1
|
Wu N, Chi J, Cai H, Hu J, Lai Y, Lin C, Kang L, Sun J, Huang J, Li M, Xu L. Traditional Chinese medication qili qiangxin capsule protects against myocardial ischemia-reperfusion injury through suppressing autophagy via the phosphoinositide 3-kinase/protein kinase B/forkhead box O3 axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118821. [PMID: 39265794 DOI: 10.1016/j.jep.2024.118821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Positive evidence from clinical trials highlights the promising potential of traditional Chinese medication, Qili qiangxin capsule (QLQX), on chronic heart failure; however, limited data are available regarding its effects and mechanism in myocardial ischemia-reperfusion injury (MIRI). Herein, we aimed to explore cardioprotective effects and the underlying mechanism of QLQX in MIRI in vivo and in vitro. MATERIALS AND METHODS Mice were subjected to left anterior descending coronary artery ligation for 30 min followed by 24 h of reperfusion with or without 7-day pretreatment with QLQX (0.234, 0.468, or 0.936 g/kg). Cardiac function, myocardial infarction, and morphological changes were evaluated. The mechanism underlying the cardio-protection of QLQX on MIRI was determined by network pharmacology based on the common genes of potential targets of QLQX and MIRI-related genes, further validated by H9c2 cardiomyocytes exposing hypoxia/reoxygenation (H/R). The viability, apoptosis, as well as autophagy and relevant signaling proteins in H9c2 were analyzed. RESULTS QLQX pretreatment markedly improved cardiac function and decreased myocardium infarct size, apoptotic cardiomyocyte number, and LHD, CK-MB, and TnT levels in MIRI mice. QLQX could mitigate H/R-induced H9c2 cardiomyocyte injury, as evidenced by decreased cell apoptosis and LDH release and increased ATP production. QLQX effectively attenuates excessive autophagy in cardiomyocytes both in vivo and in vitro. Mechanically, network pharmacology analysis demonstrated the cardio-protection of QLQX on MIRI involving in PI3K/Akt signaling; the effects of QLQX on H/R-induced H9c2 cardiomyocytes were abolished by a specific PI3K inhibitor. CONCLUSION QLQX protects against cardiomyocyte apoptosis and excessive autophagy via PI3K/Akt signaling during MIRI.
Collapse
Affiliation(s)
- Ningxia Wu
- Cardiovascular Department, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, 510130, China; Department of Geriatric Cardiology, General Hospital of Southern Theatre Command, Guangzhou, 510040, China; Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jianing Chi
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Hua Cai
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jiaman Hu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510315, China.
| | - Yingying Lai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510315, China.
| | - Cailong Lin
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510315, China.
| | - Liang Kang
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jingping Sun
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jianyu Huang
- Department of Geriatric Cardiology, General Hospital of Southern Theatre Command, Guangzhou, 510040, China.
| | - Min Li
- Department of Geriatric Cardiology, General Hospital of Southern Theatre Command, Guangzhou, 510040, China.
| | - Lin Xu
- Department of Geriatric Cardiology, General Hospital of Southern Theatre Command, Guangzhou, 510040, China.
| |
Collapse
|
2
|
Gong G, Wan W, Zhang X, Chen X, Yin J. Management of ROS and Regulatory Cell Death in Myocardial Ischemia-Reperfusion Injury. Mol Biotechnol 2024:10.1007/s12033-024-01173-y. [PMID: 38852121 DOI: 10.1007/s12033-024-01173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 06/10/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is fatal to patients, leading to cardiomyocyte death and myocardial remodeling. Reactive oxygen species (ROS) and oxidative stress play important roles in MIRI. There is a complex crosstalk between ROS and regulatory cell deaths (RCD) in cardiomyocytes, such as apoptosis, pyroptosis, autophagy, and ferroptosis. ROS is a double-edged sword. A reasonable level of ROS maintains the normal physiological activity of myocardial cells. However, during myocardial ischemia-reperfusion, excessive ROS generation accelerates myocardial damage through a variety of biological pathways. ROS regulates cardiomyocyte RCD through various molecular mechanisms. Targeting the removal of excess ROS has been considered an effective way to reverse myocardial damage. Many studies have applied antioxidant drugs or new advanced materials to reduce ROS levels to alleviate MIRI. Although the road from laboratory to clinic has been difficult, many scholars still persevere. This article reviews the molecular mechanisms of ROS inhibition to regulate cardiomyocyte RCD, with a view to providing new insights into prevention and treatment strategies for MIRI.
Collapse
Affiliation(s)
- Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Xinghu Zhang
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Xiangxuan Chen
- Department of Cardiology, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
- Department of Orthopedics, Jiangning Clinical Medical College of Jiangsu Medical Vocational College, Nanjing, 211100, China.
- Department of Orthopedics, Jiangning Clinical Medical College of Nanjing Medical University Kangda College, Nanjing, 211100, China.
| |
Collapse
|
3
|
Zhang W, Chen R, Xu K, Guo H, Li C, Sun X. Protective effect of Xinmai'an tablets via mediation of the AMPK/SIRT1/PGC-1α signaling pathway on myocardial ischemia-reperfusion injury in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155034. [PMID: 37611465 DOI: 10.1016/j.phymed.2023.155034] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Xinmai'an tablets are a compound Chinese medicine comprising six traditional Chinese medicines that have been clinically applied to treat cardiovascular diseases such as premature ventricular contractions for many years. However, pharmacological effects and underlying mechanisms of Xinmai'an tablet in protecting against myocardial ischemia-reperfusion injury (MIRI) were barely ever studied. PURPOSE To investigate the cardioprotective properties of Xinmai'an tablet against MIRI and the underlying molecular mechanism in rats. METHODS We initially established the UHPLC-QTRAP-MS/MS analysis method to ensure the controllable quality of Xinmai'an tablet. We further identified the cardioprotective effects of Xinmai'an tablet against MIRI using TTC staining, hematoxylin and eosin, echocardiography, the transmission electron microscope analysis, biochemical analysis, and ELISA. We then investigated whether the safeguarding effect of Xinmai'an tablet on MIRI model rats was related to AMPK/SIRT1/PGC-1α pathway via western blotting. RESULTS Xinmai'an tablet decreased myocardial infarct size; ameliorated cardiac function; alleviated myocardial and mitochondrial damage; and suppressed oxidative stress injury, vascular endothelial damage, and apoptosis response in MIRI model rats. Mechanistically, our results showed that Xinmai'an tablet can dramatically activate the AMPK/SIRT1/PGC-1αpathway and subsequently diminish mitochondrial oxidative stress damage. This was evidenced by increased ATP, Na+-K+-ATPase, and Ca2+-Mg2+-ATPase levels, upregulation of GLUT4, p-AMPK, SIRT1, and PGC-1α protein levels; and reduced GLUT1 protein level. CONCLUSION To the knowledge of the author of this article, this study is the first report of Xinmai'an tablet attenuating MIRI, potentially associated with the activation of the AMPK/SIRT1/PGC-1α pathway and subsequent reduction of mitochondrial oxidative stress damage. These findings reveal a novel pharmacological effect and mechanism of action of Xinmai'an tablet and highlight a promising therapeutic drug for ischemic cardiovascular diseases.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou 510515, China
| | - Rongchang Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Keyi Xu
- Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou 510515, China
| | - Haibiao Guo
- Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou 510515, China
| | - Chuyuan Li
- Hutchison Whampoa Guangzhou Bai Yunshan Chinese Medicine Co., Ltd., Guangzhou 510515, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
4
|
Wang Q, Zuurbier CJ, Huhn R, Torregroza C, Hollmann MW, Preckel B, van den Brom CE, Weber NC. Pharmacological Cardioprotection against Ischemia Reperfusion Injury-The Search for a Clinical Effective Therapy. Cells 2023; 12:1432. [PMID: 37408266 DOI: 10.3390/cells12101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
Pharmacological conditioning aims to protect the heart from myocardial ischemia-reperfusion injury (IRI). Despite extensive research in this area, today, a significant gap remains between experimental findings and clinical practice. This review provides an update on recent developments in pharmacological conditioning in the experimental setting and summarizes the clinical evidence of these cardioprotective strategies in the perioperative setting. We start describing the crucial cellular processes during ischemia and reperfusion that drive acute IRI through changes in critical compounds (∆GATP, Na+, Ca2+, pH, glycogen, succinate, glucose-6-phosphate, mitoHKII, acylcarnitines, BH4, and NAD+). These compounds all precipitate common end-effector mechanisms of IRI, such as reactive oxygen species (ROS) generation, Ca2+ overload, and mitochondrial permeability transition pore opening (mPTP). We further discuss novel promising interventions targeting these processes, with emphasis on cardiomyocytes and the endothelium. The limited translatability from basic research to clinical practice is likely due to the lack of comorbidities, comedications, and peri-operative treatments in preclinical animal models, employing only monotherapy/monointervention, and the use of no-flow (always in preclinical models) versus low-flow ischemia (often in humans). Future research should focus on improved matching between preclinical models and clinical reality, and on aligning multitarget therapy with optimized dosing and timing towards the human condition.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Ragnar Huhn
- Department of Anesthesiology, Kerckhoff-Clinic-Center for Heart, Lung, Vascular and Rheumatic Disease, Justus-Liebig-University Giessen, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Carolin Torregroza
- Department of Anesthesiology, Kerckhoff-Clinic-Center for Heart, Lung, Vascular and Rheumatic Disease, Justus-Liebig-University Giessen, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Markus W Hollmann
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Nina C Weber
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
5
|
Xu H, Zhang G, Deng L. Kukoamine A activates Akt/GSK-3β signaling pathway to inhibit oxidative stress and relieve myocardial ischemia-reperfusion injury. Acta Cir Bras 2022; 37:e370407. [PMID: 35894345 PMCID: PMC9310357 DOI: 10.1590/acb370407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose: Myocardial ischemia/reperfusion (MI/R) injury refers to a pathological condition of treatment of myocardial infarction. Oxidative stress and inflammation are believed to be important mechanisms mediating MI/R injury. Kukoamine A (KuA), a sperm, is the main bioactive component extracted from the bark of goji berries. In this study, we wanted to investigate the possible effects of KuA on MI/R injury. Methods: In this experiment, all rats were divided into sham operation group, MI/R group, KuA 10 mg + MI/R group, KuA 20 mg + MI/R group. After 120 min of ischemia/reperfusion treatment, left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), maximal rates of rising and fall of left ventricular pressure (±dp/dtmax), and ischemic area were detected. Serum samples of rats in each group were collected. The enzyme activities of catalase (CAT), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), levels of malondialdehyde (MDA), CK muscle/brain (CK-MB), tumor necrosis factor (TNF), interleukin-1β (IL-1β), and interleukin-6 (IL-6) were detected using enzyme-linked immunosorbent assay (ELISA). The apoptosis of myocardium in each group was detected according to the instructions of the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expressions of mammalian target of glycogen synthase kinase-3β (GSH-3β) and protein kinase B (Akt) mRNA level in myocardial tissues were detected via reverse transcription-polymerase chain reaction (RT-PCR). Results: MI/R rats showed a significant increase in oxidative stress and inflammation. In addition, we showed that KuA significantly improved the myocardial function such as LVSP, left ventricular ejection fraction, +dp/dt, and -dp/dt. Here, it attenuated dose-dependent histological damage in ischemia-reperfused myocardium, which is associated with the enzyme activities of SOD, GSH-PX, and levels of MDA, IL-6, TNF-α, L-1β. Conclusions: KuA inhibited gene expression of Akt/GSK-3β, inflammation, oxidative stress and improved MR/I injury. Taken together, our results allowed us to better understand the pharmacological activity of KuA against MR/I injury.
Collapse
Affiliation(s)
- Han Xu
- PhD. Gansu Provincial Central Hospital - Department of Cardiology - Gansu Province, China
| | - Guibin Zhang
- PhD. Gansu Provincial Central Hospital - Department of Integrated Pediatric Medicine - Gansu Province, China
| | - Long Deng
- PhD. The First Hospital of Lanzhou University - Department of Ultrasound - Gansu Province, China
| |
Collapse
|
6
|
Li JY, Liu SQ, Yao RQ, Tian YP, Yao YM. A Novel Insight Into the Fate of Cardiomyocytes in Ischemia-Reperfusion Injury: From Iron Metabolism to Ferroptosis. Front Cell Dev Biol 2021; 9:799499. [PMID: 34926476 PMCID: PMC8675329 DOI: 10.3389/fcell.2021.799499] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemia-reperfusion injury (IRI), critically involved in the pathology of reperfusion therapy for myocardial infarction, is closely related to oxidative stress the inflammatory response, and disturbances in energy metabolism. Emerging evidence shows that metabolic imbalances of iron participate in the pathophysiological process of cardiomyocyte IRI [also termed as myocardial ischemia-reperfusion injury (MIRI)]. Iron is an essential mineral required for vital physiological functions, including cellular respiration, lipid and oxygen metabolism, and protein synthesis. Nevertheless, cardiomyocyte homeostasis and viability are inclined to be jeopardized by iron-induced toxicity under pathological conditions, which is defined as ferroptosis. Upon the occurrence of IRI, excessive iron is transported into cells that drive cardiomyocytes more vulnerable to ferroptosis by the accumulation of reactive oxygen species (ROS) through Fenton reaction and Haber–Weiss reaction. The increased ROS production in ferroptosis correspondingly leads cardiomyocytes to become more sensitive to oxidative stress under the exposure of excess iron. Therefore, ferroptosis might play an important role in the pathogenic progression of MIRI, and precisely targeting ferroptosis mechanisms may be a promising therapeutic option to revert myocardial remodeling. Notably, targeting inhibitors are expected to prevent MIRI deterioration by suppressing cardiomyocyte ferroptosis. Here, we review the pathophysiological alterations from iron homeostasis to ferroptosis together with potential pathways regarding ferroptosis secondary to cardiovascular IRI. We also provide a comprehensive analysis of ferroptosis inhibitors and initiators, as well as regulatory genes involved in the setting of MIRI.
Collapse
Affiliation(s)
- Jing-yan Li
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuang-qing Liu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ren-qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ying-ping Tian
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ying-ping Tian, ; Yong-ming Yao,
| | - Yong-ming Yao
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- *Correspondence: Ying-ping Tian, ; Yong-ming Yao,
| |
Collapse
|
7
|
Timing of coronary artery bypass grafting after acute myocardial infarction: does it influence outcomes? POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2021; 18:27-32. [PMID: 34552641 PMCID: PMC8442093 DOI: 10.5114/kitp.2021.105184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022]
Abstract
Introduction The optimal timing of coronary artery bypass grafting (CABG) operations in patients with recent acute myocardial infarction (AMI) remains unclear. Aim To assess the influence of timing on post-operative outcomes in patients undergoing CABG following AMI. Material and methods In this retrospective analysis 12,224 consecutive patients undergoing CABG were included. 2477 (20.5%) patients had a history of AMI. Based on timing, patients were divided into 3 groups: those operated within 7 days of AMI; those operated after 7 days but within 1 month; and a third group operated after 1 month but within 3 months. The 3 groups were compared in terms of baseline, intra-operative, and post-operative morbidity and mortality. Multivariate analysis was carried out to assess the independent influence of timing of CABG on outcomes. Results There was no difference in terms of previous neurological events (p = 0.554), presence of carotid artery disease (p = 0.555), prevalence of hypertension (p = 0.119), diabetes (p = 0.144), hypothyroidism (p = 0.53), chronic obstructive pulmonary disease (p = 0.079), peripheral vascular disease (p = 0.771), and impaired left ventricular function (p = 0.072). On univariate analysis, mortality risk was highest between 1 week and 1 month (p = 0.003). Multivariate analysis showed that the closer the MI and CABG duration, the higher the mortality (co-efficient -0.517; p = 0.019; odds ratio = 0.596; 95% CI: 0.388-0.917). Conclusions The duration between MI and CABG has a direct influence on outcomes after CABG. While it is clear that the longer the duration between MI and CABG, the lower the mortality risk, it is however difficult to decide on an exact cut-off time frame.
Collapse
|
8
|
Wang R, Wang M, Zhou J, Wu D, Ye J, Sun G, Sun X. Saponins in Chinese Herbal Medicine Exerts Protection in Myocardial Ischemia-Reperfusion Injury: Possible Mechanism and Target Analysis. Front Pharmacol 2021; 11:570867. [PMID: 33597866 PMCID: PMC7883640 DOI: 10.3389/fphar.2020.570867] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Myocardial ischemia is a high-risk disease among middle-aged and senior individuals. After thrombolytic therapy, heart tissue can potentially suffer further damage, which is called myocardial ischemia-reperfusion injury (MIRI). At present, the treatment methods and drugs for MIRI are scarce and cannot meet the current clinical needs. The mechanism of MIRI involves the interaction of multiple factors, and the current research hotspots mainly include oxidative stress, inflammation, calcium overload, energy metabolism disorders, pyroptosis, and ferroptosis. Traditional Chinese medicine (TCM) has multiple targets and few toxic side effects; clinical preparations containing Panax ginseng C. A. Mey., Panax notoginseng (Burk.) F. H. Chen, Aralia chinensis L., cardioprotection, and other Chinese herbal medicines have been used to treat patients with coronary heart disease, angina pectoris, and other cardiovascular diseases. Studies have shown that saponins are the main active substances in TCMs containing Panax ginseng C. A. Mey., Panax notoginseng (Burk.) F. H. Chen, Aralia chinensis L., and Radix astragali. In the present review, we sorted the saponin components with anti-MIRI effects and their regulatory mechanisms. Each saponin can play a cardioprotective role via multiple mechanisms, and the signaling pathways involved in different saponins are not the same. We found that more active saponins in Panax ginseng C. A. Mey. are mainly dammar-type structures and have a strong regulatory effect on energy metabolism. The highly active saponin components of Aralia chinensis L. are oleanolic acid structures, which have significant regulatory effects on calcium homeostasis. Therefore, saponins in Chinese herbal medicine provide a broad application prospect for the development of highly effective and low-toxicity anti-MIRI drugs.
Collapse
Affiliation(s)
- Ruiying Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiahui Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Daoshun Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Kim AS, Conte MS. Specialized pro-resolving lipid mediators in cardiovascular disease, diagnosis, and therapy. Adv Drug Deliv Rev 2020; 159:170-179. [PMID: 32697951 PMCID: PMC10980506 DOI: 10.1016/j.addr.2020.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Persistent inflammation is the key aggravator in many cardiovascular diseases, including atherosclerosis, aneurysm, injury/reperfusion, thrombosis, and neointimal hyperplasia following surgical or percutaneous interventions. Resolution is an active process orchestrated by specialized pro-resolving lipid mediators (SPMs) which tamp down acute inflammatory signals, promote healing and facilitate a return to homeostasis. SPMs are endogenously derived from poly-unsaturated fatty acids, and their biologic activity is mediated via specific G-protein coupled receptor binding. The potency of SPM in regulating the inflammatory response has encouraged investigation into their therapeutic and diagnostic use in cardiovascular pathologies. Herein we describe the translational groundwork which has established the synthesis and interactions of SPM in cardiovascular and hematologic cells, the therapeutic effects of SPM in animal models of cardiovascular disease, and some early technologies that harness and attempt to optimize SPM delivery and "resolution pharmacology". Further studies are required to precisely determine the mechanisms of resolution in the cardiovascular system and to determine the clinical settings in which SPM can be utilized to optimize patient outcomes.
Collapse
Affiliation(s)
- Alexander S Kim
- Division of Vascular and Endovascular Surgery, Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Michael S Conte
- Division of Vascular and Endovascular Surgery, Cardiovascular Research Institute, University of California, San Francisco, USA.
| |
Collapse
|
10
|
Lloyd SG, Farris GR. MRI Apparent Diffusion Coefficient in Reperfused Acute Myocardial Infarction: New Use of an Old Technique. Radiology 2020; 295:550-551. [DOI: 10.1148/radiol.2020200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Steven G. Lloyd
- From the Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, 1808 7th Ave S, Birmingham, AL 35294; and Birmingham VA Medical Center, Birmingham, Ala
| | - G. Ross Farris
- From the Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, 1808 7th Ave S, Birmingham, AL 35294; and Birmingham VA Medical Center, Birmingham, Ala
| |
Collapse
|
11
|
Yang Y, Li T, Li Z, Liu N, Yan Y, Liu B. Role of Mitophagy in Cardiovascular Disease. Aging Dis 2020; 11:419-437. [PMID: 32257551 PMCID: PMC7069452 DOI: 10.14336/ad.2019.0518] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/18/2019] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and mitochondrial dysfunction is the primary contributor to these disorders. Recent studies have elaborated on selective autophagy-mitophagy, which eliminates damaged and dysfunctional mitochondria, stabilizes mitochondrial structure and function, and maintains cell survival and growth. Numerous recent studies have reported that mitophagy plays an important role in the pathogenesis of various cardiovascular diseases. This review summarizes the mechanisms underlying mitophagy and advancements in studies on the role of mitophagy in cardiovascular disease.
Collapse
Affiliation(s)
- Yibo Yang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhibo Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Ning Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Youyou Yan
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
12
|
Kulek AR, Anzell A, Wider JM, Sanderson TH, Przyklenk K. Mitochondrial Quality Control: Role in Cardiac Models of Lethal Ischemia-Reperfusion Injury. Cells 2020; 9:cells9010214. [PMID: 31952189 PMCID: PMC7016592 DOI: 10.3390/cells9010214] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 02/07/2023] Open
Abstract
The current standard of care for acute myocardial infarction or 'heart attack' is timely restoration of blood flow to the ischemic region of the heart. While reperfusion is essential for the salvage of ischemic myocardium, re-introduction of blood flow paradoxically kills (rather than rescues) a population of previously ischemic cardiomyocytes-a phenomenon referred to as 'lethal myocardial ischemia-reperfusion (IR) injury'. There is long-standing and exhaustive evidence that mitochondria are at the nexus of lethal IR injury. However, during the past decade, the paradigm of mitochondria as mediators of IR-induced cardiomyocyte death has been expanded to include the highly orchestrated process of mitochondrial quality control. Our aims in this review are to: (1) briefly summarize the current understanding of the pathogenesis of IR injury, and (2) incorporating landmark data from a broad spectrum of models (including immortalized cells, primary cardiomyocytes and intact hearts), provide a critical discussion of the emerging concept that mitochondrial dynamics and mitophagy (the components of mitochondrial quality control) may contribute to the pathogenesis of cardiomyocyte death in the setting of ischemia-reperfusion.
Collapse
Affiliation(s)
- Andrew R. Kulek
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Anthony Anzell
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Joseph M. Wider
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Thomas H. Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Departments of Emergency Medicine and Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Karin Przyklenk
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.R.K.); (A.A.); (T.H.S.)
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +1-313-577-9047
| |
Collapse
|
13
|
Li T, Yu SS, Zhou CY, Wang K, Wan YC. MicroRNA-206 inhibition and activation of the AMPK/Nampt signalling pathway enhance sevoflurane post-conditioning-induced amelioration of myocardial ischaemia/reperfusion injury. J Drug Target 2019; 28:80-91. [PMID: 31092059 DOI: 10.1080/1061186x.2019.1616744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tao Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Shan-Shan Yu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Chang-Yu Zhou
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Ke Wang
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Ying-Chun Wan
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
14
|
Wang JH, Wei ZF, Gao YL, Liu CC, Sun JH. Activation of the mammalian target of rapamycin signaling pathway underlies a novel inhibitory role of ring finger protein 182 in ventricular remodeling after myocardial ischemia-reperfusion injury. J Cell Biochem 2019; 120:7635-7648. [PMID: 30450663 DOI: 10.1002/jcb.28038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a major cause of cardiovascular disease, leading to mortality and disability associated with coronary occlusion worldwide. A correlation of mammalian target of rapamycin (mTOR)/nuclear factor-kappa B (NF-κB) signaling pathway has been observed with brain damage resulting from myocardial ischemia. Therefore, by establishing MIRI rat model, this study aimed to explore whether ring finger protein 182 (RNF182) regulates the mTOR signaling pathway affecting MIRI. Initially, MIRI rat model was successfully established, followed by either treatment of shRNF182 or phosphoesterase (PITE) (inhibitor of the mTOR signaling pathway). Then, the serum levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA), left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular systolic pressure (LVSP), and left ventricular end-diastolic pressure (LVEDP) were determined, followed by detection of myocardial infarct sizes and myocardial cell apoptosis. Moreover, the levels of related genes/proteins were determined to further determine the mechanisms of RNF182 in MIRI. First, RNF182 was upregulated in MIRI. Another key observation of this study was that rats with shRNF182 presented with downregulated SOD, GSH-Px, and MDA in serum, accompanied by decreased levels of LVEF, LVFS, LVSP, and LVEDP. In addition, both reduced myocardial infarct sizes and apoptosis of myocardial cells were observed after silencing RNF182. Furthermore, silencing of the RNF182 was observed to downregulate Bcl 2-associated X and cysteine proteinase 3 but upregulate mTOR, ribosome protein subunit 6 kinase 1, eukaryotic elongation factor 2, and B-cell lymphoma-2. Importantly, the effects of RNF182 silencing were reversed after PITE treatment. In conclusion, our study demonstrates that RNF182 silencing can prevent ventricular remodeling in rats after MIRI by activating the mTOR signaling pathway.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Zhi-Feng Wei
- Department of Cardiology, FAW General Hospital, Changchun, China
| | - Yan-Li Gao
- Department of Science and Education, The First Hospital of Jilin University, Changchun, China
| | - Cong-Cong Liu
- Department of Pediatric Rheumatology, Immunology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Jing-Hui Sun
- Department of Pediatric Cardiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Chen XJ, Ren SM, Dong JZ, Qiu CG, Chen YW, Tao HL. Ginkgo biloba extract-761 protects myocardium by regulating Akt/Nrf2 signal pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:647-655. [PMID: 30858695 PMCID: PMC6387611 DOI: 10.2147/dddt.s191537] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objective The aim of this study was to investigate the protective effect and mechanism of Ginkgo biloba extract-761 (EGb 761) in the rat with myocardial ischemia–reperfusion injury (MIRI). Materials and methods Forty Sprague Dawley rats were randomly divided into following four groups: sham group, I/R group and EGb 761 groups (20 and 40 mg/kg). MIRI model was established after 14 days of administration. The myocardial infarct size and myocardial histology were measured and compared. Meanwhile, the levels of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), troponin T (TnT), TNF-α, IL-6, IL-1β, superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) were evaluated. Western blot was used to detect the expression of Caspase-3, Bax, Bcl-2, HO-1, Nrf2, Akt, p-Akt and nuclear protein Nrf2. Results The levels of infarct size, CK-MB, LDH, TnT, TNF-α, IL-6 and IL-1β in the EGb 761 groups were significantly lower than those in the ischemia/reperfusion (I/R) group. The content of MDA was lower in the myocardium, whereas the activities of SOD and GSH-Px were higher than those in the I/R group. The expressions of Caspase-3 and Bax in the EGb 761 groups were significantly lower than those in the I/R group, whereas the expressions of Bcl-2, p-Akt and HO-1 and nuclear protein Nrf2 in the EGb 761 groups were higher than those in the I/R group. Conclusion EGb 761 might inhibit the apoptosis of myocardial cells and protect the myocardium by activating the Akt/Nrf2 pathway, increasing the expression of HO-1, decreasing oxidative stress and repressing inflammatory reaction.
Collapse
Affiliation(s)
- Xiao-Jie Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| | - Shu-Min Ren
- Department of Genetics and Prenatal Diagnosis, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Zeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| | - Chun-Guang Qiu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| | - Ying-Wei Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| | - Hai-Long Tao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| |
Collapse
|
16
|
Mihanfar A, Nejabati HR, Fattahi A, latifi Z, Faridvand Y, Pezeshkian M, Jodati AR, Safaie N, Afrasiabi A, Nouri M. SIRT3-mediated cardiac remodeling/repair following myocardial infarction. Biomed Pharmacother 2018; 108:367-373. [DOI: 10.1016/j.biopha.2018.09.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
|
17
|
Reperfusing the myocardium - a damocles Sword. Indian Heart J 2018; 70:433-438. [PMID: 29961464 PMCID: PMC6034085 DOI: 10.1016/j.ihj.2017.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/03/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022] Open
Abstract
Return of blood flow after periodic ischemia is often accompanied by myocardial injury, commonly known as lethal reperfusion injury (RI). Experimental studies have shown that 50% of muscle die of ischemia and another 50% die because of reperfusion. It is characterized by myocardial, vascular, or electrophysiological dysfunction that is induced by the restoration of blood flow to previously ischemic tissue. This phenomenon reduces the efficiency of the present modalities used to combat the ischemic myocardium. Moreover, despite an improved understanding of the pathophysiology of this process and encouraging preclinical trials of multiple agents, most of the clinical trials to prevent RI have been disappointing and leaves us at ground zero to explore newer approaches.
Collapse
|
18
|
SIRT3: A New Regulator of Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7293861. [PMID: 29643974 PMCID: PMC5831850 DOI: 10.1155/2018/7293861] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 01/13/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death worldwide, and defects in mitochondrial function contribute largely to the occurrence of CVDs. Recent studies suggest that sirtuin 3 (SIRT3), the mitochondrial NAD+-dependent deacetylase, may regulate mitochondrial function and biosynthetic pathways such as glucose and fatty acid metabolism and the tricarboxylic acid (TCA) cycle, oxidative stress, and apoptosis by reversible protein lysine deacetylation. SIRT3 regulates glucose and lipid metabolism and maintains myocardial ATP levels, which protects the heart from metabolic disturbances. SIRT3 can also protect cardiomyocytes from oxidative stress-mediated cell damage and block the development of cardiac hypertrophy. Recent reports show that SIRT3 is involved in the protection of several heart diseases. This review discusses the progress in SIRT3-related research and the role of SIRT3 in the prevention and treatment of CVDs.
Collapse
|
19
|
Ramanathan K, Abel JG, Park JE, Fung A, Mathew V, Taylor CM, Mancini GJ, Gao M, Ding L, Verma S, Humphries KH, Farkouh ME. Surgical Versus Percutaneous Coronary Revascularization in Patients With Diabetes and Acute Coronary Syndromes. J Am Coll Cardiol 2017; 70:2995-3006. [DOI: 10.1016/j.jacc.2017.10.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 09/29/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
|
20
|
Datta T, Przyklenk K, Datta NS. Parathyroid Hormone-Related Peptide: A Novel Endocrine Cardioprotective "Conditioning Mimetic". J Cardiovasc Pharmacol Ther 2017; 22:529-537. [PMID: 28403647 DOI: 10.1177/1074248417702976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An as-yet limited body of evidence suggests that calcium-regulating endocrine hormones-in particular, parathyroid hormone-related peptide (PTHrP)-may have unappreciated cardioprotective effects. The current review focuses on the concept that PTHrP may, via modulation of classic cardioprotective signaling pathways, provide a novel strategy to attenuate myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Tanuka Datta
- 1 Department of Internal Medicine, George Washington University, Washington, DC, USA
| | - Karin Przyklenk
- 2 Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA.,3 Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.,4 Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nabanita S Datta
- 2 Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA.,5 Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
21
|
Xu Q, Li QG, Fan GR, Liu QH, Mi FL, Liu B. Protective effects of fentanyl preconditioning on cardiomyocyte apoptosis induced by ischemia-reperfusion in rats. ACTA ACUST UNITED AC 2017; 50:e5286. [PMID: 28225864 PMCID: PMC5343559 DOI: 10.1590/1414-431x20165286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/29/2016] [Indexed: 01/05/2023]
Abstract
We aimed to study the effect of fentanyl (Fen) preconditioning on cardiomyocyte
apoptosis induced by ischemia-reperfusion (I/R) in rats. A total of 120 Sprague
Dawley male rats (age: 3 months) were randomly divided into: sham operation group (S
group), I/R group, normal saline I/R group (NS group), and fentanyl low, middle, and
high dose groups (Fen1: 2 μg/kg; Fen2: 4 μg/kg; Fen3: 6 μg/kg). Heart rate (HR), mean
arterial pressure (MAP), left ventricular developed pressure (LVDP), ±dp/dtmax,
malondialdehyde (MDA), superoxide dismutase (SOD) activity, creatine phosphokinase-MB
(CK-MB), and cardiac troponin-I (cTnI) were measured. Myocardial ischemic (MI) area,
total apoptotic myocardial cells, and protein and mRNA expressions of B-cell lymphoma
2 (Bcl-2) and Bax were detected. HR and MAP were higher, while LVDP and ±dp/dtmax
were close to the base value in the Fen groups compared to those in the I/R group.
Decreased MDA concentration and CK-MB value and increased SOD activity were found in
the Fen groups compared to the I/R group, while cTnI concentration was significantly
lower in the Fen1 and Fen2 groups (all P<0.05). Myocardial damage
was less in the Fen groups compared to the I/R group and the MI areas and apoptotic
indexes were significantly lower in the Fen1 and Fen2 groups (all
P<0.05). Furthermore, significantly increased protein and mRNA
expressions of Bcl-2, and decreased protein and mRNA expressions of Bax were found in
the Fen groups compared to the I/R group (all P<0.05). Fentanyl preconditioning
may suppress cardiomyocyte apoptosis induced by I/R in rats by regulating Bcl-2 and
Bax.
Collapse
Affiliation(s)
- Q Xu
- Department of Anesthesiology, Linyi People's Hospital, Linyi, Shandong, China
| | - Q-G Li
- Department of Anesthesiology, Linyi Cancer Hospital, Linyi, Shandong, China
| | - G-R Fan
- Operation Room, Linyi People's Hospital, Linyi, Shandong, China
| | - Q-H Liu
- Department of Anesthesiology, Linyi People's Hospital, Linyi, Shandong, China
| | - F-L Mi
- Department of Anesthesiology, Linyi People's Hospital, Linyi, Shandong, China
| | - B Liu
- Department of Anesthesiology, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
22
|
Huang J, Li Y, Zhang J, Liu Y, Lu Q. The Growth Hormone Secretagogue Hexarelin Protects Rat Cardiomyocytes From in vivo Ischemia/Reperfusion Injury Through Interleukin-1 Signaling Pathway. Int Heart J 2017; 58:257-263. [DOI: 10.1536/ihj.16-241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jiannan Huang
- Department of Cardiology, The Second Hospital of Shandong University
- Department of Cardiology, The Central Hospital of Zibo City
| | - Yi Li
- Obstetric Genetic Disease Laboratory, Maternal and Child Health Hospital of Zibo City
| | - Juan Zhang
- Department of Cardiology, The Central Hospital of Zibo City
| | - Yusheng Liu
- Department of Cardiology, The Second Hospital of Shandong University
| | - Qinghua Lu
- Department of Cardiology, The Second Hospital of Shandong University
| |
Collapse
|
23
|
Lazaroid U-74389G for cardioplegia-related ischemia–reperfusion injury: an experimental study. J Surg Res 2017; 207:164-173. [DOI: 10.1016/j.jss.2016.08.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/23/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022]
|
24
|
SIRT3 in cardiovascular diseases: Emerging roles and therapeutic implications. Int J Cardiol 2016; 220:700-5. [DOI: 10.1016/j.ijcard.2016.06.236] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/26/2016] [Indexed: 12/17/2022]
|
25
|
Ge ZR, Xu MC, Huang YU, Zhang CJ, Lin JE, Ruan CW. Cardioprotective effect of notoginsenoside R1 in a rabbit lung remote ischemic postconditioning model via activation of the TGF-β1/TAK1 signaling pathway. Exp Ther Med 2016; 11:2341-2348. [PMID: 27284318 DOI: 10.3892/etm.2016.3222] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/11/2016] [Indexed: 12/29/2022] Open
Abstract
Pharmacological postconditioning using cardioprotective agents is able to reduce myocardial infarct size. Notoginsenoside R1 (NG-R1), a phytoestrogen isolated from Panax notoginseng saponins (PNS), is considered to have anti-oxidative and anti-apoptotic properties. However, its cardioprotective properties and underlying mechanisms remain largely unknown. The aim of the present study was to determine the cardioprotective and anti-apoptotic effects of NG-R1 in an ischemia-reperfusion (IR)-induced myocardial injury rabbit model. A total of 45 Japanese big-ear rabbits were equally randomized to three groups: Control group, remote ischemic postconditioning (RIP) group and NG-R1 intervention group. At the endpoint of the experiment, the animals were sacrificed to remove myocardial tissues for the detection of transforming growth factor (TGF)-β1-TGF-β activated kinase 1 (TAK1) pathway-related proteins by immunohistochemistry and western blot analysis, the activities of caspase-3, -8 and -9 in myocardial cells by fluorometric assay, and the apoptosis of myocardial cells by terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling. Right and left lung tissues were stained with hematoxylin and eosin (H&E) to observe the severity of injury. NG-R1 treatment reduced the activity of superoxide dismutase, increased the content of malondialdehyde, reduced the activities of caspase-3, -8 and -9, and inhibited the apoptosis of myocardial cells in rabbits undergoing RIP. In addition, the expression of TGF-β1-TAK1 signaling pathway-related proteins was downregulated following NG-R1 intervention. H&E staining of bilateral lung tissues showed that cell morphology was generally intact without significant alveolar congestion, and there was no significant difference among the three groups. These results indicate that NG-R1 protects the heart against IR injury, possibly by inhibiting the activation of the TGF-β1-TAK1 signaling pathway and attenuating apoptotic stress in the myocardium.
Collapse
Affiliation(s)
- Zhi-Ru Ge
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Mao-Chun Xu
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Y U Huang
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Chen-Jun Zhang
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - J E Lin
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Chang-Wu Ruan
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| |
Collapse
|
26
|
Protective Effects of L-Malate against Myocardial Ischemia/Reperfusion Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3803657. [PMID: 26941825 PMCID: PMC4752987 DOI: 10.1155/2016/3803657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/22/2015] [Indexed: 12/25/2022]
Abstract
Objective. To investigate the protective effects of L-malate against myocardial ischemia/reperfusion (I/R) injury in rats. Methods. Male Sprague-Dawley rats were randomly assigned to the following groups: sham (sham), an ischemia/reperfusion (I/R) model group (model), an DMF pretreated group (DMF), and 5 L-malate pretreated groups (15, 60, 120, 240, or 480 mg/kg, gavage) before inducing myocardial ischemia. Plasma LDH, cTn-I, TNF-α, hs-CRP, SOD, and GSH-PX were measured 3 h later I/R. Areas of myocardial infarction were measured; hemodynamic parameters during I/R were recorded. Hearts were harvested and Western blot was used to quantify Nrf2, Keap1, HO-1, and NQO-1 expression in the myocardium. Results. L-malate significantly reduced LDH and cTn-I release, reduced myocardial infarct size, inhibited expression of inflammatory cytokines, and partially preserved heart function, as well as increasing antioxidant activity after myocardial I/R injury. Western blot confirmed that L-malate reduced Kelch-like ECH-associated protein 1 in ischemic myocardial tissue, upregulated expression of Nrf2 and Nrf2 nuclear translocation, and increased expression of heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1, which are major targets of Nrf2. Conclusions. L-malate may protect against myocardial I/R injury in rats and this may be associated with activation of the Nrf2/Keap1 antioxidant pathway.
Collapse
|
27
|
Ebner B, Lange SA, Hollenbach D, Steinbronn N, Ebner A, Fischaleck C, Braun-Dullaeus R, Weinbrenner C, Strasser RH. In Situ Postconditioning With Neuregulin-1β Is Mediated by a PI3K/Akt-Dependent Pathway. Can J Cardiol 2015; 31:76-83. [DOI: 10.1016/j.cjca.2014.10.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/12/2014] [Accepted: 10/26/2014] [Indexed: 11/27/2022] Open
|
28
|
Cristescu SM, Kiss R, Hekkert STL, Dalby M, Harren FJM, Risby TH, Marczin N. Real-time monitoring of endogenous lipid peroxidation by exhaled ethylene in patients undergoing cardiac surgery. Am J Physiol Lung Cell Mol Physiol 2014; 307:L509-15. [PMID: 25128523 DOI: 10.1152/ajplung.00168.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary and systemic organ injury produced by oxidative stress including lipid peroxidation is a fundamental tenet of ischemia-reperfusion injury, inflammatory response to cardiac surgery, and cardiopulmonary bypass (CPB) but is not routinely measured in a surgically relevant time frame. To initiate a paradigm shift toward noninvasive and real-time monitoring of endogenous lipid peroxidation, we have explored pulmonary excretion and dynamism of exhaled breath ethylene during cardiac surgery to test the hypothesis that surgical technique and ischemia-reperfusion triggers lipid peroxidation. We have employed laser photoacoustic spectroscopy to measure real-time trace concentrations of ethylene from the patient breath and from the CPB machine. Patients undergoing aortic or mitral valve surgery-requiring CPB (n = 15) or off-pump coronary artery bypass surgery (OPCAB) (n = 7) were studied. Skin and tissue incision by diathermy caused striking (> 30-fold) increases in exhaled ethylene resulting in elevated levels until CPB. Gaseous ethylene in the CPB circuit was raised upon the establishment of CPB (> 10-fold) and decreased over time. Reperfusion of myocardium and lungs did not appear to enhance ethylene levels significantly. During OPCAB surgery, we have observed increased ethylene in 16 of 30 documented reperfusion events associated with coronary and aortic anastomoses. Therefore, novel real-time monitoring of endogenous lipid peroxidation in the intraoperative setting provides unparalleled detail of endogenous and surgery-triggered production of ethylene. Diathermy and unprotected regional myocardial ischemia and reperfusion are the most significant contributors to increased ethylene.
Collapse
Affiliation(s)
- Simona M Cristescu
- Department of Molecular and Laser Physics, Institute of Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Rudolf Kiss
- Department of Anaesthesia, Royal Brompton and Harefield NHS Foundation Trust, Harefield, UK; Section of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | | | - Miles Dalby
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, Harefield, UK
| | - Frans J M Harren
- Department of Molecular and Laser Physics, Institute of Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Terence H Risby
- Department of Environmental Health Sciences, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland; and
| | - Nandor Marczin
- Department of Anaesthesia, Royal Brompton and Harefield NHS Foundation Trust, Harefield, UK; Section of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK; Centre of Anaesthesia and Intensive Care, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
29
|
Bell RM. Remote ischaemic conditioning and ischaemic heart disease. Br J Hosp Med (Lond) 2014. [DOI: 10.12968/hmed.2014.75.sup1.c13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Robert M Bell
- NIHR Walport Academic Clinical Lecturer in Cardiology, Hatter Cardiovascular Institute, University College London, London WC1E 6HX
| |
Collapse
|
30
|
Protection tissulaire: une nouvelle piste. MEDECINE INTENSIVE REANIMATION 2014. [DOI: 10.1007/s13546-013-0817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Affiliation(s)
- Robert M Bell
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | | | | |
Collapse
|
32
|
Reduction of myocardial infarct size with ischemic "conditioning": physiologic and technical considerations. Anesth Analg 2013; 117:891-901. [PMID: 23960036 DOI: 10.1213/ane.0b013e318294fc63] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A wealth of evidence has revealed that the heart can be "conditioned" and rendered less vulnerable to ischemia-reperfusion injury via the upregulation of endogenous protective signaling pathways. Three distinct conditioning strategies have been identified: (1) preconditioning, the phenomenon where brief episodes of myocardial ischemia (too brief to cause cardiomyocyte death) limit necrosis caused by a subsequent sustained ischemic insult; (2) postconditioning, the concept that relief of myocardial ischemia in a staged or stuttered manner attenuates lethal ischemia-reperfusion injury; and (3) remote conditioning, or upregulation of a cardioprotective phenotype initiated by ischemia in a remote organ or tissue and "transported" to the heart. Progress has been made in defining the technical requirements and limitations of each of the 3 ischemic conditioning models (including the timing and severity of the protective stimulus), as well as elucidating the molecular mechanisms (in particular, the receptor-mediated signaling pathways) responsible for conditioning-induced myocardial protection. Moreover, phase III clinical trials are in progress, seeking to capitalize on the protection that can be achieved by postconditioning and remote conditioning, and applying these strategies in patients undergoing cardiac surgery or angioplasty for the treatment of acute myocardial infarction. There is, however, a potentially important caveat to the clinical translation of myocardial conditioning: emerging data suggest that the efficacy of ischemic conditioning is compromised in aging, diabetic, and hypertensive cohorts, the specific populations in which myocardial protection is most relevant. Successful clinical application of myocardial conditioning will therefore require an understanding of the potential confounding consequences of these comorbidities on the "conditioned" phenotype.
Collapse
|
33
|
Duicu OM, Angoulvant D, Muntean DM. Cardioprotection against myocardial reperfusion injury: successes, failures, and perspectives. Can J Physiol Pharmacol 2013; 91:657-62. [PMID: 23889135 DOI: 10.1139/cjpp-2013-0048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The past few decades have witnessed an enormous number of research strategies aimed at protecting the heart against myocardial ischemia-reperfusion injury. Several randomized clinical trials are nowadays in progress testing whether promising therapeutic strategies aimed at preventing lethal reperfusion injury can be translated from bench to bedside. Many of these interventions, either pharmacological or mechanical, are targeting mitochondria as the final effectors of cardioprotection. Despite encouraging pre-clinical studies and small proof of concept clinical trials, there are still several limitations that may jeopardize the efficacy of cardioprotective strategies. These limitations include clinical setting, patient profile, drug administration, and methods for evaluating treatment efficacy. Identifying potential mechanistic and methodological pitfalls in the field may improve future translational research.
Collapse
Affiliation(s)
- Oana M Duicu
- Department of Pathophysiology, Victor Babeş University of Medicine and Pharmacy Timisoara, Romania
| | | | | |
Collapse
|
34
|
Wang XY, Dong WP, Bi SH, Pan ZG, Yu H, Wang XW, Ma T, Wang J, Zhang WD. Protective effects of osthole against myocardial ischemia/reperfusion injury in rats. Int J Mol Med 2013; 32:365-72. [PMID: 23695269 DOI: 10.3892/ijmm.2013.1386] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/10/2013] [Indexed: 11/06/2022] Open
Abstract
Osthole, a bioactive simple coumarin derivative extracted from a number of medicinal plants, such as Cnidium monnieri and Angelica pubescens, has been shown to exert a variety of pharmacological activities and is considered to have potential therapeutic applications. In this study, we investigated the protective effects of osthole against myocardial ischemia/reperfusion (I/R) injury in rats. Male Sprague-Dawley rats were randomly assigned to 1 of 5 groups: the sham-oeprated control group (control), the vehicle group (vehicle), and 3 treatment groups, which were treated with osthole at the concentration of 1, 10 or 50 mg/kg (intraperitoneally), respectively, upon the initiation of myocardial ischemia. Treatment with osthole suppressed the formation of lipid peroxidation products, enhanced the capacities of antioxidant enzymes and inhibited the expression of inflammatory cytokines following myocardial I/R injury. Moreover, treatment with osthole reduced high-mobility group box protein 1 (HMGB1) and phosphorylated nuclear factor (NF)-κB expression in ischemic myocardial tissue. These results demonstrate the protective effects of osthole against myocardial I/R injury in rats and suggest that these effects may be associated with its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Xian-Yue Wang
- Department of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Oerlemans MI, Koudstaal S, Chamuleau SA, de Kleijn DP, Doevendans PA, Sluijter JP. Targeting cell death in the reperfused heart: Pharmacological approaches for cardioprotection. Int J Cardiol 2013; 165:410-22. [DOI: 10.1016/j.ijcard.2012.03.055] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/30/2012] [Accepted: 03/03/2012] [Indexed: 02/08/2023]
|
36
|
Bell RM, Kunuthur SP, Hendry C, Bruce-Hickman D, Davidson S, Yellon DM. Matrix metalloproteinase inhibition protects CyPD knockout mice independently of RISK/mPTP signalling: a parallel pathway to protection. Basic Res Cardiol 2013; 108:331. [PMID: 23361433 DOI: 10.1007/s00395-013-0331-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 12/11/2022]
Abstract
The mitochondrial permeability transition pore (mPTP) is widely accepted as an end-effector mechanism of conditioning protection against injurious ischaemia/reperfusion. However, death can be initiated in cells without pre-requisite mPTP opening, implicating alternate targets for ischaemia/reperfusion injury amelioration. Matrix metalloproteinases (MMP) are known to activate extrinsic apoptotic cascades and therefore we hypothesised that MMP activity represents an mPTP-independent target for augmented attenuation of ischaemia/reperfusion injury. In ex vivo and in vivo mouse hearts, we investigated whether the MMP inhibitor, ilomastat (0.25 μmol/l), administered upon reperfusion could engender protection in the absence of cyclophilin-D (CyPD), a modulator of mPTP opening, against injurious ischaemia/reperfusion. Ilomastat attenuated infarct size in wild-type (WT) animals [37 ± 2.8 to 22 ± 4.3 %, equivalent to ischaemic postconditioning (iPostC), used as positive control, 27 ± 2.1 %, p < 0.05]. Control CyPD knockout (KO) hearts had smaller infarcts than control WT (28 ± 4.2 %) and iPostC failed to confer additional protection, yet ilomastat significantly attenuated infarct size in KO hearts (11 ± 3.0 %, p < 0.001), and similar protection was also seen in isolated cardiomyocytes. Moreover, ilomastat, unlike the cyclophilin inhibitor cyclosporine-A, had no impact upon reactive oxygen species-mediated mPTP opening. While MMP inhibition was associated with increased Akt and ERK phosphorylation, neither Wortmannin nor PD98059 abrogated ilomastat-mediated protection. We demonstrate that MMP inhibition is cardioprotective, independent of Akt/ERK/CyPD/mPTP activity and is additive to the protection observed following inhibition of mPTP opening, indicative of a parallel pathway to protection in ischaemic/reperfused heart that may have clinical applicability in attenuating injury in acute coronary syndromes and deserve further investigation.
Collapse
Affiliation(s)
- Robert M Bell
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Medicine, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
37
|
Ma Y, Zhang L, Launikonis BS, Chen C. Growth hormone secretagogues preserve the electrophysiological properties of mouse cardiomyocytes isolated from in vitro ischemia/reperfusion heart. Endocrinology 2012; 153:5480-90. [PMID: 22948211 DOI: 10.1210/en.2012-1404] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ischemic heart diseases often induce cardiac arrhythmia with irregular cardiac action potential (AP). This study aims to demonstrate that GH secretagogues (GHS) ghrelin and its synthetic analog hexarelin can preserve the electrophysiological properties of cardiomyocytes experiencing ischemia/reperfusion (I/R). Isolated hearts from adult male mice underwent 20 min global ischemia followed by 30 min reperfusion using a Langendorff apparatus. Ghrelin (10 nM) or hexarelin (1 nM) was administered in the perfusion solution either 10 min before or after ischemia, termed pre- or posttreatments. Cardiomyocytes isolated from these hearts were used for whole-cell patch clamping to measure AP, voltage-gated L-type calcium current (I(CaL)), transient outward potassium current (I(to)), and sodium current (I(Na)). AP amplitude and duration were significantly decreased by I/R, but GHS treatments maintained their normality. GHS treatments prevented the decrease in I(CaL) and I(Na) after I/R, thereby maintaining AP amplitude. Although the significant increase in I(to) after I/R partially explained the shortened AP duration, the normalization of it by GHS treatments might contribute to the preservation of AP duration. Phosphorylated p38 and c-Jun NH(2)-terminal kinase and the downstream active caspase-9 in the cellular apoptosis pathway were significantly increased after I/R but not when GHS treatments were included, whereas phosphorylation of ERK1/2 associated with cell survival showed increase after I/R and a further increase after GHS treatments by binding to its receptor GHS receptor type 1a. These results suggest GHS can not only preserve the electrophysiological properties of cardiomyocytes after I/R but also inhibit cardiomyocyte apoptosis and promote cell survival by modification of MAPK pathways through activating GHS receptor type 1a.
Collapse
Affiliation(s)
- Yi Ma
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia
| | | | | | | |
Collapse
|
38
|
Semple DJ, Bhandari S, Seymour AML. Uremic cardiomyopathy is characterized by loss of the cardioprotective effects of insulin. Am J Physiol Renal Physiol 2012; 303:F1275-86. [DOI: 10.1152/ajprenal.00048.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic kidney disease is associated with a unique cardiomyopathy, characterized by a combination of structural and cellular remodeling, and an enhanced susceptibility to ischemia-reperfusion injury. This may represent dysfunction of the reperfusion injury salvage kinase pathway due to insulin resistance. The susceptibility of the uremic heart to ischemia-reperfusion injury and the cardioprotective effects of insulin and rosiglitazone were investigated. Uremia was induced in Sprague-Dawley rats by subtotal nephrectomy. Functional recovery from ischemia was investigated in vitro in control and uremic hearts ± insulin ± rosiglitazone. The response of myocardial oxidative metabolism to insulin was determined by13C-NMR spectroscopy. Activation of reperfusion injury salvage kinase pathway intermediates (Akt and GSK3β) were assessed by SDS-PAGE and immunoprecipitation. Insulin improved postischemic rate pressure product in control but not uremic hearts, [recovered rate pressure product (%), control 59.6 ± 10.7 vs. 88.9 ± 8.5, P < 0.05; uremic 19.3 ± 4.6 vs. 28.5 ± 10.4, P = ns]. Rosiglitazone resensitized uremic hearts to insulin-mediated cardioprotection [recovered rate pressure product (%) 12.7 ± 7.0 vs. 61.8 ± 15.9, P < 0.05]. Myocardial carbohydrate metabolism remained responsive to insulin in uremic hearts. Uremia was associated with increased phosphorylation of Akt (1.00 ± 0.08 vs. 1.31 ± 0.11, P < 0.05) in normoxia, but no change in postischemic phosphorylation of Akt or GSK3β. Akt2 isoform expression was decreased postischemia in uremic hearts ( P < 0.05). Uremia is associated with enhanced susceptibility to ischemia-reperfusion injury and a loss of insulin-mediated cardioprotection, which can be restored by administration of rosiglitazone. Altered Akt2 expression in uremic hearts post-ischemia-reperfusion and impaired activation of the reperfusion injury salvage kinase pathway may underlie these findings.
Collapse
Affiliation(s)
- David J. Semple
- Department of Biological Sciences and Hull York Medical School, University of Hull, Kingston-upon-Hull, United Kingdom; and
| | - Sunil Bhandari
- Department of Renal Medicine, Hull and East Yorkshire Hospital NHS Trust, and Hull York Medical School, Kingston-upon-Hull, United Kingdom
| | - Anne-Marie L. Seymour
- Department of Biological Sciences and Hull York Medical School, University of Hull, Kingston-upon-Hull, United Kingdom; and
| |
Collapse
|
39
|
Ngaage DL, Sogliani F, Tang A. Early and late prognostic implications of coronary artery bypass timing after myocardial infarction. Eur J Cardiothorac Surg 2012; 43:549-54. [PMID: 22564806 DOI: 10.1093/ejcts/ezs250] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The optimal timing of coronary artery bypass grafting (CABG) after myocardial infarction (MI) is still controversial. With advances in perioperative care and myocardial protection, CABG is not infrequently undertaken sooner. Although CABG soon after MI is associated with high morbidity and mortality, the impact of CABG timing on late survival is not clear. METHODS We analysed prospectively collected data for 8320 patients who underwent primary CABG from 1996 through 2010. Operative outcomes and late survival were compared between patient categories based on MI-to-CABG days: groups A (0-30, n = 658), B (31-60, n = 734), C (>90, n = 2698) and D (no MI, n = 4230). The effect of the timing of surgery on survival was determined using multivariate and Kaplan-Meier analyses. RESULTS As the MI-to-CABG interval increased, the frequency of urgent/emergency operations decreased and hospital mortality (A, 3.5% vs B, 2.6% vs C, 1.2%, vs D, 1.1%, P < 0.0001) steadily declined. In general, patients who had CABG within 90 days of MI had more cardiac morbidity and co-morbidities. Expectedly, therefore, postoperative organ system dysfunction (cardiac, renal, respiratory and neurological) was more frequent in these groups. Reoperation for bleeding was similar for all groups, but blood product transfusion decreased as the MI-to-CABG days increased. The 10-year survival improved with the MI-to-CABG interval (A, 72.2% vs B, 73.4% vs C, 75.8% vs D, 81.4%, P < 0.0001). By multivariate analysis, the MI-to-CABG interval was not a risk factor for operative or late mortality. However, less frequent were left internal mammary artery use, non-elective surgery and high blood transfusion rates; all more often associated with shorter MI-to-CABG intervals. CONCLUSIONS Early and late mortality risk for CABG declines with increasing interval from MI for reasons indirectly linked to the timing of surgery. Our findings emphasize the importance of preoperative organ system optimization and consistent left internal mammary artery use, regardless of the proximity of surgery to MI or the exigency of surgery.
Collapse
Affiliation(s)
- Dumbor L Ngaage
- Lancashire Cardiac Centre, Blackpool Victoria Hospital, Blackpool, UK.
| | | | | |
Collapse
|
40
|
Cai M, Huttinger ZM, He H, Zhang W, Li F, Goodman LA, Wheeler DG, Druhan LJ, Zweier JL, Dwyer KM, He G, d'Apice AJF, Robson SC, Cowan PJ, Gumina RJ. Transgenic over expression of ectonucleotide triphosphate diphosphohydrolase-1 protects against murine myocardial ischemic injury. J Mol Cell Cardiol 2011; 51:927-35. [PMID: 21939667 DOI: 10.1016/j.yjmcc.2011.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/23/2011] [Accepted: 09/03/2011] [Indexed: 02/06/2023]
Abstract
Modulation of purinergic signaling is critical to myocardial homeostasis. Ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD-1; CD39) which converts the proinflammatory molecules ATP or ADP to AMP is a key regulator of purinergic modulation. However, the salutary effects of transgenic over expression of ENTPD-1 on myocardial response to ischemic injury have not been tested to date. Therefore we hypothesized that ENTPD-1 over expression affords myocardial protection from ischemia-reperfusion injury via specific cell signaling pathways. ENTPD-1 transgenic mice, which over express human ENTPDase-1, and wild-type (WT) littermates were subjected to either ex vivo or in vivo ischemia-reperfusion injury. Infarct size, inflammatory cell infiltrate and intracellular signaling molecule activation were evaluated. Infarct size was significantly reduced in ENTPD-1 versus WT hearts in both ex vivo and in vivo studies. Following ischemia-reperfusion injury, ENTPD-1 cardiac tissues demonstrated an increase in the phosphorylation of the cellular signaling molecule extracellular signal-regulated kinases 1/2 (ERK 1/2) and glycogen synthase kinase-3β (GSK-3β). Resistance to myocardial injury was abrogated by treatment with a non-selective adenosine receptor antagonist, 8-SPT or the more selective A(2B) adenosine receptor antagonist, MRS 1754, but not the A(1) selective antagonists, DPCPX. Additionally, treatment with the ERK 1/2 inhibitor PD98059 or the mitochondrial permeability transition pore opener, atractyloside, abrogated the cardiac protection provided by ENTPDase-1 expression. These results suggest that transgenic ENTPDase-1 expression preferentially conveys myocardial protection from ischemic injury via adenosine A(2B) receptor engagement and associated phosphorylation of the cellular protective signaling molecules, Akt, ERK 1/2 and GSK-3β that prevents detrimental opening of the mitochondrial permeability transition pore.
Collapse
Affiliation(s)
- Ming Cai
- Division of Cardiovascular Medicine and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|