1
|
Levy R. The prefrontal cortex: from monkey to man. Brain 2024; 147:794-815. [PMID: 37972282 PMCID: PMC10907097 DOI: 10.1093/brain/awad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
The prefrontal cortex is so important to human beings that, if deprived of it, our behaviour is reduced to action-reactions and automatisms, with no ability to make deliberate decisions. Why does the prefrontal cortex hold such importance in humans? In answer, this review draws on the proximity between humans and other primates, which enables us, through comparative anatomical-functional analysis, to understand the cognitive functions we have in common and specify those that distinguish humans from their closest cousins. First, a focus on the lateral region of the prefrontal cortex illustrates the existence of a continuum between rhesus monkeys (the most studied primates in neuroscience) and humans for most of the major cognitive functions in which this region of the brain plays a central role. This continuum involves the presence of elementary mental operations in the rhesus monkey (e.g. working memory or response inhibition) that are constitutive of 'macro-functions' such as planning, problem-solving and even language production. Second, the human prefrontal cortex has developed dramatically compared to that of other primates. This increase seems to concern the most anterior part (the frontopolar cortex). In humans, the development of the most anterior prefrontal cortex is associated with three major and interrelated cognitive changes: (i) a greater working memory capacity, allowing for greater integration of past experiences and prospective futures; (ii) a greater capacity to link discontinuous or distant data, whether temporal or semantic; and (iii) a greater capacity for abstraction, allowing humans to classify knowledge in different ways, to engage in analogical reasoning or to acquire abstract values that give rise to our beliefs and morals. Together, these new skills enable us, among other things, to develop highly sophisticated social interactions based on language, enabling us to conceive beliefs and moral judgements and to conceptualize, create and extend our vision of our environment beyond what we can physically grasp. Finally, a model of the transition of prefrontal functions between humans and non-human primates concludes this review.
Collapse
Affiliation(s)
- Richard Levy
- AP–HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Neurology, Sorbonne Université, Institute of Memory and Alzheimer’s Disease, 75013 Paris, France
- Sorbonne Université, INSERM U1127, CNRS 7225, Paris Brain Institute- ICM, 75013 Paris, France
| |
Collapse
|
2
|
Plotnik JM, Jacobson SL. A “thinking animal” in conflict: studying wild elephant cognition in the shadow of anthropogenic change. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Carvajal L, Schuppli C. Learning and skill development in wild primates: toward a better understanding of cognitive evolution. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Carruthers P, Williams DM. Model-free metacognition. Cognition 2022; 225:105117. [DOI: 10.1016/j.cognition.2022.105117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 01/08/2023]
|
5
|
Wellian J, Smith RL. Risk awareness of black-and-gold howler monkeys living in an urban environment in south-west Paraguay. JOURNAL OF URBAN ECOLOGY 2021. [DOI: 10.1093/jue/juab010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
As urbanisation increases, wild primates are exposed to urban environments which come with a distinct and often novel set of risks. Urban habitats can form a matrix of forest fragments and anthropogenic structures, including buildings, electric cables and roads, which can limit movement and force species to live in hazardous areas. We studied five groups of urban black and gold howler monkey (Alouatta caraya) in Pilar, Paraguay, to investigate whether the monkeys are aware of anthropogenic risks based on their patterns of self-scratching behaviour, an indicator of stress, and how they used the space available to them. Using a Risk Index created for the study, we ranked the level of risk attributed to different zones of their home range, awarding each zone with a hazard score. Using Quantum GIS and kernel density estimation, we determined the relationship between habitat use and hazard score. Using a Spearman’s rank correlation, we found nonsignificant relationships between the hazard score and self-scratching behaviour for four groups, suggesting a lack of awareness. However, there was a significant negative relationship between the hazard score and home range use for four groups, indicating that they spent more time in areas with lower levels of anthropogenic risk.
Collapse
Affiliation(s)
- Jake Wellian
- Fundación Para La Tierra, Centro IDEAL, 321, Mariscal José Félix Estigarribia, c/Teniente Capurro, Pilar, Ñeembucú, Paraguay
| | - Rebecca L Smith
- Fundación Para La Tierra, Centro IDEAL, 321, Mariscal José Félix Estigarribia, c/Teniente Capurro, Pilar, Ñeembucú, Paraguay
- School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, Scotland
| |
Collapse
|
6
|
Ivanova AA, Mineroff Z, Zimmerer V, Kanwisher N, Varley R, Fedorenko E. The Language Network Is Recruited but Not Required for Nonverbal Event Semantics. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2021; 2:176-201. [PMID: 37216147 PMCID: PMC10158592 DOI: 10.1162/nol_a_00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/07/2021] [Indexed: 05/24/2023]
Abstract
The ability to combine individual concepts of objects, properties, and actions into complex representations of the world is often associated with language. Yet combinatorial event-level representations can also be constructed from nonverbal input, such as visual scenes. Here, we test whether the language network in the human brain is involved in and necessary for semantic processing of events presented nonverbally. In Experiment 1, we scanned participants with fMRI while they performed a semantic plausibility judgment task versus a difficult perceptual control task on sentences and line drawings that describe/depict simple agent-patient interactions. We found that the language network responded robustly during the semantic task performed on both sentences and pictures (although its response to sentences was stronger). Thus, language regions in healthy adults are engaged during a semantic task performed on pictorial depictions of events. But is this engagement necessary? In Experiment 2, we tested two individuals with global aphasia, who have sustained massive damage to perisylvian language areas and display severe language difficulties, against a group of age-matched control participants. Individuals with aphasia were severely impaired on the task of matching sentences to pictures. However, they performed close to controls in assessing the plausibility of pictorial depictions of agent-patient interactions. Overall, our results indicate that the left frontotemporal language network is recruited but not necessary for semantic processing of nonverbally presented events.
Collapse
Affiliation(s)
- Anna A. Ivanova
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zachary Mineroff
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vitor Zimmerer
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Nancy Kanwisher
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rosemary Varley
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Rosenbloom PS, Forbus KD. Expanding and Repositioning Cognitive Science. Top Cogn Sci 2019; 11:918-927. [DOI: 10.1111/tops.12468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Paul S. Rosenbloom
- Department of Computer Science & Institute for Creative Technologies University of Southern California
| | | |
Collapse
|
8
|
Berger M, Calapai A, Stephan V, Niessing M, Burchardt L, Gail A, Treue S. Standardized automated training of rhesus monkeys for neuroscience research in their housing environment. J Neurophysiol 2018; 119:796-807. [DOI: 10.1152/jn.00614.2017] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Teaching nonhuman primates the complex cognitive behavioral tasks that are central to cognitive neuroscience research is an essential and challenging endeavor. It is crucial for the scientific success that the animals learn to interpret the often complex task rules and reliably and enduringly act accordingly. To achieve consistent behavior and comparable learning histories across animals, it is desirable to standardize training protocols. Automatizing the training can significantly reduce the time invested by the person training the animal. In addition, self-paced training schedules with individualized learning speeds based on automatic updating of task conditions could enhance the animals’ motivation and welfare. We developed a training paradigm for across-task unsupervised training (AUT) of successively more complex cognitive tasks to be administered through a stand-alone housing-based system optimized for rhesus monkeys in neuroscience research settings (Calapai A, Berger M, Niessing M, Heisig K, Brockhausen R, Treue S, Gail A. Behav Res Methods 5: 1–11, 2016). The AUT revealed interindividual differences in long-term learning progress between animals, helping to characterize learning personalities, and commonalities, helping to identify easier and more difficult learning steps in the training protocol. Our results demonstrate that 1) rhesus monkeys stay engaged with the AUT over months despite access to water and food outside the experimental sessions but with lower numbers of interaction compared with conventional fluid-controlled training; 2) with unsupervised training across sessions and task levels, rhesus monkeys can learn tasks of sufficient complexity for state-of-the-art cognitive neuroscience in their housing environment; and 3) AUT learning progress is primarily determined by the number of interactions with the system rather than the mere exposure time. NEW & NOTEWORTHY We demonstrate that highly structured training of behavioral tasks, as used in neuroscience research, can be achieved in an unsupervised fashion over many sessions and task difficulties in a monkey housing environment. Employing a predefined training strategy allows for an observer-independent comparison of learning between animals and of training approaches. We believe that self-paced standardized training can be utilized for pretraining and animal selection and can contribute to animal welfare in a neuroscience research environment.
Collapse
Affiliation(s)
- M. Berger
- Cognitive Neuroscience Laboratory, German Primate Center–Leibniz-Institute for Primate Research, Goettingen, Germany
- Faculty of Biology and Psychology, University of Goettingen, Goettingen, Germany
| | - A. Calapai
- Cognitive Neuroscience Laboratory, German Primate Center–Leibniz-Institute for Primate Research, Goettingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Goettingen, Germany
| | - V. Stephan
- Cognitive Neuroscience Laboratory, German Primate Center–Leibniz-Institute for Primate Research, Goettingen, Germany
| | - M. Niessing
- Cognitive Neuroscience Laboratory, German Primate Center–Leibniz-Institute for Primate Research, Goettingen, Germany
| | - L. Burchardt
- Cognitive Neuroscience Laboratory, German Primate Center–Leibniz-Institute for Primate Research, Goettingen, Germany
| | - A. Gail
- Cognitive Neuroscience Laboratory, German Primate Center–Leibniz-Institute for Primate Research, Goettingen, Germany
- Faculty of Biology and Psychology, University of Goettingen, Goettingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Goettingen, Germany
- Bernstein Center for Computational Neuroscience, Goettingen, Germany
| | - S. Treue
- Cognitive Neuroscience Laboratory, German Primate Center–Leibniz-Institute for Primate Research, Goettingen, Germany
- Faculty of Biology and Psychology, University of Goettingen, Goettingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Goettingen, Germany
- Bernstein Center for Computational Neuroscience, Goettingen, Germany
| |
Collapse
|
9
|
Glausier JR, Roberts RC, Lewis DA. Ultrastructural analysis of parvalbumin synapses in human dorsolateral prefrontal cortex. J Comp Neurol 2017; 525:2075-2089. [PMID: 28074478 PMCID: PMC5397325 DOI: 10.1002/cne.24171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Abstract
Coordinated activity of neural circuitry in the primate dorsolateral prefrontal cortex (DLPFC) supports a range of cognitive functions. Altered DLPFC activation is implicated in a number of human psychiatric and neurological illnesses. Proper DLPFC activity is, in part, maintained by two populations of neurons containing the calcium-binding protein parvalbumin (PV): local inhibitory interneurons that form Type II synapses, and long-range glutamatergic inputs from the thalamus that form Type I synapses. Understanding the contributions of each PV neuronal population to human DLPFC function requires a detailed examination of their anatomical properties. Consequently, we performed an electron microscopic analysis of (1) the distribution of PV immunoreactivity within the neuropil, (2) the properties of dendritic shafts of PV-IR interneurons, (3) Type II PV-IR synapses from PV interneurons, and (4) Type I PV-IR synapses from long-range projections, within the superficial and middle laminar zones of the human DLPFC. In both laminar zones, Type II PV-IR synapses from interneurons comprised ∼60% of all PV-IR synapses, and Type I PV-IR synapses from putative thalamocortical terminals comprised the remaining ∼40% of PV-IR synapses. Thus, the present study suggests that innervation from PV-containing thalamic nuclei extends across superficial and middle layers of the human DLPFC. These findings contrast with previous ultrastructural studies in monkey DLPFC where Type I PV-IR synapses were not identified in the superficial laminar zone. The presumptive added modulation of DLPFC circuitry by the thalamus in human may contribute to species-specific, higher-order functions.
Collapse
Affiliation(s)
- Jill R. Glausier
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Neuroscience, University of Pittsburgh School of Arts and Sciences, Pittsburgh, PA 15213
| |
Collapse
|
10
|
Abstract
Why do lab monkeys watch TV? This essay examines the preponderance of televisions in primate housing units based in academic research laboratories. Within such labs, television and related visual media are glossed as part-and-parcel of welfare or species-specific enrichment practices intended for research monkeys, a logic that is simultaneously historically- and ontologically-based. In many research centers, television figures prominently in the two inseparable domains of a lab monkey's life: as a research tool employed during experiments, and in housing units where captive monkeys are said to enjoy watching TV during "down time." My purpose is not to determine whether monkeys do indeed enjoy, or need, television; rather, I employ visual media as a means to uncover, and decipher, the moral logic of an ethics of care directed specifically at highly sentient creatures who serve as human proxies in a range of experimental contexts. I suggest that this specialized ethics of animal care materializes Mattingly's notion of "moral laboratories" (Mattingly in Moral laboratories: family peril and the struggle for a good life, University of California Press, Berkeley, 2014), where television mediates the troublesome boundary of species difference among the simian and human subjects who cohabit laboratory worlds.
Collapse
Affiliation(s)
- Lesley A Sharp
- Department of Anthropology, Barnard College, Columbia University, 3009 Broadway, New York, NY, USA.
| |
Collapse
|
11
|
Rasheed N, Amin SH, Sultana U, Shakoor R, Zareen N, Bhatti AR. Theoretical accounts to practical models: Grounding phenomenon for abstract words in cognitive robots. COGN SYST RES 2016. [DOI: 10.1016/j.cogsys.2016.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Hall K, Oram MW, Campbell MW, Eppley TM, Byrne RW, de Waal FBM. Chimpanzee uses manipulative gaze cues to conceal and reveal information to foraging competitor. Am J Primatol 2016; 79:1-11. [PMID: 27889921 DOI: 10.1002/ajp.22622] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/29/2016] [Accepted: 11/08/2016] [Indexed: 11/06/2022]
Abstract
Tactical deception has been widely reported in primates on a functional basis, but details of behavioral mechanisms are usually unspecified. We tested a pair of chimpanzees (Pan troglodytes) in the informed forager paradigm, in which the subordinate saw the location of hidden food and the dominant did not. We employed cross-correlations to examine temporal contingencies between chimpanzees' behavior: specifically how the direction of the subordinate's gaze and movement functioned to manipulate the dominant's searching behavior through two tactics, withholding, and misleading information. In Experiment 1, not only did the informed subordinate tend to stop walking toward a single high value food, but she also refrained from gazing toward it, thus, withholding potentially revealing cues from her searching competitor. In a second experiment, in which a moderate value food was hidden in addition to the high value food, whenever the subordinate alternated her gaze between the dominant and the moderate value food, she often paused walking for 5 s; this frequently recruited the dominant to the inferior food, functioning as a "decoy." The subordinate flexibly concealed and revealed gaze toward a goal, which suggests that not only can chimpanzees use visual cues to make predictions about behavior, but also that chimpanzees may understand that other individuals can exploit their gaze direction. These results substantiate descriptive reports of how chimpanzees use gaze to manipulate others, and to our knowledge are the first quantitative data to identify behavioral mechanisms of tactical deception. RESEARCH HIGHLIGHTS Cross correlations show a subordinate chimpanzee tactically deceived a dominant by not gazing toward a valuable food (withholding), and recruiting to a "decoy" food (misleading). Chimpanzees understand that others can exploit their gaze direction.
Collapse
Affiliation(s)
- Katie Hall
- Chicago Zoological Society-Brookfield Zoo, Brookfield, Illinois.,School of Psychology, St Mary's College, University of St Andrews, St Andrews, Fife, UK.,Living Links, Yerkes National Primate Research Center, Emory University, Lawrenceville, Georgia
| | - Mike W Oram
- School of Psychology, St Mary's College, University of St Andrews, St Andrews, Fife, UK
| | - Matthew W Campbell
- Living Links, Yerkes National Primate Research Center, Emory University, Lawrenceville, Georgia.,California State University, Channel Islands, One University Drive, Camarillo, California
| | - Timothy M Eppley
- Living Links, Yerkes National Primate Research Center, Emory University, Lawrenceville, Georgia.,Department of Anthropology, University of Texas at Austin, Austin, Texas
| | - Richard W Byrne
- School of Psychology, St Mary's College, University of St Andrews, St Andrews, Fife, UK
| | - Frans B M de Waal
- Living Links, Yerkes National Primate Research Center, Emory University, Lawrenceville, Georgia
| |
Collapse
|
13
|
Hall K, Brosnan SF. Cooperation and deception in primates. Infant Behav Dev 2016; 48:38-44. [PMID: 27865584 DOI: 10.1016/j.infbeh.2016.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022]
Abstract
Though competition and cooperation are often considered opposing forces in an arms race driving natural selection, many animals, including humans, cooperate in order to mitigate competition with others. Understanding others' psychological states, such as seeing and knowing, others' goals and intentions, and coordinating actions are all important for complex cooperation-as well as for predicting behavior in order to take advantage of others through tactical deception, a form of competition. We outline evidence of primates' understanding of how others perceive the world, and then consider how the evidence from both deception and cooperation fits this framework to give us a more complete understanding of the evolution of complex social cognition in primates. In experimental food competitions, primates flexibly manipulate group-mates' behavior to tactically deceive them. Deception can infiltrate cooperative interactions, such as when one takes an unfair share of meat after a coordinated hunt. In order to counter competition of this sort, primates maintain cooperation through partner choice, partner control, and third party punishment. Yet humans appear to stand alone in their ability to understand others' beliefs, which allows us not only to deceive others with the explicit intent to create a false belief, but it also allows us to put ourselves in others' shoes to determine when cheaters need to be punished, even if we are not directly disadvantaged by the cheater.
Collapse
Affiliation(s)
- Katie Hall
- Keeling Center for Comparative Medicine and Research, UT MD Anderson Cancer Center, United States.
| | - Sarah F Brosnan
- Keeling Center for Comparative Medicine and Research, UT MD Anderson Cancer Center, United States; Departments of Psychology & Philosophy, Neuroscience Institute, Georgia State University, United States
| |
Collapse
|
14
|
Benítez-Burraco A, Lattanzi W, Murphy E. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Front Neurosci 2016; 10:373. [PMID: 27621700 PMCID: PMC5002430 DOI: 10.3389/fnins.2016.00373] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesized to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioral levels. We also discuss many ASD candidates represented among the genes known to be involved in the “domestication syndrome” (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behavior of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the “domestication syndrome” and, ultimately, from the normal functioning of the neural crest.
Collapse
Affiliation(s)
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|
15
|
Abstract
This paper considers the past and future of Psychology within Cognitive Science. In the history section, I focus on three questions: (a) how has the position of Psychology evolved within Cognitive Science, relative to the other disciplines that make up Cognitive Science; (b) how have particular Cognitive Science areas within Psychology waxed or waned; and (c) what have we gained and lost. After discussing what's happened since the late 1970s, when the Society and the journal began, I speculate about where the field is going.
Collapse
|
16
|
Complexity in animal behaviour: towards common ground. Acta Ethol 2014. [DOI: 10.1007/s10211-014-0205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Miyagawa S, Berwick RC, Okanoya K. The emergence of hierarchical structure in human language. Front Psychol 2013; 4:71. [PMID: 23431042 PMCID: PMC3577014 DOI: 10.3389/fpsyg.2013.00071] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/02/2013] [Indexed: 11/13/2022] Open
Abstract
We propose a novel account for the emergence of human language syntax. Like many evolutionary innovations, language arose from the adventitious combination of two pre-existing, simpler systems that had been evolved for other functional tasks. The first system, Type E(xpression), is found in birdsong, where the same song marks territory, mating availability, and similar “expressive” functions. The second system, Type L(exical), has been suggestively found in non-human primate calls and in honeybee waggle dances, where it demarcates predicates with one or more “arguments,” such as combinations of calls in monkeys or compass headings set to sun position in honeybees. We show that human language syntax is composed of two layers that parallel these two independently evolved systems: an “E” layer resembling the Type E system of birdsong and an “L” layer providing words. The existence of the “E” and “L” layers can be confirmed using standard linguistic methodology. Each layer, E and L, when considered separately, is characterizable as a finite state system, as observed in several non-human species. When the two systems are put together they interact, yielding the unbounded, non-finite state, hierarchical structure that serves as the hallmark of full-fledged human language syntax. In this way, we account for the appearance of a novel function, language, within a conventional Darwinian framework, along with its apparently unique emergence in a single species.
Collapse
Affiliation(s)
- Shigeru Miyagawa
- Department of Linguistics and Philosophy, Massachusetts Institute of Technology Cambridge, MA, USA
| | | | | |
Collapse
|
18
|
Abstract
If chimpanzees are faced with two opaque boards on a table, in the context of searching for a single piece of food, they do not choose the board lying flat (because if food was under there it would not be lying flat) but, rather, they choose the slanted one- presumably inferring that some unperceived food underneath is causing the slant. Here we demonstrate that chimpanzees know that other chimpanzees in the same situation will make a similar inference. In a back-and-forth foraging game, when their competitor had chosen before them, chimpanzees tended to avoid the slanted board on the assumption that the competitor had already chosen it. Chimpanzees can determine the inferences that a conspecific is likely to make and then adjust their competitive strategies accordingly.
Collapse
|
19
|
Origins of spatial, temporal and numerical cognition: Insights from comparative psychology. Trends Cogn Sci 2010; 14:552-60. [PMID: 20971031 DOI: 10.1016/j.tics.2010.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/27/2010] [Accepted: 09/27/2010] [Indexed: 11/20/2022]
Abstract
Contemporary comparative cognition has a large repertoire of animal models and methods, with concurrent theoretical advances that are providing initial answers to crucial questions about human cognition. What cognitive traits are uniquely human? What are the species-typical inherited predispositions of the human mind? What is the human mind capable of without certain types of specific experiences with the surrounding environment? Here, we review recent findings from the domains of space, time and number cognition. These findings are produced using different comparative methodologies relying on different animal species, namely birds and non-human great apes. The study of these species not only reveals the range of cognitive abilities across vertebrates, but also increases our understanding of human cognition in crucial ways.
Collapse
|