needed for adaptive gene variants to reach fixation even under multiple release scenarios. We argue that if translocation, breeding, and reseeding risks are managed, AGF using multiple release reefs can be beneficial for the restoration of coral populations. These interventions should be considered in addition to conventional management and accompanied by strong mitigation of CO2 emissions.
Collapse
Affiliation(s)
- Kate M. Quigley
- Australian Institute of Marine ScienceTownsvilleQldAustralia
| | - Line K. Bay
- Australian Institute of Marine ScienceTownsvilleQldAustralia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine ScienceTownsvilleQldAustralia
- School of BioSciencesThe University of MelbourneParkvilleVic.Australia
| |
Collapse
|
15
|
Van der Stocken T, Wee AKS, De Ryck DJR, Vanschoenwinkel B, Friess DA, Dahdouh-Guebas F, Simard M, Koedam N, Webb EL. A general framework for propagule dispersal in mangroves. Biol Rev Camb Philos Soc 2019; 94:1547-1575. [PMID: 31058451 DOI: 10.1111/brv.12514] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 12/29/2022]
Abstract
Dispersal allows species to shift their distributions in response to changing climate conditions. As a result, dispersal is considered a key process contributing to a species' long-term persistence. For many passive dispersers, fluid dynamics of wind and water fuel these movements and different species have developed remarkable adaptations for utilizing this energy to reach and colonize suitable habitats. The seafaring propagules (fruits and seeds) of mangroves represent an excellent example of such passive dispersal. Mangroves are halophytic woody plants that grow in the intertidal zones along tropical and subtropical shorelines and produce hydrochorous propagules with high dispersal potential. This results in exceptionally large coastal ranges across vast expanses of ocean and allows species to shift geographically and track the conditions to which they are adapted. This is particularly relevant given the challenges presented by rapid sea-level rise, higher frequency and intensity of storms, and changes in regional precipitation and temperature regimes. However, despite its importance, the underlying drivers of mangrove dispersal have typically been studied in isolation, and a conceptual synthesis of mangrove oceanic dispersal across spatial scales is lacking. Here, we review current knowledge on mangrove propagule dispersal across the various stages of the dispersal process. Using a general framework, we outline the mechanisms and ecological processes that are known to modulate the spatial patterns of mangrove dispersal. We show that important dispersal factors remain understudied and that adequate empirical data on the determinants of dispersal are missing for most mangrove species. This review particularly aims to provide a baseline for developing future research agendas and field campaigns, filling current knowledge gaps and increasing our understanding of the processes that shape global mangrove distributions.
Collapse
Affiliation(s)
- Tom Van der Stocken
- Earth Science Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, U.S.A.,Radar Science and Engineering Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, U.S.A.,Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Alison K S Wee
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.,Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530004, China
| | - Dennis J R De Ryck
- Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | | | - Daniel A Friess
- Department of Geography, National University of Singapore, Singapore, 117570, Singapore
| | - Farid Dahdouh-Guebas
- Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, 1050, Belgium.,Systems Ecology and Resource Management, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Marc Simard
- Radar Science and Engineering Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, U.S.A
| | - Nico Koedam
- Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Edward L Webb
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
16
|
Samsing F, Johnsen I, Treml EA, Dempster T. Identifying 'firebreaks' to fragment dispersal networks of a marine parasite. Int J Parasitol 2019; 49:277-286. [PMID: 30660636 DOI: 10.1016/j.ijpara.2018.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 10/27/2022]
Abstract
Marine ecosystems are beset by disease outbreaks, and efficient strategies to control dispersal of pathogens are scarce. We tested whether introducing no-farming areas or 'firebreaks' could disconnect dispersal networks of a parasitic disease affecting the world's largest marine fish farming industry (∼1000 farms). Larval salmon lice (Lepeophtheirus salmonis) are released from and transported among salmon farms by ocean currents, creating inter-farm networks of louse dispersal. We used a state-of-the-art biophysical model to predict louse movement along the Norwegian coastline and network analysis to identify firebreaks to dispersal. At least one firebreak that fragmented the network into two large unconnected groups of farms was identified for all seasons. During spring, when wild salmon migrate out into the ocean, and louse levels per fish at farms must be minimised, two effective firebreaks were created by removing 13 and 21 farms (1.3% and 2.2% of all farms in the system) at ∼61°N and 67°N, respectively. We have demonstrated that dispersal models coupled with network analysis can identify no-farming zones that fragment dispersal networks. Reduced dispersal pathways should lower infection pressure at farms, slow the evolution of resistance to parasite control measures, and alleviate infection pressure on wild salmon populations.
Collapse
Affiliation(s)
- Francisca Samsing
- School of BioSciences, University of Melbourne, 3010 Victoria, Australia; CSIRO, Castray Esplanade, Hobart 7004 TAS, Australia.
| | - Ingrid Johnsen
- Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway
| | - Eric A Treml
- School of BioSciences, University of Melbourne, 3010 Victoria, Australia; School of Life and Environmental Sciences, Deakin University, Victoria 3220, Australia
| | - Tim Dempster
- School of BioSciences, University of Melbourne, 3010 Victoria, Australia
| |
Collapse
|
17
|
Lequeux BD, Ahumada-Sempoal MA, López-Pérez A, Reyes-Hernández C. Coral connectivity between equatorial eastern Pacific marine protected areas: A biophysical modeling approach. PLoS One 2018; 13:e0202995. [PMID: 30157276 PMCID: PMC6114865 DOI: 10.1371/journal.pone.0202995] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/12/2018] [Indexed: 11/29/2022] Open
Abstract
There are many marine protected areas (MPAs) containing coral reef aggregations in the eastern Pacific region. However, the connectivity of corals between MPAs is still poorly known, especially in the Marine Conservation Corridor of the Eastern Tropical Pacific (MCCETP). Here, we assess the potential connectivity of corals across equatorial eastern Pacific MPAs through a Lagrangian particle-tracking algorithm coupled offline with an ocean-circulation numerical model. Connectivity metrics and graph theory were used to analyze the networks and highlight those MPAs that are critical for maintaining the connectivity of corals across the region. Our results show that the equatorial eastern Pacific MPAs form a relatively well-connected network, at least 40% of coral larvae released per year end up within the boundaries of an MPA. MPAs like Malpelo and Gorgona islands included in the MCCETP were found to be critical for connectivity of corals because of their high betweenness centrality and potential role as stepping-stones between coastal MPAs and offshore MPAs such as the Galapagos Islands. Two pelagic larval duration (PLD) scenarios (40 and 130 days) indicate a quasi-unidirectional larval flow from coastal MPAs toward oceanic MPAs, where the only resilient MPAs (Coiba and Malpelo islands) depend mostly on subsidiary recruitment from MPAs located along the coast of Costa Rica, Panama and Colombia. In the two PLD scenarios, Cocos Island maintains a very low resilience potential. Our results indicate the imperative need to include coastal MPAs in the MCCETP network initiative, since connectivity and resilience of coral reefs in the equatorial eastern Pacific region rely heavily on coastal MPAs.
Collapse
Affiliation(s)
- Bertrand D. Lequeux
- Program in Marine Biology, Universidad del Mar, Ciudad Universitaria s/n, Puerto Ángel, San Pedro Pochutla, Oaxaca, México
| | | | - Andrés López-Pérez
- Universidad Autónoma Metropolitana, Unidad Iztapalapa, colonia Vicentina, Ciudad de México, México
| | | |
Collapse
|
18
|
Ocean sprawl facilitates dispersal and connectivity of protected species. Sci Rep 2018; 8:11346. [PMID: 30115932 PMCID: PMC6095900 DOI: 10.1038/s41598-018-29575-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022] Open
Abstract
Highly connected networks generally improve resilience in complex systems. We present a novel application of this paradigm and investigated the potential for anthropogenic structures in the ocean to enhance connectivity of a protected species threatened by human pressures and climate change. Biophysical dispersal models of a protected coral species simulated potential connectivity between oil and gas installations across the North Sea but also metapopulation outcomes for naturally occurring corals downstream. Network analyses illustrated how just a single generation of virtual larvae released from these installations could create a highly connected anthropogenic system, with larvae becoming competent to settle over a range of natural deep-sea, shelf and fjord coral ecosystems including a marine protected area. These results provide the first study showing that a system of anthropogenic structures can have international conservation significance by creating ecologically connected networks and by acting as stepping stones for cross-border interconnection to natural populations.
Collapse
|
19
|
Magris RA, Andrello M, Pressey RL, Mouillot D, Dalongeville A, Jacobi MN, Manel S. Biologically representative and well-connected marine reserves enhance biodiversity persistence in conservation planning. Conserv Lett 2018. [DOI: 10.1111/conl.12439] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Rafael A. Magris
- Australian Research Council Centre of Excellence for Coral Reef Studies; James Cook University; Townsville QLD 4811 Australia
- Chico Mendes Institute for Biodiversity Conservation; Ministry of Environment; Brasilia DF 70.670-350 Brazil
- School of Environmental Studies; University of Victoria; Victoria BC V8W 2Y2 Canada
| | - Marco Andrello
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier; Université Paul-Valéry Montpellier, EPHE, Biogeographie et Ecologie des Vertébrés; Montpellier France
| | - Robert L. Pressey
- Australian Research Council Centre of Excellence for Coral Reef Studies; James Cook University; Townsville QLD 4811 Australia
| | - David Mouillot
- Australian Research Council Centre of Excellence for Coral Reef Studies; James Cook University; Townsville QLD 4811 Australia
- MARBEC UMR 9190, CNRS - IRD; Universite Montpellier - Ifremer; 34095 Montpellier France
| | - Alicia Dalongeville
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier; Université Paul-Valéry Montpellier, EPHE, Biogeographie et Ecologie des Vertébrés; Montpellier France
- MARBEC UMR 9190, CNRS - IRD; Universite Montpellier - Ifremer; 34095 Montpellier France
| | - Martin N. Jacobi
- Complex Systems Group, Department of Energy and Environment; Chalmers University of Technology; SE-412 96 Gothenburg Sweden
| | - Stéphanie Manel
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier; Université Paul-Valéry Montpellier, EPHE, Biogeographie et Ecologie des Vertébrés; Montpellier France
| |
Collapse
|
20
|
Community assembly of coral reef fishes along the Melanesian biodiversity gradient. PLoS One 2017; 12:e0186123. [PMID: 29069096 PMCID: PMC5656311 DOI: 10.1371/journal.pone.0186123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 09/26/2017] [Indexed: 11/19/2022] Open
Abstract
The Indo-Pacific is home to Earth’s most biodiverse coral reefs. Diversity on these reefs decreases from the Coral Triangle east through the islands of Melanesia. Despite this pattern having been identified during the early 20th century, our knowledge about the interaction between pattern and process remains incomplete. To evaluate the structure of coral reef fish communities across Melanesia, we obtained distributional records for 396 reef fish species in five taxa across seven countries. We used hierarchical clustering, nestedness, and multiple linear regression analyses to evaluate the community structure. We also compiled data on life history traits (pelagic larval duration, body size and schooling behavior) to help elucidate the ecological mechanisms behind community structure. Species richness for these taxa along the gradient was significantly related to longitude but not habitat area. Communities are significantly nested, indicating that species-poor communities are largely composed of subsets of the species found on species rich reefs. These trends are robust across taxonomic groups except for the Pomacentridae, which exhibit an anti-nested pattern, perhaps due to a large number of endemic species. Correlations between life history traits and the number of reefs on which species occurred indicate that dispersal and survival ability contribute to determining community structure. We conclude that distance from the Coral Triangle dominates community structure in reef fish; however, conservation of the most species-rich areas will not be sufficient alone to conserve the vivid splendor of this region.
Collapse
|
21
|
Kleypas JA, Thompson DM, Castruccio FS, Curchitser EN, Pinsky M, Watson JR. Larval connectivity across temperature gradients and its potential effect on heat tolerance in coral populations. GLOBAL CHANGE BIOLOGY 2016; 22:3539-3549. [PMID: 27154763 DOI: 10.1111/gcb.13347] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/15/2016] [Indexed: 05/12/2023]
Abstract
Coral reefs are increasingly exposed to elevated temperatures that can cause coral bleaching and high levels of mortality of corals and associated organisms. The temperature threshold for coral bleaching depends on the acclimation and adaptation of corals to the local maximum temperature regime. However, because of larval dispersal, coral populations can receive larvae from corals that are adapted to very different temperature regimes. We combine an offline particle tracking routine with output from a high-resolution physical oceanographic model to investigate whether connectivity of coral larvae between reefs of different thermal regimes could alter the thermal stress threshold of corals. Our results suggest that larval transport between reefs of widely varying temperatures is likely in the Coral Triangle and that accounting for this connectivity may be important in bleaching predictions. This has important implications in conservation planning, because connectivity may allow some reefs to have an inherited heat tolerance that is higher or lower than predicted based on local conditions alone.
Collapse
Affiliation(s)
- Joan A Kleypas
- Climate & Global Dynamics, National Center for Atmospheric Research, PO Box 3000, Boulder, CO, 80307-3000, USA.
| | - Diane M Thompson
- Advanced Study Program, National Center for Atmospheric Research, PO Box 3000, Boulder, CO, 80307-3000, USA
- Earth & Environment, Boston University, 685 Commonwealth Avenue, Boston, MA, 02215, USA
| | - Frederic S Castruccio
- Climate & Global Dynamics, National Center for Atmospheric Research, PO Box 3000, Boulder, CO, 80307-3000, USA
| | - Enrique N Curchitser
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901-8551, USA
| | - Malin Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901-8551, USA
| | - James R Watson
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, SE 106 91, Stockholm, Sweden
| |
Collapse
|
22
|
Bode M, Williamson DH, Weeks R, Jones GP, Almany GR, Harrison HB, Hopf JK, Pressey RL. Planning Marine Reserve Networks for Both Feature Representation and Demographic Persistence Using Connectivity Patterns. PLoS One 2016; 11:e0154272. [PMID: 27168206 PMCID: PMC4864080 DOI: 10.1371/journal.pone.0154272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
Marine reserve networks must ensure the representation of important conservation features, and also guarantee the persistence of key populations. For many species, designing reserve networks is complicated by the absence or limited availability of spatial and life-history data. This is particularly true for data on larval dispersal, which has only recently become available. However, systematic conservation planning methods currently incorporate demographic processes through unsatisfactory surrogates. There are therefore two key challenges to designing marine reserve networks that achieve feature representation and demographic persistence constraints. First, constructing a method that efficiently incorporates persistence as well as complementary feature representation. Second, incorporating persistence using a mechanistic description of population viability, rather than a proxy such as size or distance. Here we construct a novel systematic conservation planning method that addresses both challenges, and parameterise it to design a hypothetical marine reserve network for fringing coral reefs in the Keppel Islands, Great Barrier Reef, Australia. For this application, we describe how demographic persistence goals can be constructed for an important reef fish species in the region, the bar-cheeked trout (Plectropomus maculatus). We compare reserve networks that are optimally designed for either feature representation or demographic persistence, with a reserve network that achieves both goals simultaneously. As well as being practically applicable, our analyses also provide general insights into marine reserve planning for both representation and demographic persistence. First, persistence constraints for dispersive organisms are likely to be much harder to achieve than representation targets, due to their greater complexity. Second, persistence and representation constraints pull the reserve network design process in divergent directions, making it difficult to efficiently achieve both constraints. Although our method can be readily applied to the data-rich Keppel Islands case study, we finally consider the factors that limit the method's utility in information-poor contexts common in marine conservation.
Collapse
Affiliation(s)
- Michael Bode
- ARC Centre of Excellence for Environmental Decisions, School of Botany, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, QLD, Australia
- * E-mail:
| | - David H. Williamson
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, QLD, Australia
| | - Rebecca Weeks
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, QLD, Australia
| | - Geoff P. Jones
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, QLD, Australia
- College of Marine and Environmental Sciences, James Cook University, Townsville, 4811, QLD, Australia
| | - Glenn R. Almany
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, QLD, Australia
- Centre National de la Recherche Scientifique-EPHE-UPVD, Universite de Perpignan, 66860, Perpignan Cedex, France
| | - Hugo B. Harrison
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, QLD, Australia
| | - Jess K. Hopf
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, QLD, Australia
- College of Marine and Environmental Sciences, James Cook University, Townsville, 4811, QLD, Australia
| | - Robert L. Pressey
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, QLD, Australia
| |
Collapse
|
23
|
Jönsson BF, Watson JR. The timescales of global surface-ocean connectivity. Nat Commun 2016; 7:11239. [PMID: 27093522 PMCID: PMC4838858 DOI: 10.1038/ncomms11239] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/04/2016] [Indexed: 11/09/2022] Open
Abstract
Planktonic communities are shaped through a balance of local evolutionary adaptation and ecological succession driven in large part by migration. The timescales over which these processes operate are still largely unresolved. Here we use Lagrangian particle tracking and network theory to quantify the timescale over which surface currents connect different regions of the global ocean. We find that the fastest path between two patches--each randomly located anywhere in the surface ocean--is, on average, less than a decade. These results suggest that marine planktonic communities may keep pace with climate change--increasing temperatures, ocean acidification and changes in stratification over decadal timescales--through the advection of resilient types.
Collapse
Affiliation(s)
- Bror F Jönsson
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, USA
| | - James R Watson
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331-5503, USA.,The Stockholm Resilience Centre, Stockholm University, 118 14 Stockholm, Sweden
| |
Collapse
|
24
|
Looking for hotspots of marine metacommunity connectivity: a methodological framework. Sci Rep 2016; 6:23705. [PMID: 27029563 PMCID: PMC4814777 DOI: 10.1038/srep23705] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/10/2016] [Indexed: 11/16/2022] Open
Abstract
Seascape connectivity critically affects the spatiotemporal dynamics of marine metacommunities. Understanding how connectivity patterns emerge from physically and biologically-mediated interactions is therefore crucial to conserve marine ecosystem functions and biodiversity. Here, we develop a set of biophysical models to explore connectivity in assemblages of species belonging to a typical Mediterranean community (Posidonia oceanica meadows) and characterized by different dispersing traits. We propose a novel methodological framework to synthesize species-specific results into a set of community connectivity metrics and show that spatiotemporal variation in magnitude and direction of the connections, as well as interspecific differences in dispersing traits, are key factors structuring community connectivity. We eventually demonstrate how these metrics can be used to characterize the functional role of each marine area in determining patterns of community connectivity at the basin level and to support marine conservation planning.
Collapse
|
25
|
Wilson NG, Kirkendale LA. Putting the ‘Indo’ back into the Indo-Pacific: resolving marine phylogeographic gaps. INVERTEBR SYST 2016. [DOI: 10.1071/is15032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Indo-Pacific is an extremely large marine realm that unites two oceans via a restricted Coral Triangle corridor, which was historically subjected to lowered sea levels during global glaciation. Although a strong phylogeographic focus on the Central and West Pacific has produced a large body of research, the Indian Ocean has been largely neglected. This may have serious consequences, because the Indian Ocean hosts a large number of marine centres of endemism, yet a large number of nations rely on its marine resources. We examine reasons for this neglect and review what is known about this region and its connectivity to the Indo-West Pacific. We draw attention to the ‘Leeuwin Effect’, a phenomenon where the southward flow of the Leeuwin Current is responsible for transporting larval propagules from the Coral Triangle region down the coast of Western Australia, resulting in broader Indo-West Pacific rather than Indian Ocean affinities. Given challenges in accessing infrastructure and samples, collaboration will inevitably be key to resolving data gaps. We challenge the assumption that the peak of shallow-water marine biodiversity is solely centred in the Coral Triangle, and raise awareness of a seemingly forgotten hypothesis promoting a secondary peak of biodiversity in the western Indian Ocean.
Collapse
|
26
|
Kleypas JA, Castruccio FS, Curchitser EN, Mcleod E. The impact of ENSO on coral heat stress in the western equatorial Pacific. GLOBAL CHANGE BIOLOGY 2015; 21:2525-2539. [PMID: 25630514 DOI: 10.1111/gcb.12881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
The Coral Triangle encompasses an extensive region of coral reefs in the western tropical Pacific with marine resources that support millions of people. As in all other reef regions, coral reefs in the Coral Triangle have been impacted by anomalously high ocean temperature. The vast majority of bleaching observations to date have been associated with the 1998 La Niña phase of ENSO. To understand the significance of ENSO and other climatic oscillations to heat stress in the Coral Triangle, we use a 5-km resolution Regional Ocean Model System for the Coral Triangle (CT-ROMS) to study ocean temperature thresholds and variability for the 1960-2007 historical period. Heat-stress events are more frequent during La Niña events, but occur under all climatic conditions, reflecting an overall warming trend since the 1970s. Mean sea surface temperature (SST) in the region increased an average of ~ 0.1 °C per decade over the time period, but with considerable spatial variability. The spatial patterns of SST and heat stress across the Coral Triangle reflect the complex bathymetry and oceanography. The patterns did not change significantly over time or with shifts in ENSO. Several regions experienced little to no heat stress over the entire period. Of particular interest to marine conservation are regions where there are few records of coral bleaching despite the presence of significant heat stress, such as in the Banda Sea. Although this may be due to under-reporting of bleaching events, it may also be due to physical factors such as mixing and cloudiness, or biological factors that reduce sensitivity to heat stress.
Collapse
Affiliation(s)
- Joan A Kleypas
- National Center for Atmospheric Research, Boulder, CO, 80302, USA
| | | | | | | |
Collapse
|
27
|
Multi-action planning for threat management: a novel approach for the spatial prioritization of conservation actions. PLoS One 2015; 10:e0128027. [PMID: 26020794 PMCID: PMC4447389 DOI: 10.1371/journal.pone.0128027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
Planning for the remediation of multiple threats is crucial to ensure the long term persistence of biodiversity. Limited conservation budgets require prioritizing which management actions to implement and where. Systematic conservation planning traditionally assumes that all the threats in priority sites are abated (fixed prioritization approach). However, abating only the threats affecting the species of conservation concerns may be more cost-effective. This requires prioritizing individual actions independently within the same site (independent prioritization approach), which has received limited attention so far. We developed an action prioritization algorithm that prioritizes multiple alternative actions within the same site. We used simulated annealing to find the combination of actions that remediate threats to species at the minimum cost. Our algorithm also accounts for the importance of selecting actions in sites connected through the river network (i.e., connectivity). We applied our algorithm to prioritize actions to address threats to freshwater fish species in the Mitchell River catchment, northern Australia. We compared how the efficiency of the independent and fixed prioritization approach varied as the importance of connectivity increased. Our independent prioritization approach delivered more efficient solutions than the fixed prioritization approach, particularly when the importance of achieving connectivity was high. By spatially prioritizing the specific actions necessary to remediate the threats affecting the target species, our approach can aid cost-effective habitat restoration and land-use planning. It is also particularly suited to solving resource allocation problems, where consideration of spatial design is important, such as prioritizing conservation efforts for highly mobile species, species facing climate change-driven range shifts, or minimizing the risk of threats spreading across different realms.
Collapse
|
28
|
Treml EA, Roberts J, Halpin PN, Possingham HP, Riginos C. The emergent geography of biophysical dispersal barriers across the Indo-West Pacific. DIVERS DISTRIB 2015. [DOI: 10.1111/ddi.12307] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Eric A. Treml
- School of BioSciences; University of Melbourne; Melbourne Vic. 3010 Australia
| | - Jason Roberts
- Marine Geospatial Ecology Laboratory; A324 LSRC Building; Nicholas School of the Environment; Duke University; Durham NC USA
| | - Patrick N. Halpin
- Marine Geospatial Ecology Laboratory; A324 LSRC Building; Nicholas School of the Environment; Duke University; Durham NC USA
| | - Hugh P. Possingham
- School of Biological Sciences; The University of Queensland; St. Lucia Qld 4072 Australia
| | - Cynthia Riginos
- School of Biological Sciences; The University of Queensland; St. Lucia Qld 4072 Australia
| |
Collapse
|
29
|
Treml EA, Ford JR, Black KP, Swearer SE. Identifying the key biophysical drivers, connectivity outcomes, and metapopulation consequences of larval dispersal in the sea. MOVEMENT ECOLOGY 2015; 3:17. [PMID: 26180636 PMCID: PMC4502943 DOI: 10.1186/s40462-015-0045-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/19/2015] [Indexed: 05/05/2023]
Abstract
BACKGROUND Population connectivity, which is essential for the persistence of benthic marine metapopulations, depends on how life history traits and the environment interact to influence larval production, dispersal and survival. Although we have made significant advances in our understanding of the spatial and temporal dynamics of these individual processes, developing an approach that integrates the entire population connectivity process from reproduction, through dispersal, and to the recruitment of individuals has been difficult. We present a population connectivity modelling framework and diagnostic approach for quantifying the impact of i) life histories, ii) demographics, iii) larval dispersal, and iv) the physical seascape, on the structure of connectivity and metapopulation dynamics. We illustrate this approach using the subtidal rocky reef ecosystem of Port Phillip Bay, were we provide a broadly-applicable framework of population connectivity and quantitative methodology for evaluating the relative importance of individual factors in determining local and system outcomes. RESULTS The spatial characteristics of marine population connectivity are primarily influenced by larval mortality, the duration of the pelagic larval stage, and the settlement competency characteristics, with significant variability imposed by the geographic setting and the timing of larval release. The relative influence and the direction and strength of the main effects were strongly consistent among 10 connectivity-based metrics. CONCLUSIONS These important intrinsic factors (mortality, length of the pelagic larval stage, and the extent of the precompetency window) and the spatial and temporal variability represent key research priorities for advancing our understanding of the connectivity process and metapopulation outcomes.
Collapse
Affiliation(s)
- Eric A. Treml
- School of BioSciences, University of Melbourne, Parkville, Victoria, 3010 Australia
| | - John R. Ford
- School of BioSciences, University of Melbourne, Parkville, Victoria, 3010 Australia
| | - Kerry P. Black
- School of BioSciences, University of Melbourne, Parkville, Victoria, 3010 Australia
| | - Stephen E. Swearer
- School of BioSciences, University of Melbourne, Parkville, Victoria, 3010 Australia
| |
Collapse
|
30
|
Weeks R, Pressey RL, Wilson JR, Knight M, Horigue V, Abesamis RA, Acosta R, Jompa J. Ten things to get right for marine conservation planning in the Coral Triangle. F1000Res 2014; 3:91. [PMID: 25110579 PMCID: PMC4111118 DOI: 10.12688/f1000research.3886.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2015] [Indexed: 11/20/2022] Open
Abstract
Systematic conservation planning increasingly underpins the conservation and management of marine and coastal ecosystems worldwide. Amongst other benefits, conservation planning provides transparency in decision-making, efficiency in the use of limited resources, the ability to minimise conflict between diverse objectives, and to guide strategic expansion of local actions to maximise their cumulative impact. The Coral Triangle has long been recognised as a global marine conservation priority, and has been the subject of huge investment in conservation during the last five years through the Coral Triangle Initiative on Coral Reefs, Fisheries and Food Security. Yet conservation planning has had relatively little influence in this region. To explore why this is the case, we identify and discuss 10 challenges that must be resolved if conservation planning is to effectively inform management actions in the Coral Triangle. These are: making conservation planning accessible; integrating with other planning processes; building local capacity for conservation planning; institutionalising conservation planning within governments; integrating plans across governance levels; planning across governance boundaries; planning for multiple tools and objectives; understanding limitations of data; developing better measures of progress and effectiveness; and making a long term commitment. Most important is a conceptual shift from conservation planning undertaken as a project, to planning undertaken as a process, with dedicated financial and human resources committed to long-term engagement.
Collapse
Affiliation(s)
- Rebecca Weeks
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Robert L Pressey
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | | | - Maurice Knight
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia; USAID Coral Triangle Support Partnership, Jakarta, Indonesia
| | - Vera Horigue
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Rene A Abesamis
- Silliman University Angelo King Center for Research and Environmental Management, Dumaguete, Philippines
| | - Renerio Acosta
- USAID Regional Development Mission for Asia, Bangkok, Thailand
| | - Jamaluddin Jompa
- Department of Marine Science, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
31
|
Andrello M, Mouillot D, Beuvier J, Albouy C, Thuiller W, Manel S. Low connectivity between Mediterranean marine protected areas: a biophysical modeling approach for the dusky grouper Epinephelus marginatus. PLoS One 2013; 8:e68564. [PMID: 23861917 PMCID: PMC3704643 DOI: 10.1371/journal.pone.0068564] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/30/2013] [Indexed: 11/24/2022] Open
Abstract
Marine protected areas (MPAs) are major tools to protect biodiversity and sustain fisheries. For species with a sedentary adult phase and a dispersive larval phase, the effectiveness of MPA networks for population persistence depends on connectivity through larval dispersal. However, connectivity patterns between MPAs remain largely unknown at large spatial scales. Here, we used a biophysical model to evaluate connectivity between MPAs in the Mediterranean Sea, a region of extremely rich biodiversity that is currently protected by a system of approximately a hundred MPAs. The model was parameterized according to the dispersal capacity of the dusky grouper Epinephelus marginatus, an archetypal conservation-dependent species, with high economic importance and emblematic in the Mediterranean. Using various connectivity metrics and graph theory, we showed that Mediterranean MPAs are far from constituting a true, well-connected network. On average, each MPA was directly connected to four others and MPAs were clustered into several groups. Two MPAs (one in the Balearic Islands and one in Sardinia) emerged as crucial nodes for ensuring multi-generational connectivity. The high heterogeneity of MPA distribution, with low density in the South-Eastern Mediterranean, coupled with a mean dispersal distance of 120 km, leaves about 20% of the continental shelf without any larval supply. This low connectivity, here demonstrated for a major Mediterranean species, poses new challenges for the creation of a future Mediterranean network of well-connected MPAs providing recruitment to the whole continental shelf. This issue is even more critical given that the expected reduction of pelagic larval duration following sea temperature rise will likely decrease connectivity even more.
Collapse
Affiliation(s)
- Marco Andrello
- UMR 151 - Laboratoire Population Environnement et Développement, Institut de Recherche pour le Développement - Université Aix-Marseille, Marseille, France.
| | | | | | | | | | | |
Collapse
|
32
|
Ceccarelli DM, McKinnon AD, Andréfouët S, Allain V, Young J, Gledhill DC, Flynn A, Bax NJ, Beaman R, Borsa P, Brinkman R, Bustamante RH, Campbell R, Cappo M, Cravatte S, D'Agata S, Dichmont CM, Dunstan PK, Dupouy C, Edgar G, Farman R, Furnas M, Garrigue C, Hutton T, Kulbicki M, Letourneur Y, Lindsay D, Menkes C, Mouillot D, Parravicini V, Payri C, Pelletier B, Richer de Forges B, Ridgway K, Rodier M, Samadi S, Schoeman D, Skewes T, Swearer S, Vigliola L, Wantiez L, Williams A, Williams A, Richardson AJ. The coral sea: physical environment, ecosystem status and biodiversity assets. ADVANCES IN MARINE BIOLOGY 2013; 66:213-290. [PMID: 24182902 DOI: 10.1016/b978-0-12-408096-6.00004-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Coral Sea, located at the southwestern rim of the Pacific Ocean, is the only tropical marginal sea where human impacts remain relatively minor. Patterns and processes identified within the region have global relevance as a baseline for understanding impacts in more disturbed tropical locations. Despite 70 years of documented research, the Coral Sea has been relatively neglected, with a slower rate of increase in publications over the past 20 years than total marine research globally. We review current knowledge of the Coral Sea to provide an overview of regional geology, oceanography, ecology and fisheries. Interactions between physical features and biological assemblages influence ecological processes and the direction and strength of connectivity among Coral Sea ecosystems. To inform management effectively, we will need to fill some major knowledge gaps, including geographic gaps in sampling and a lack of integration of research themes, which hinder the understanding of most ecosystem processes.
Collapse
|