1
|
Ni X, Yu X, Ye Q, Su X, Shen S. Desflurane improves electrical activity of neurons and alleviates oxygen-glucose deprivation-induced neuronal injury by activating the Kcna1-dependent Kv1.1 channel. Exp Brain Res 2024; 242:477-490. [PMID: 38184806 DOI: 10.1007/s00221-023-06764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
Several volatile anesthetics have presented neuroprotective functions in ischemic injury. This study investigates the effect of desflurane (Des) on neurons following oxygen-glucose deprivation (OGD) challenge and explores the underpinning mechanism. Mouse neurons HT22 were subjected to OGD, which significantly reduced cell viability, increased lactate dehydrogenase release, and promoted cell apoptosis. In addition, the OGD condition increased oxidative stress in HT22 cells, as manifested by increased ROS and MDA contents, decreased SOD activity and GSH/GSSG ratio, and reduced nuclear protein level of Nrf2. Notably, the oxidative stress and neuronal apoptosis were substantially blocked by Des treatment. Bioinformatics suggested potassium voltage-gated channel subfamily A member 1 (Kcna1) as a target of Des. Indeed, the Kcna1 expression in HT22 cells was decreased by OGD but restored by Des treatment. Artificial knockdown of Kcna1 negated the neuroprotective effects of Des. By upregulating Kcna1, Des activated the Kv1.1 channel, therefore enhancing K+ currents and inducing neuronal repolarization. Pharmacological inhibition of the Kv1.1 channel reversed the protective effects of Des against OGD-induced injury. Collectively, this study demonstrates that Des improves electrical activity of neurons and alleviates OGD-induced neuronal injury by activating the Kcna1-dependent Kv1.1 channel.
Collapse
Affiliation(s)
- Xiaolei Ni
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, No. 120, Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, People's Republic of China
| | - Xiaoyan Yu
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, No. 120, Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, People's Republic of China
| | - Qingqing Ye
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, No. 120, Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, People's Republic of China
| | - Xiaohu Su
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, No. 120, Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, People's Republic of China
| | - Shuai Shen
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, No. 120, Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Sevoflurane Effects on Neuronal Energy Metabolism Correlate with Activity States While Mitochondrial Function Remains Intact. Int J Mol Sci 2022; 23:ijms23063037. [PMID: 35328453 PMCID: PMC8949020 DOI: 10.3390/ijms23063037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
During general anesthesia, alterations in neuronal metabolism may induce neurotoxicity and/or neuroprotection depending on the dose and type of the applied anesthetic. In this study, we investigate the effects of clinically relevant concentrations of sevoflurane (2% and 4%, i.e., 1 and 2 MAC) on different activity states in hippocampal slices of young Wistar rats. We combine electrophysiological recordings, partial tissue oxygen (ptiO2) measurements, and flavin adenine dinucleotide (FAD) imaging with computational modeling. Sevoflurane minimally decreased the cerebral metabolic rate of oxygen (CMRO2) while decreasing synaptic transmission in naive slices. During pharmacologically induced gamma oscillations, sevoflurane impaired network activity, thereby decreasing CMRO2. During stimulus-induced neuronal activation, sevoflurane decreased CMRO2 and excitability while basal metabolism remained constant. In this line, stimulus-induced FAD transients decreased without changes in basal mitochondrial redox state. Integration of experimental data and computer modeling revealed no evidence for a direct effect of sevoflurane on key enzymes of the citric acid cycle or oxidative phosphorylation. Clinically relevant concentrations of sevoflurane generated a decent decrease in energy metabolism, which was proportional to the present neuronal activity. Mitochondrial function remained intact under sevoflurane, suggesting a better metabolic profile than isoflurane or propofol.
Collapse
|
3
|
Zhang M, Huang C, Zhang L, Huang L, Hu X. Phosphoinositide-3-Kinase/Akt-Endothelial Nitric Oxide Synthase Signaling Pathway Mediates the Neuroprotective Effect of Sevoflurane Postconditioning in a Rat Model of Hemorrhagic Shock and Resuscitation. World Neurosurg 2021; 157:e223-e231. [PMID: 34634505 DOI: 10.1016/j.wneu.2021.09.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although extensive reports have demonstrated the neuroprotection of sevoflurane postconditioning in cases of focal and global cerebral ischemia/reperfusion, the underlying mechanisms are not completely elucidated. This study investigated whether this effect is related to endothelial nitric oxide synthase (eNOS) and mediated by the phosphoinositide-3-kinase pathway in a rat model of hemorrhagic shock and resuscitation. METHODS Adult male Sprague Dawley rats were subjected to hemorrhagic shock for 60 minutes and then resuscitation for 30 minutes in experimental groups. Sevoflurane postconditioning was performed at the beginning of resuscitation to completion. At 24 hours after resuscitation, the brain infarct volume was evaluated by 2,3,5-triphenyltetrazolium chloride staining. The neuronal morphological changes and apoptosis were determined by hematoxylin and eosin staining and immunohistochemistry analysis, respectively. The activity of phosphorylated Akt and eNOS was evaluated by Western blot analysis. RESULTS Brain injuries such as the cerebral infarct volume and pathological neuronal changes as well as cell apoptosis were observed in the hippocampus after hemorrhagic shock and resuscitation. Postconditioning with 2.4% sevoflurane significantly attenuated brain injuries. Wortmannin prevented the improvements of neuronal characteristics elicited by sevoflurane postconditioning as well as the hyperactivity of eNOS and phosphorylated Akt. CONCLUSIONS Sevoflurane postconditioning could attenuate brain injury induced by hemorrhagic shock and resuscitation, and this neuroprotective effect may be partly by upregulation of eNOS through the phosphoinositide-3-kinase/Akt signaling pathway.
Collapse
Affiliation(s)
- Muchun Zhang
- Department of Anaesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Chunxia Huang
- Department of Anaesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Anaesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Li Huang
- Department of Anaesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xianwen Hu
- Department of Anaesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China; Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Zhang J, Wang H, Sun X. Sevoflurane Postconditioning Reduces Hypoxia/Reoxygenation Injury in Cardiomyocytes via Upregulation of Heat Shock Protein 70. J Microbiol Biotechnol 2021; 31:1069-1078. [PMID: 34226409 PMCID: PMC9705948 DOI: 10.4014/jmb.2103.03040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Sevoflurane postconditioning (SPostC) has been proved effective in cardioprotection against myocardial ischemia/reperfusion injury. It was also reported that heat shock protein 70 (HSP70) could be induced by sevoflurane, which played a crucial role in hypoxic/reoxygenation (HR) injury of cardiomyocytes. However, the mechanism by which sevoflurane protects cardiomyocytes via HSP70 is still not understood. Here, we aimed to investigate the related mechanisms of SPostC inducing HSP70 expression to reduce the HR injury of cardiomyocytes. After the HR cardiomyocytes model was established, the cells transfected with siRNA for HSP70 (siHSP70) or not were treated with sevoflurane during reoxygenation. The lactate dehydrogenase (LDH) level was detected by colorimetry while cell viability and apoptosis were detected by MTT and flow cytometry. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to detect HSP70, apoptosis-, cell cycle-associated factors, iNOS, and Cox-2 expressions. Enzyme-linked immuno sorbent assay (ELISA) was used to measure malondialdehyde (MDA) and superoxide dismutase (SOD). SPostC decreased apoptosis, cell injury, oxidative stress and inflammation and increased viability of HR-induced cardiomyocytes. In addition, SPostC downregulated Bax and cleaved caspase-3 levels, while SPostC upregulated Bcl-2, CDK-4, Cyclin D1, and HSP70 levels. SiHSP70 had the opposite effect that SPostC had on HR-induced cardiomyocytes. Moreover, siHSP70 further reversed the effect of SPostC on apoptosis, cell injury, oxidative stress, inflammation, viability and the expressions of HSP70, apoptosis-, and cell cycle-associated factors in HR-induced cardiomyocytes. In conclusion, this study demonstrates that SPostC can reduce the HR injury of cardiomyocytes by inducing HSP70 expression.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, P.R. China
| | - Haiyan Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, P.R. China
| | - Xizhi Sun
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, P.R. China,Corresponding author Phone: +86-0535-6691999 E-mail:
| |
Collapse
|
5
|
Sheng R, Chen JL, Qin ZH. Cerebral conditioning: Mechanisms and potential clinical implications. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
6
|
Zhang LM, Zhang DX, Zhao XC, Sun W. RETRACTED ARTICLE: Erythropoietin Rescues Primary Rat Cortical Neurons by Altering the Nrf2:Bach1 Ratio: Roles of Extracellular Signal-Regulated Kinase 1/2. Neurochem Res 2020; 45:1244. [PMID: 28083849 DOI: 10.1007/s11064-017-2174-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiao-Chun Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wenbo Sun
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
7
|
Yang A, Liu B. May sevoflurane prevent the development of neurogenic pulmonary edema and improve the outcome? Or as a new sedation method for severe brain injury patients. Med Hypotheses 2020; 137:109538. [PMID: 31911369 DOI: 10.1016/j.mehy.2019.109538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 02/05/2023]
Abstract
Neurogenic pulmonary edema (NPE) is a life-threatening complication that develops rapidly and dramatically after injury to the central nervous system (CNS). Severe primary brain injury and subsequent secondary brain injury cascade events are thought to be involved in the development of NPE. Activation of the sympathetic nervous system and release of vasoactive substances are also essential prerequisites for NPE. We hypothesize that sevoflurane may be an effective treatment for preventing the development of NPE. Sevoflurane may play a role in protecting brain and lung tissue after acute brain injury through its sympatholytic, antioxidative, ion channel stabilizing, anti-inflammatory, anti-apoptotic, and pulmonary protection effects. It has the potential to be used as a sedative in the neurosurgical intensive care unit (NICU), which can help maintain nervous system and cardiopulmonary function in patients with acute brain injury to improve prognosis. Sevoflurane also has the advantages of fast induction of anesthesia, rapid drug metabolism, little interference to the cardiovascular system, and controllable depth of anesthesia. If our hypothesis is supported by further experiments, use of sevoflurane may open a new door for the treatment of acute brain injury and NPE.
Collapse
Affiliation(s)
- Aobing Yang
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Bin Liu
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China.
| |
Collapse
|
8
|
Zhou HM, Ling XY, Ni YJ, Wu C, Zhu ZP. Pre-cardiopulmonary bypass administration of dexmedetomidine decreases cardiac troponin I level following cardiac surgery with sevoflurane postconditioning. J Int Med Res 2019; 47:3623-3635. [PMID: 31234690 PMCID: PMC6726774 DOI: 10.1177/0300060519856750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
Objective This study was performed to determine the effect of dexmedetomidine (DEX) administration on myocardial damage in cardiac surgery with sevoflurane postconditioning. Methods We retrospectively examined all cardiac valve replacement surgeries from 1 April 2016 to 30 April 2017. Eligible patients were divided into two groups based on whether DEX was infused. DEX infusion was permitted only between intubation and the beginning of cardiopulmonary bypass (CPB). Sevoflurane was inhaled via the standard postconditioning procedure starting at aortic declamping. The cardiac troponin I (cTnI) level was measured at different time points. The postoperative outcomes and complications were also analyzed. Results One hundred patients were included in the study (DEX group, n = 53; non-DEX group, n = 47). Increased cTnI levels were significantly correlated with the New York Heart Association classification, CPB time, and DEX use. DEX use and the CPB time were potential independent factors contributing to changes in the cTnI level. The cTnI level at 6, 12, and 24 hours postoperatively was remarkably lower in the DEX than non-DEX group by 1.14, 7.83, and 5.86 ng/mL, respectively. Conclusions DEX decreased the cTnI level after CPB when sevoflurane postconditioning was used, especially at 6, 12, and 24 hours postoperatively.
Collapse
Affiliation(s)
- Hong-mei Zhou
- Department of Anesthesiology, the Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Xiao-yan Ling
- Outpatient-Nursing Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Yun-jian Ni
- Department of Anesthesiology, the Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Cheng Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Zhi-peng Zhu
- Department of Anesthesiology, the Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| |
Collapse
|
9
|
Xu H, Mei XP, Xu LX. The effect of pre- and after-treatment of sevoflurane on central ischemia tolerance and the underlying mechanisms. J Dent Anesth Pain Med 2018; 18:1-8. [PMID: 29556553 PMCID: PMC5858006 DOI: 10.17245/jdapm.2018.18.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/03/2023] Open
Abstract
In recent years, with continuous research efforts targeted at studying the effects of pre- and after-treatment of inhaled anesthetics, significant progress has been made regarding the common clinical use of low concentrations of inhaled sevoflurane and its effect on induced central ischemia tolerance by pre- and post-treatment. In this study, we collected, analyzed, classified, and summarized recent literature regarding the effect of sevoflurane on central ischemia tolerance and its related mechanisms. In addition, we provide a theoretical basis for the clinical application of sevoflurane to protect the central nervous system and other important organs against ischemic injury.
Collapse
Affiliation(s)
- Hao Xu
- Institution of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Xiao-Peng Mei
- Department of Anesthesiology, the First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
| | - Li-Xian Xu
- Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
10
|
Postconditioning-induced neuroprotection, mechanisms and applications in cerebral ischemia. Neurochem Int 2017; 107:43-56. [DOI: 10.1016/j.neuint.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 02/07/2023]
|
11
|
Zhang B, Yang Y, Tang J, Tao Y, Jiang B, Chen Z, Feng H, Yang L, Zhu G. Establishment of mouse neuron and microglial cell co-cultured models and its action mechanism. Oncotarget 2017; 8:43061-43067. [PMID: 28574841 PMCID: PMC5522127 DOI: 10.18632/oncotarget.17898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/15/2017] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE The objective of this study is to establish a co-culture model of mouse neurons and microglial cells, and to analyze the mechanism of action of oxygen glucose deprivation (OGD) and transient oxygen glucose deprivation (tOGD) preconditioning cell models. RESULTS Mouse primary neurons and BV2 microglial cells were successfully cultured, and the OGD and tOGD models were also established. In the co-culture of mouse primary neurons and microglial cells, the cell number of tOGD mouse neurons and microglial cells was larger than the OGD cell number, observed by a microscope. CCK-8 assay result showed that at 1h after treatment, the OD value in the control group is lower compared to all the other three groups (P < 0.05). The treatment group exhibited the highest OD value among the four groups. The results observed at 5h were consistent with the results at 1 h. Flow cytometry results showed that at 1h after treatment the apoptosis percentages is higher in the control group compared to other three groups (P < 0.05). MATERIALS AND METHODS Mouse brain tissues were collected and primary neurons cells were cultured. In the meantime mouse BV2 microglia cells were cultured. Two types of cells were co-cultured, and OGD and tOGD cell models were established. There were four groups in the experiment: control group (OGD), treatment group (tOGD+OGD), placebo group (tOGD+OGD+saline) and minocycline intervention group (tOGD+OGD+minocycline). CCK-8 kit was used to detect cell viability and flow cytometry was used to detect apoptosis. CONCLUSIONS In this study, mouse primary neurons and microglial cells were co-cultured. The OGD and tOGD models were established successfully. tOGD was able to effectively protect neurons and microglial cells from damage, and inhibit the apoptosis caused by oxygen glucose deprivation.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Yunfeng Yang
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Yihao Tao
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Bing Jiang
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Liming Yang
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital,Third Military Medical University, Chongqing, China
| |
Collapse
|
12
|
Li R, Zhang LM, Sun WB. RETRACTED: Erythropoietin rescues primary rat cortical neurons from pyroptosis and apoptosis via Erk1/2-Nrf2/Bach1 signal pathway. Brain Res Bull 2017; 130:236-244. [DOI: 10.1016/j.brainresbull.2017.01.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/11/2017] [Accepted: 01/24/2017] [Indexed: 11/16/2022]
|
13
|
Zhang JF, Zhang L, Shi LL, Zhao ZH, Xu H, Liang F, Li HB, Zhao Y, Xu X, Yang K, Tian YF. Parthenolide attenuates cerebral ischemia/reperfusion injury via Akt/GSK-3β pathway in PC12 cells. Biomed Pharmacother 2017; 89:1159-1165. [PMID: 28314243 DOI: 10.1016/j.biopha.2017.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 11/19/2022] Open
Abstract
Parthenolide (PN), a sesquiterpene lactone isolated from the herbal medicine feverfew (Tanacetum parthenium), was reported to possess neuroprotective activity. However, the neuroprotective effect of PN against cerebral ischemia/reperfusion (I/R) injury remains unclear. Therefore, the aim of the present study was to explore the neuroprotective effects of PN against oxygen-glucose deprivation (OGD)-induced apoptosis in PC12 cells and the underlying mechanisms. Our results demonstrated that PN ameliorated OGD/R-evoked neuronal injury and oxidative stress in PC12 cells. In addition, PN notably decreased HIF-1α expression, as well as inhibited apoptosis in PC12 cells after OGD/R. Furthermore, PN pretreatment significantly enhanced the phosphorylation of Akt and GSK-3β in PC12 cells exposed to OGD/R. In conclusion, the present study demonstrated that PN exhibits a neuroprotective effect against OGD/R through activation of the Akt/GSK-3β signaling pathway. Our findings suggest that PN has the potential to serve as a novel therapeutic agent for cerebral I/R injury.
Collapse
Affiliation(s)
- Jun-Feng Zhang
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Li Zhang
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Li-Li Shi
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Zhao-Hua Zhao
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Hao Xu
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Fei Liang
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Hong-Bo Li
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Yan Zhao
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China
| | - Xi Xu
- Department of Human Anatomy, Xi'an Medical University, Xi'an 710021, People's Republic of China.
| | - Ke Yang
- Department of Anesthesiology, The No.1 Hospital of Xi'an, Xi'an 710002, People's Republic of China.
| | - Ying-Fang Tian
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| |
Collapse
|
14
|
Zhang DX, Zhang LM, Zhao XC, Sun W. Neuroprotective effects of erythropoietin against sevoflurane-induced neuronal apoptosis in primary rat cortical neurons involving the EPOR-Erk1/2-Nrf2/Bach1 signal pathway. Biomed Pharmacother 2017; 87:332-341. [DOI: 10.1016/j.biopha.2016.12.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/15/2016] [Accepted: 12/27/2016] [Indexed: 12/26/2022] Open
|
15
|
Wang H, Li P, Xu N, Zhu L, Cai M, Yu W, Gao Y. Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke. Med Gas Res 2016; 6:194-205. [PMID: 28217291 PMCID: PMC5223310 DOI: 10.4103/2045-9912.196901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cerebral ischemic stroke is a leading cause of serious long-term disability and cognitive dysfunction. The high mortality and disability of cerebral ischemic stroke is urging the health providers, including anesthesiologists and other perioperative professioners, to seek effective protective strategies, which are extremely limited, especially for those perioperative patients. Intriguingly, several commonly used inhalational anesthetics are recently suggested to possess neuroprotective effects against cerebral ischemia. This review introduces multiple paradigms of inhalational anesthetic treatments that have been investigated in the setting of cerebral ischemia, such as preconditioning, proconditioning and postconditioning with a variety of inhalational anesthetics. The pleiotropic mechanisms underlying these inhalational anesthetics-afforded neuroprotection against stroke are also discussed in detail, including the common pathways shared by most of the inhalational anesthetic paradigms, such as anti-excitotoxicity, anti-apoptosis and anti-inflammation. There are also distinct mechanisms involved in specific paradigms, such as preserving blood brain barrier integrity, regulating cerebral blood flow and catecholamine release. The ready availability of these inhalational anesthetics bedside and renders them a potentially translatable stroke therapy attracting great efforts for understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Hailian Wang
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peiying Li
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Xu
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ling Zhu
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mengfei Cai
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanqin Gao
- Anesthesiology Department of Huashan Hospital, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Postconditioning with sevoflurane ameliorates spatial learning and memory deficit after hemorrhage shock and resuscitation in rats. J Surg Res 2016; 206:307-315. [DOI: 10.1016/j.jss.2016.08.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/07/2016] [Accepted: 08/04/2016] [Indexed: 11/19/2022]
|
17
|
Zhang LM, Zhao XC, Sun WB, Li R, Jiang XJ. Sevoflurane post-conditioning protects primary rat cortical neurons against oxygen-glucose deprivation/resuscitation via down-regulation in mitochondrial apoptosis axis of Bid, Bim, Puma-Bax and Bak mediated by Erk1/2. J Neurol Sci 2015; 357:80-7. [PMID: 26152828 DOI: 10.1016/j.jns.2015.06.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 11/23/2022]
Abstract
Temporal post-conditioning helps provide neuroprotection against brain injury secondary to ischemia-reperfusion and is considered an effective intervention, but the exact mechanism of sevoflurane post-conditioning is unclear. The essential axis involves activator Bid, Bim, Puma (BH3s), Bax, and Bak; activates the mitochondrial death program; and might be involved in a cell death signal. Extracellular signal-related kinases 1/2 (Erk1/2) play a pivotal role in cell growth and proliferation. We hypothesized that sevoflurane post-conditioning might inhibit Bid, Bim, Puma, Bax, and Bak expression and is activated by phosphor-Erk1/2 to decrease neuronal death. To test this hypothesis, we exposed primary cortical neuron cultures to oxygen-glucose deprivation for 1h, along with resuscitation for 24h (OGD/R). MTT assays, propidium iodide uptake (PI), JC-1 fluorescence, and Western blot indicated the following: decreased cell viability (P<0.05); increased cell death (P<0.05); decreased mitochondrial membrane potential (P<0.05); and decreased Bid, Bim, Puma, Bax, and Bak expression with OGD/R exposure. Inhibition of Erk1/2 phosphorylation could attenuate sevoflurane post-conditioning that mediated an increase in neuronal viability and mitochondrial membrane potential, as well as a decrease in cell death and Bid, Bim, Puma, Bax, and Bak expression after OGD/R treatment. The results demonstrated that sevoflurane post-conditioning caused a marked decrease in cortical neuronal death secondary to OGD/R exposure through the downregulation of the mitochondrial apoptosis axis involving Bid, Bim, Puma, Bax, and Bak that was mediated by the phosphorylation/activation of Erk1/2.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Xiao-Chun Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wen-Bo Sun
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Rui Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiao-Jing Jiang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
18
|
Zhang L, Zhao X, Jiang X. Sevoflurane Post-conditioning Protects Primary Rat Cortical Neurons Against Oxygen–Glucose Deprivation/Resuscitation: Roles of Extracellular Signal-Regulated Kinase 1/2 and Bid, Bim, Puma. Neurochem Res 2015; 40:1609-19. [DOI: 10.1007/s11064-015-1639-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/30/2015] [Accepted: 06/12/2015] [Indexed: 11/29/2022]
|
19
|
Laletin V, Bykov Y. General anesthetics as a factor of effective neuroprotection in ischemic stroke models. ACTA ACUST UNITED AC 2015; 61:440-8. [DOI: 10.18097/pbmc20156104440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stroke is the second leading cause of death in the world. Unfortunately, only a few drugs have been proved in clinical trials. Drug development of the last decade has been focused substantially on a promising and heterogeneous group of neuroprotective drugs. Hundreds of compounds were suggested as new putative neuroprotectors, which effectiveness was confirmed in preclinical trials only. At the present time discrepancy between results of preclinical studies and clinical trials requires careful analysis. One of the least evaluated and probably the most noticeable reasons is general anesthesia - an obligatory component of an overwhelming majority of existing animal stroke models. The aim of the review is to describe known mechanisms of common general anesthetics influence on ionotropic and metabotropic plasma membrane receptors, and key signal pathways involved in neuronal hypoxic-ischemic injury and survival
Collapse
Affiliation(s)
- V.S. Laletin
- Irkutsk State Medical University, Irkutsk, Russia
| | - Y.N. Bykov
- Irkutsk State Medical University, Irkutsk, Russia
| |
Collapse
|
20
|
Deng J, Lei C, Chen Y, Fang Z, Yang Q, Zhang H, Cai M, Shi L, Dong H, Xiong L. Neuroprotective gases – Fantasy or reality for clinical use? Prog Neurobiol 2014; 115:210-45. [DOI: 10.1016/j.pneurobio.2014.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 12/17/2022]
|
21
|
Seo J, Park H, Jeon Y, Lim Y, Nam K, Hwang J. Combined treatment with celecoxib and sevoflurane after global cerebral ischaemia has no additive neuroprotective effects in rats. Br J Anaesth 2013; 110:988-95. [DOI: 10.1093/bja/aet009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
22
|
Rodríguez-González R, Baluja A, Veiras Del Río S, Rodríguez A, Rodríguez J, Taboada M, Brea D, Álvarez J. Effects of sevoflurane postconditioning on cell death, inflammation and TLR expression in human endothelial cells exposed to LPS. J Transl Med 2013; 11:87. [PMID: 23552565 PMCID: PMC3636049 DOI: 10.1186/1479-5876-11-87] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/13/2013] [Indexed: 01/16/2023] Open
Abstract
Background Sevoflurane is an anesthetic agent which also participates in protective mechanisms in sepsis, likely due to anti-inflammatory properties. A key tissue in sepsis is the endothelium, which expresses TLR2 and TLR4 receptors, known regulators of inflammatory mechanisms and potential therapeutic targets for this pathology. In this context, we explored the effect of sevoflurane postconditioning in an in vitro sepsis model. Methods Primary cultures of human umbilical vein endothelial cells were used for two different experiments. In the first set, cultures were placed in an airtight incubation chamber and exposed to different concentrations of sevoflurane (0,1,3 or 7% vol,) for 1 hour. In the second set, lipopolysaccharide from Escherichia coli 0111:B4 (1 μg/mL) was added to culture medium for 3 hours and cells were subsequently exposed to sevoflurane (0,1,3 or 7% vol,) for 1 hour as explained before. In both cases, cell viability was measured by MTT and Trypan blue assays, TLR2 and TLR4 expression were analyzed by flow cytometry, and TNFα and IL-6 levels were quantified in cell culture media by an immunoassay immediately after exposure, at 6 and 24 hours. Results Exposure to 3% sevoflurane decreased TLR2 at 24 hours and TLR4 at 6 and 24 hours (both p<0.05), whereas exposure to 7% decreased TLR4 expression at 6 hours (p<0.05). Both 3 and 7% sevoflurane decreased TNF-α and IL-6 levels at 24 hours (both p<0.05). In LPS-stimulated cultures, exposure to 3% sevoflurane was cytoprotective at 6 and 24 hours (p<0.05) compared with control, and decreased TLR2 and TLR4 expression at 24 hours (p<0.05); whereas 7% decreased TLR4 expression at 24 hours (p<0.05). Both 3% and 7% sevoflurane decreased TNF-α and IL-6 levels at 24 hours (both p<0.05). Conclusions Postconditioning with the halogenated anesthetic agent sevoflurane after LPS stimulation shows a cytoprotective effect in an in vitro model, decreasing cell death and reducing TLR2 and TLR4 expression as well as levels of the inflammatory mediators TNF-α and IL-6 in human endothelial cells.
Collapse
Affiliation(s)
- Raquel Rodríguez-González
- Critical Patient Translational Research Group, Department of Anesthesiology, Intensive Care and Pain Management, Hospital Clínico Universitario, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu Z, Wang JF, Meng Y, Fan XH, Deng XM, Li JB, Cai GJ. Effects of three target-controlled concentrations of sufentanil on MAC(BAR) of sevoflurane. CNS Neurosci Ther 2013; 18:361-4. [PMID: 22486849 DOI: 10.1111/j.1755-5949.2012.00300.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|