1
|
CUEVAS-ROMERO JS, CERRITEÑO-SÁNCHEZ JL, LARA-ROMERO R, VEGA-LÓPEZ MA, RAMÍREZ-ESTUDILLO C, RAMÍREZ-MENDOZA H, BERG M, LÖVGREN-BENGTSSON K. Immunogenicity of a recombinant hemagglutinin neuraminidase-Porcine rubulavirus produced by Escherichia coli of Porcine rubulavirus gives protective immunity of litter after challenge. J Vet Med Sci 2022; 84:1595-1604. [PMID: 36273875 PMCID: PMC9791230 DOI: 10.1292/jvms.22-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Porcine rubulavirus (PRV) is a contagious virus that affects the Mexican swine industry. This work aimed to evaluate the immunogenicity of an recombinant hemagglutinin neuraminidase-Porcine rubulavirus (rHN-PorPV) candidate vaccine on pregnant sows, and the protective efficacy afforded to their 7-day-old suckling piglets against PRV lethal challenge. Three sows were immunized with rHN-PorPV formulated with immune-stimulating complex (ISCOMs) and two sows with rHN-PorPV protein alone as well as a mock-immunized pregnant sow (negative control). Quantitative ELISA detected a high concentration of anti-rHN-PorPV Immunoglobulin G (IgG) antibodies in sow sera after the second dose of vaccine administered on day 14 until farrowing, showing viral-neutralizing and cross-neutralization activity against different variants of PRV. Sera samples from piglets of immunized sows (with or without adjuvant), showed high concentrations of IgG antibodies. As expected, piglets from the negative control sow (n=5), exhibited severe signs of disease and 100% of mortality after PRV challenge study. Conversely, 75% and 87.5% of the piglets born from the rHN-PorPV and the rHN-PorPV-ISCOMs-immunized sows (n=8), survived, respectively, showing milder PRV clinical signs. Our data indicate that rHN-PorPV candidate vaccine produced in Escherichia coli induces efficient humoral response in pregnant sows and that the maternally derived immunity provides high protection to suckling piglets against PRV lethal challenge.
Collapse
Affiliation(s)
- Julieta Sandra CUEVAS-ROMERO
- Centro Nacional de Investigación Disciplinaria en Salud
Animal e Inocuidad, INIFAP, México City, Mexico,Correspondence to: Cuevas-Romero JS: , Centro
Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP, KM. 15.5
Carretera México-Toluca. Col, Palo Alto, Cuajimalpa CP, 05110, Ciudad de México,
Mexico
| | | | - Rocío LARA-ROMERO
- Facultad de Estudios Superiores Cuautitlán FESC-UNAM,
Cuautitlán Izcalli, Estado de México, Mexico
| | - Marco Antonio VEGA-LÓPEZ
- Centro de Investigación y Estudios Avanzados del Instituto
Politécnico Nacional, México City, Mexico
| | - Carmen RAMÍREZ-ESTUDILLO
- Centro de Investigación y Estudios Avanzados del Instituto
Politécnico Nacional, México City, Mexico
| | | | - Mikael BERG
- Section of Virology, Department of Biomedical Sciences and
Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala,
Sweden
| | - Karin LÖVGREN-BENGTSSON
- Section of Virology, Department of Biomedical Sciences and
Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala,
Sweden,Isconova AB, Uppsala, Sweden
| |
Collapse
|
2
|
Lara-Romero R, Cerriteño-Sánchez JL, Mendoza-Elvira S, García-Cambrón JB, Castañeda-Montes MA, Pérez-Aguilar JM, Cuevas-Romero JS. Development of Novel Recombinant Antigens of Nucleoprotein and Matrix Proteins of Porcine orthorubulavirus: Antigenicity and Structural Prediction. Viruses 2022; 14:v14091946. [PMID: 36146753 PMCID: PMC9504402 DOI: 10.3390/v14091946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Blue eye disease (BED) is a swine viral infection that affects the pork industry of Mexico. Porcine orthorubulavirus (PRV) is the etiological agent, and the hemagglutinin-neuraminidase protein (HN) is characterized as the best antigen for serological tests, although other structural proteins, including the nucleoprotein (NP) and the matrix (M) protein, have been investigated during the infection of members of the Paramyxoviridae family, generating promising results. Herein, for the first time, we successfully produced and characterized both the NP and M proteins of PRV by using a recombinant strategy in the E. coli heterologous system. The ORF of the NP and M genes were cloned in-frame with the pET-SUMO expression vector. Recombinant proteins proved to be a sensitive target to detect seroconversion at 7 days until 28 days in vaccinated mice (BALB/c) by indirect ELISAs. Immunoreactivity was also tested using porcine serum samples, in which antibodies were recognized from early stages to a persistence of PRV infection, which is indicative that these proteins contain properties similar to native antigens. The predicted tertiary structure showed that both proteins have a conserved structure that resembles those found in others Paramyxovirus. Our results pave the way for developing biotechnological tools based on these proteins for the control and prevention of BED.
Collapse
Affiliation(s)
- Rocío Lara-Romero
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Km 15.5 Carretera México-Toluca, Palo Alto, Cuajimalpa, Ciudad de México 05110, Mexico
- Posgrado en Ciencias de la Producción y de la Salud Animal, Facultad de Estudios Superiores Cuautitlán, Estado de México, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Luis Cerriteño-Sánchez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Km 15.5 Carretera México-Toluca, Palo Alto, Cuajimalpa, Ciudad de México 05110, Mexico
| | - Susana Mendoza-Elvira
- Posgrado en Ciencias de la Producción y de la Salud Animal, Facultad de Estudios Superiores Cuautitlán, Estado de México, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Bryan García-Cambrón
- Maestría en Biología Experimental, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México 09089, Mexico
| | - María Azucena Castañeda-Montes
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Km 15.5 Carretera México-Toluca, Palo Alto, Cuajimalpa, Ciudad de México 05110, Mexico
- Posgrado en Ciencias de la Producción y de la Salud Animal, Facultad de Estudios Superiores Cuautitlán, Estado de México, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | - Julieta Sandra Cuevas-Romero
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Km 15.5 Carretera México-Toluca, Palo Alto, Cuajimalpa, Ciudad de México 05110, Mexico
- Correspondence: ; Tel.: +52-(55)-38718700 (ext. 80312)
| |
Collapse
|
3
|
Comparison of hemagglutination inhibition tests, immunoperoxidase monolayer assays, and serum neutralizing tests in detecting antibodies against blue eye disease in pigs. J Immunol Methods 2021; 496:113088. [PMID: 34181967 DOI: 10.1016/j.jim.2021.113088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022]
Abstract
Blue eye disease (BED) of pigs was identified in the early 1980s in La Piedad, Michoacan, Mexico. The causal agent is Porcine orthorubulavirus (PRV), which affects pigs of all ages, producing nervous, respiratory, and reproductive disorders. BED is geographically endemic to the center of Mexico, where 75% of the country's swine industry is concentrated. Due to its adverse effects on the swine industry and the risk of dissemination to other countries, it is essential to have reliable diagnostic methods for BED. The objective of this study was to establish the optimal conditions for three serological tests, hemagglutination inhibition (HI), immunoperoxidase monolayer assay (IPMA), and serum neutralization (SN), and to compare their sensitivity, specificity, kappa coefficient, and predictive values. Twelve different HI protocols (9408 tests), one SN protocol and one IPMA protocol (784 tests, each) were evaluated. Forty-nine sera were analyzed, and thirty-seven sera showed true positive results, while twelve showed true negative results. The kappa coefficient was used to assess the variation in each test. The best HI protocol registered a sensitivity and specificity of 89 and 100%, respectively, the IPMA test showed values of 85 and 100%, and the SN test registered a sensitivity of 91% and a specificity of 96%. One of the disadvantages of the HI test is that when chicken red blood cells (RBCs) are used, elution occurs in a short incubation time, which would decrease the specificity. The use of bovine RBCs increases the specificity of the testy and makes it more stable, but it decreases the sensitivity. The results of HI and SN revealed the importance of eliminating the complement system of the serum and removing other inhibitors to avoid test nonspecificity. The IPMA test does not use an active virus; hence, it is considered safe and does not present any risk of disseminating PRV.
Collapse
|
4
|
Siañez-Estrada LI, Rivera-Benítez JF, Rosas-Murrieta NH, Reyes-Leyva J, Santos-López G, Herrera-Camacho I. Immunoinformatics approach for predicting epitopes in HN and F proteins of Porcine rubulavirus. PLoS One 2020; 15:e0239785. [PMID: 32976525 PMCID: PMC7518572 DOI: 10.1371/journal.pone.0239785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Porcine rubulavirus (PRV), which belongs to the family Paramyxoviridae, causes blue eye disease in pigs, characterized by encephalitis and reproductive failure in newborn and adult pigs, respectively. There is no effective treatment against PRV and no information on the effectiveness of the available vaccines. Continuous outbreaks have occurred in Mexico since the early 1980s, which have caused serious economic losses to pig producers. Vaccination can be used to control this disease. Searching for effective antigen candidates against PRV, we first sequenced the PAC1 F protein, then we used various immunoinformatics tools to predict antigenic determinants of B-cells and T-cells against the two glycoproteins of the virus (HN and F proteins). Finally, we used AutoDock Vina to determine the binding energies. We obtained the F gene sequence of a PRV strain collected in the early 1990s in Mexico and compared its amino acid profile with previous and more recent strains, obtaining an identity similarity of 97.78 to 99.26%. For the F proteins, seven linear B-cell epitopes, six conformational B-cell epitopes and twenty-nine T-cell MHC class I epitopes were predicted. For the HN proteins, sixteen linear B-cell epitopes, seven conformational B-cell epitopes and thirty-four T-cell MHC class I epitopes were predicted. The ATRSETDYY and AAYTTTTCF epitopes of the HN protein might be important for neutralizing the viral infection. We determined the in silico binding energy between the predicted epitopes on the F and HN proteins and swine MHC-I molecules. The binding energy of these epitopes ranged from -5.8 to -7.8 kcal/mol. The present study aimed to assess the use of HN and F proteins as antigens, either as recombinant proteins or as a series of peptides that could activate different responses of the immune system. This may help identify relevant immunogens, saving time and costs in the development of new vaccines or diagnostic tools.
Collapse
Affiliation(s)
- Luis I. Siañez-Estrada
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social (IMSS), Metepec, México
| | - José F. Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Ciudad de México, México
| | - Nora H. Rosas-Murrieta
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Julio Reyes-Leyva
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social (IMSS), Metepec, México
| | - Gerardo Santos-López
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social (IMSS), Metepec, México
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
5
|
Santos-López G, Borraz-Argüello MT, Márquez-Domínguez L, Flores-Alonso JC, Ramírez-Mendoza H, Priem B, Fort S, Vallejo-Ruiz V, Reyes-Leyva J, Herrera-Camacho I. Neuraminidase activity of blue eye disease porcine rubulavirus: Specificity, affinity and inhibition studies. Res Vet Sci 2017; 114:218-224. [PMID: 28502901 DOI: 10.1016/j.rvsc.2017.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 10/19/2022]
Abstract
Porcine rubulavirus (PorPV), also known as La Piedad Michoacan Virus (LPMV) causes encephalitis and reproductive failure in newborn and adult pigs, respectively. The hemagglutinin-neuraminidase (HN) glycoprotein is the most exposed and antigenic of the virus proteins. HN plays central roles in PorPV infection; i.e., it recognizes sialic acid-containing cell receptors that mediate virus attachment and penetration; in addition, its neuraminidase (sialic acid releasing) activity has been proposed as a virulence factor. This work describes the purification and characterization of PorPV HN protein (isolate PAC1). The specificity of neuraminidase is restricted to sialyl(α2,3)lactose (3SL). HN showed typical Michaelis-Menten kinetics with fetuin as substrate (km=0.029μM, Vmax=522.8nmolmin-1mg-1). When 3SL was used as substrate, typical cooperative kinetics were found (S50=0.15μM, Vmax=154.3nmolmin-1mg-1). The influenza inhibitor zanamivir inhibited the PorPV neuraminidase with IC50 of 0.24μM. PorPV neuraminidase was activated by Ca2+ and inhibited by nucleoside triphosphates with the level of inhibition depending on phosphorylation level. The present results open possibilities to study the role of neuraminidase in the pathogenicity of PorPV infection and its potential inhibitors.
Collapse
Affiliation(s)
- Gerardo Santos-López
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico.
| | - María T Borraz-Argüello
- Departamento de Ingeniería en Biotecnología Universidad Politécnica de Puebla, Calpan, Puebla, Mexico
| | - Luis Márquez-Domínguez
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico
| | - Juan Carlos Flores-Alonso
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico
| | - Humberto Ramírez-Mendoza
- Departamento de producción Animal Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México, D.F., Mexico
| | - Bernard Priem
- Université Grenoble Alpes, CERMAV, F-38000 Grenoble, France; CNRS, CERMAV, F-38000 Grenoble, France
| | - Sébastien Fort
- Université Grenoble Alpes, CERMAV, F-38000 Grenoble, France; CNRS, CERMAV, F-38000 Grenoble, France
| | - Verónica Vallejo-Ruiz
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico
| | - Julio Reyes-Leyva
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica, Centro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, Puebla, Mexico.
| |
Collapse
|
6
|
Full-genome sequencing and phylogenetic analysis of four neurovirulent Mexican isolates of porcine rubulavirus. Arch Virol 2017; 162:1765-1768. [PMID: 28185101 DOI: 10.1007/s00705-017-3267-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
Abstract
We report the complete genome sequences of four neurovirulent isolates of porcine rubulavirus (PorPV) from 2015 and one historical PorPV isolate from 1984 obtained by next-generation sequencing. A phylogenetic tree constructed using the individual sequences of the complete HN genes of the 2015 isolates and other historical sequences deposited in the GenBank database revealed that several recent neurovirulent isolates of PorPV (2008-2015) cluster together in a separate clade. Phylogenetic analysis of the complete genome sequences revealed that the neurovirulent strains of PorPV that circulated in Mexico during 2015 are genetically different from the PorPV strains that circulated during the 1980s.
Collapse
|
7
|
Herrera J, Gómez-Núñez L, Lara-Romero R, Diosdado F, Martínez-Lara A, Jasso M, Ramírez-Mendoza H, Pérez-Torres A, Rivera-Benítez JF. Acute neurologic disease in Porcine rubulavirus experimentally infected piglets. Virus Res 2017; 230:50-58. [PMID: 28104449 DOI: 10.1016/j.virusres.2017.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/04/2016] [Accepted: 01/11/2017] [Indexed: 11/28/2022]
Abstract
The objective of this study was to evaluate the clinical disease, humoral response and viral distribution of recent Porcine rubulavirus (PorPV) isolates in experimentally infected pigs. Four, 6-piglet (5-days old) groups were employed (G1-84, G2-93, G3-147, and G4-T). Three viral strains were used for the experimental infection: the reference strain LPMV-1984 (Michoacán 1984) and two other strains isolated in 2013, one in Queretaro (Qro/93/2013) and the other in Michoacán (Mich/147/2013). Each strain was genetically characterized by amplification and sequencing of the gene encoding hemagglutinin-neuroamidase (HN). The inoculation was performed through the oronasal and ocular routes, at a dose of 1×106TCID50/ml. Subsequently, the signs were evaluated daily and necropsies were performed on 3 different days post infection (dpi). We recorded all micro- and macroscopic lesions. Organs from the nervous, lymphatic, and respiratory system were analyzed by quantifying the viral RNA load and the presence of the infectious virus. The presence of the viral antigen in organs was evidenced through immunohistochemistry. Seroconversion was evaluated through the use of a hemagglutination inhibition test. In the characterization of gene HN, only three substitutions were identified in strain Mich/147/2013, two in strain LPMV/1984 (fourth passage) and one in strain Qro/93/2013, with respect to reference strain LPMV-84, these changes had not been identified as virulence factors in previously reported strains. Neurological alterations associated with the infection were found in all three experimental groups starting from 3dpi. Groups G1-84 and G3-147 presented the most exacerbated nervous signs. Group G2-93 only presented milder signs including slight motor incoordination, and an increased rectal temperature starting from day 5 post infection (PI). The main histopathological findings were the presence of a mononuclear inflammatory infiltrate (lymphocytic/monocytic) surrounding the ventricles in the brain and focal interstitial pneumonitis with distention of the alveolar sacs in the lungs. PorPV and RNA distribution were identified in the organs of the nervous, lymphatic, and respiratory systems of the piglets analyzed at different times (days 5, 10, and 15 PI). The viral antigen was detected in the brain and lungs in most of the assessed groups. Seroconversion was evident in groups G1-84 and G2-93. Groups G1-84 and G3-147 were the most clinically affected by the experimental infection. Both strains were isolated in the state of Michoacán. The virulence of the new isolates maintains similar characteristics to those reported more than 30 years ago.
Collapse
Affiliation(s)
- Jenifer Herrera
- Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City, Mexico
| | - Luis Gómez-Núñez
- Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City, Mexico
| | - Rocío Lara-Romero
- Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City, Mexico
| | - Fernando Diosdado
- Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City, Mexico
| | - Atalo Martínez-Lara
- Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City, Mexico
| | - Miguel Jasso
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico City, Mexico
| | - Humberto Ramírez-Mendoza
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico City, Mexico
| | | | - José Francisco Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Microbiología Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City, Mexico.
| |
Collapse
|
8
|
Cuevas-Romero JS, Rivera-Benítez JF, Hernández-Baumgarten E, Hernández-Jaúregui P, Vega M, Blomström AL, Berg M, Baule C. Cloning, expression and characterization of potential immunogenic recombinant hemagglutinin-neuraminidase protein of Porcine rubulavirus. Protein Expr Purif 2016; 128:1-7. [PMID: 27496728 DOI: 10.1016/j.pep.2016.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
Abstract
Blue eye disease caused by Porcine rubulavirus (PorPV) is an endemic viral infection of swine causing neurological and respiratory disease in piglets, and reproductive failure in sows and boars. The hemagglutinin-neuraminidase (HN) glycoprotein of PorPV is the most abundant component in the viral envelope and the main target of the immune response in infected animals. In this study, we expressed the HN-PorPV-recombinant (rHN-PorPV) protein in an Escherichia coli system and analyzed the immune responses in mice. The HN gene was cloned from the reference strain PorPV-La Piedad Michoacan Virus (GenBank accession number BK005918), into the pDual expression vector. The expressed protein was identified at a molecular weight of 61.7 kDa. Three-dimensional modeling showed that the main conformational and functional domains of the rHN-PorPV protein were preserved. The antigenicity of the expressed protein was confirmed by Western blot with a monoclonal antibody recognizing the HN, and by testing against serum samples from pigs experimentally infected with PorPV. The immunogenicity of the rHN-PorPV protein was tested by inoculation of BALB/c mice with AbISCO-100(®) as adjuvant. Analysis of the humoral immune responses in mice showed an increased level of specific antibodies 14 days after the first immunization, compared to the control group (P < 0.0005). The results show the ability of the rHN-PorPV protein to induce an antibody response in mice. Due to its immunogenic potential, the rHN-PorPV protein will be further evaluated in pig trials for its suitability for prevention and control of blue eye disease.
Collapse
Affiliation(s)
- Julieta Sandra Cuevas-Romero
- Centro Nacional de Investigación Disciplinaria en Microbiología Animal, INIFAP, CP. 05110, Mexico City, Mexico; Division of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, S-751 89, Uppsala, Sweden.
| | | | | | | | - Marco Vega
- Instituto Politécnico Nacional. Centro de Investigación y Estudios Avanzados, Mexico City, Mexico
| | - Anne-Lie Blomström
- Division of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, S-751 89, Uppsala, Sweden
| | - Mikael Berg
- Division of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, S-751 89, Uppsala, Sweden
| | - Claudia Baule
- Division of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, S-751 89, Uppsala, Sweden
| |
Collapse
|
9
|
Production of an enzymatically active and immunogenic form of ectodomain of Porcine rubulavirus hemagglutinin-neuraminidase in the yeast Pichia pastoris. J Biotechnol 2016; 223:52-61. [PMID: 26940828 DOI: 10.1016/j.jbiotec.2016.02.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/23/2015] [Accepted: 02/26/2016] [Indexed: 11/20/2022]
Abstract
Blue-eye disease (BED) of swine is a viral disease endemic in Mexico. The etiological agent is a paramyxovirus classified as Porcine rubulavirus (PoRV-LPMV), which exhibits in its envelope the hemagglutinin-neuraminidase (HN) glycoprotein, the most immunogenic and a major target for vaccine development. We report in this study the obtaining of ectodomain of PoRV HN (eHN) through the Pichia pastoris expression system. The expression vector (pPICZαB-HN) was integrated by displacement into the yeast chromosome and resulted in a Mut(+) phenotype. Expressed eHN in the P. pastoris X33 strain was recovered from cell-free medium, featuring up to 67 nmol/min/mg after 6 days of expression. eHN was recognized by the serum of infected pigs with strains currently circulating in the Mexican Bajio region. eHN induces antibodies in mice after 28 days of immunization with specific recognition in ELISA test. These antibodies were able to inhibit >80% replication by viral neutralization assays in cell culture. These studies show the obtaining of a protein with similar characteristics to the native HN and which may be a candidate to propose a vaccine or to use the antigen in a serologic diagnostic test.
Collapse
|
10
|
Co-infection of classic swine H1N1 influenza virus in pigs persistently infected with porcine rubulavirus. Vet Microbiol 2016; 184:31-9. [PMID: 26854342 PMCID: PMC7117528 DOI: 10.1016/j.vetmic.2016.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 11/23/2022]
Abstract
We analyse the co-infection of swine H1N1 influenza virus and porcine rubulavirus. Pigs of the co-infection group presented an increase of clinical signs. Interaction of two viruses infection is demonstrated in growing pigs.
Porcine rubulavirus (PorPV) and swine influenza virus infection causes respiratory disease in pigs. PorPV persistent infection could facilitate the establishment of secondary infections. The aim of this study was to analyse the pathogenicity of classic swine H1N1 influenza virus (swH1N1) in growing pigs persistently infected with porcine rubulavirus. Conventional six-week-old pigs were intranasally inoculated with PorPV, swH1N1, or PorPV/swH1N1. A mock-infected group was included. The co-infection with swH1N1 was at 44 days post-infection (DPI), right after clinical signs of PorPV infection had stopped. The pigs of the co-infection group presented an increase of clinical signs compared to the simple infection groups. In all infected groups, the most recurrent lung lesion was hyperplasia of the bronchiolar-associated lymphoid tissue and interstitial pneumonia. By means of immunohistochemical evaluation it was possible to demonstrate the presence of the two viral agents infecting simultaneously the bronchiolar epithelium. Viral excretion of PorPV in nasal and oral fluid was recorded at 28 and 52 DPI, respectively. PorPV persisted in several samples from respiratory tissues (RT), secondary lymphoid organs (SLO), and bronchoalveolar lavage fluid (BALF). For swH1N1, the viral excretion in nasal fluids was significantly higher in single-infected swH1N1 pigs than in the co-infected group. However, the co-infection group exhibited an increase in the presence of swH1N1 in RT, SLO, and BALF at two days after co-infection. In conclusion, the results obtained confirm an increase in the clinical signs of infection, and PorPV was observed to impact the spread of swH1N1 in analysed tissues in the early stage of co-infection, although viral shedding was not enhanced. In the present study, the interaction of swH1N1 infection is demonstrated in pigs persistently infected with PorPV.
Collapse
|
11
|
Molecular characterisation of Porcine rubulavirus (PorPV) isolates from different outbreaks in Mexico. Virus Genes 2016; 52:81-90. [DOI: 10.1007/s11262-015-1281-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
|
12
|
Cuevas-Romero JS, Blomström AL, Berg M. Molecular and epidemiological studies of Porcine rubulavirus infection - an overview. Infect Ecol Epidemiol 2015; 5:29602. [PMID: 26584829 PMCID: PMC4653323 DOI: 10.3402/iee.v5.29602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 11/27/2022] Open
Abstract
Porcine rubulavirus-La Piedad-Michoacan-Mexico virus (PorPV-LPMV) was identified as the causative agent of a viral disease that emerged spontaneously in Mexican swine in the 1980s. Since the report of the initial outbreak of the disease, only one full-length genome from a strain isolated in 1984 (PorPV-LPMV/1984) has been sequenced; sequence data are scarce from other isolates. The genetic variation of this virus that has spread throughout the main endemic region of Mexico is almost a complete mystery. The development of molecular techniques for improved diagnostics and to investigate the persistence, molecular epidemiology, and the possible reservoirs of PorPV are needed. Together, this will provide greater knowledge regarding the molecular genetic changes and useful data to establish new strategies in the control of this virus in Mexico.
Collapse
Affiliation(s)
- Julieta Sandra Cuevas-Romero
- Centro Nacional de Investigaciones Disciplinarias en Microbiología Animal, INIFAP, México City, Mexico.,Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden;
| | - Anne-Lie Blomström
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mikael Berg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
13
|
Pisanelli G, Laurent-Rolle M, Manicassamy B, Belicha-Villanueva A, Morrison J, Lozano-Dubernard B, Castro-Peralta F, Iovane G, García-Sastre A. La Piedad Michoacán Mexico Virus V protein antagonizes type I interferon response by binding STAT2 protein and preventing STATs nuclear translocation. Virus Res 2015; 213:11-22. [PMID: 26546155 DOI: 10.1016/j.virusres.2015.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/24/2022]
Abstract
La Piedad Michoacán Mexico Virus (LPMV) is a member of the Rubulavirus genus within the Paramyxoviridae family. LPMV is the etiologic agent of "blue eye disease", causing a significant disease burden in swine in Mexico with long-term implications for the agricultural industry. This virus mainly affects piglets and is characterized by meningoencephalitis and respiratory distress. It also affects adult pigs, causing reduced fertility and abortions in females, and orchitis and epididymitis in males. Viruses of the Paramyxoviridae family evade the innate immune response by targeting components of the interferon (IFN) signaling pathway. The V protein, expressed by most paramyxoviruses, is a well-characterized IFN signaling antagonist. Until now, there were no reports on the role of the LPMV-V protein in inhibiting the IFN response. In this study we demonstrate that LPMV-V protein antagonizes type I but not type II IFN signaling by binding STAT2, a component of the type I IFN cascade. Our results indicate that the last 18 amino acids of LPMV-V protein are required for binding to STAT2 in human and swine cells. While LPMV-V protein does not affect the protein levels of STAT1 or STAT2, it does prevent the IFN-induced phosphorylation and nuclear translocation of STAT1 and STAT2 thereby inhibiting cellular responses to IFN α/β.
Collapse
Affiliation(s)
- Giuseppe Pisanelli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Maudry Laurent-Rolle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Balaji Manicassamy
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Alan Belicha-Villanueva
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Juliet Morrison
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Bernardo Lozano-Dubernard
- Departamento de Investigación y Desarrollo, Laboratorio Avi-Mex, SA de CV, Bartolache 1862, Colonia del Valle, D.F. México 01900, Mexico
| | - Felipa Castro-Peralta
- Departamento de Investigación y Desarrollo, Laboratorio Avi-Mex, SA de CV, Bartolache 1862, Colonia del Valle, D.F. México 01900, Mexico
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Department of Medicine, Division of Infectious Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States.
| |
Collapse
|
14
|
Cuevas-Romero S, Hernández-Baumgarten E, Kennedy S, Hernández-Jáuregui P, Berg M, Moreno-López J. Long-term RNA persistence of porcine rubulavirus (PorPV-LPMV) after an outbreak of a natural infection: the detection of viral mRNA in sentinel pigs suggests viral transmission. Virus Res 2014; 188:155-61. [PMID: 24768705 DOI: 10.1016/j.virusres.2014.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 11/30/2022]
Abstract
The persistence of porcine rubulavirus (PorPV-LPMV) in five pigs that had survived an outbreak of a natural infection was determined. After the resolution of the outbreak, each animal was housed in an isolation pen together with one sentinel pig. Approximately every 2 months thereafter one group of animals was euthanized and tissue samples taken for virological and serological analysis. Infectious virus was not isolated from any samples; antibodies to PorPV-LPMV were detected in convalescent pigs by virus neutralisation test and blocking ELISA but not in sentinel pigs. PorPV-LPMV mRNA of the nucleoprotein (NP) and phosphoprotein (P) genes was detected by a nested polymerase chain reaction (nPCR) in samples of trigeminal and optic nerves, cervical spinal cord, tonsils, salivary gland, lung and pancreas from convalescent pigs. mRNA was also detected in the midbrain, corpus callosum, or olfactory bulb in four out of five pigs by nRT-PCR, this result was confirmed by the sequencing of a 260bp PCR product of P gene region. The highest average viral copies/μg of total RNA occurred in the olfactory bulb and pancreas tissues of convalescent pigs and midbrain, tonsil and pancreas of sentinel pigs housed with the convalescent pigs. Satellitosis and gliosis of the midbrain, olfactory bulb, corpus callosum, medulla oblongata or choroid plexus were microscopically observed in four convalescent pigs. The control pig remained negative in all tests. The results indicate that PorPV-LPMV mRNA persists and induces a durable humoral immune response in pigs that have recovered from a natural infection. After a possible reactivation of the virus, it was transmitted to sentinel pigs in contact with the convalescent pigs.
Collapse
Affiliation(s)
- S Cuevas-Romero
- Division of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden; Centro Nacional de Investigación Disciplinaria en Microbiología Animal, INIFAP, Mexico DF, Mexico.
| | - E Hernández-Baumgarten
- Facultad de Estudios Superiores Cuautitlán (FES-C), Universidad Nacional Autónoma de México (UNAM), Mexico
| | - S Kennedy
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stoney Road, Stormont, Belfast, Northern Ireland, United Kingdom
| | | | - M Berg
- Division of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J Moreno-López
- Division of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
15
|
Rivera-Benitez JF, Cuevas-Romero S, Pérez-Torres A, Reyes-Leyva J, Hernández J, Ramírez-Mendoza H. Respiratory disease in growing pigs after Porcine rubulavirus experimental infection. Virus Res 2013; 176:137-43. [PMID: 23770154 DOI: 10.1016/j.virusres.2013.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/25/2013] [Accepted: 05/28/2013] [Indexed: 11/29/2022]
Abstract
The aim of this study was to analyze the pathogenicity and distribution of Porcine rubulavirus (PorPV) in the respiratory tract of experimentally infected pigs. Nine 6-week-old pigs were infected with PorPV and examined clinically. Blood, nasal swab, and tissue samples were collected on different days post-infection (DPI). The humoral immune responses and viral loads were evaluated. The infected pigs exhibited an increase in the respiratory clinical signs. In addition, the excretion of PorPV was extended to 23 DPI in the nasal fluid. The distribution of PorPV in the respiratory tract tissues was extended until the end of the experiment; soft palate tonsil and lymph nodes exhibited high viral loads. The major microscopic lesions observed in the lungs corresponded to interstitial pneumonia and hyperplasia of the associated lymphoid tissue. In conclusion, PorPV infection causes a pneumonic disease characterized by a prolonged virus excretion and high viral load in the lymphoid tissues.
Collapse
Affiliation(s)
- José Francisco Rivera-Benitez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Distrito Federal, Mexico.
| | | | | | | | | | | |
Collapse
|
16
|
Rivera-Benitez JF, Rosas-Estrada K, Pulido-Camarillo E, de la Peña-Moctezuma A, Castillo-Juárez H, Ramírez-Mendoza H. Serological survey of veterinarians to assess the zoonotic potential of three emerging swine diseases in Mexico. Zoonoses Public Health 2013; 61:131-7. [PMID: 23734711 DOI: 10.1111/zph.12055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Indexed: 01/25/2023]
Abstract
We conducted an immunological assay of blood samples taken from 85 swine-specialist veterinarians attending the Congress of the Mexican Association of Swine Specialist Veterinarians in Mexico in 2011. Serum samples were assayed for Porcine rubulavirus (PorPV), Encephalomyocarditis virus (EMCV) and Leptospira spp. antibodies. Using a hemagglutination inhibition test, we registered 2.3% and 27% seropositivity for PorPV and EMCV, respectively. Using viral neutralization tests, we registered 5.8% and 47% seropositivity for PorPV and EMCV, respectively. For Leptospira spp., we registered a seropositivity of 38.8%. The variables (sex, age, years of exposure, number of visited farms, biosecurity level and region) showed no significant effect (P > 0.05) on the seropositivity for EMCV, PorPV and Leptospira spp. except for number of visited farms on HI seropositivity for EMCV (P < 0.05; odds ratio: 1.38). The data obtained provide information on the epidemiology of emerging diseases with zoonotic potential in occupational risk groups.
Collapse
Affiliation(s)
- J F Rivera-Benitez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
17
|
Rivera-Benitez JF, García-Contreras ADC, Reyes-Leyva J, Hernández J, Sánchez-Betancourt JI, Ramírez-Mendoza H. Efficacy of quantitative RT-PCR for detection of the nucleoprotein gene from different porcine rubulavirus strains. Arch Virol 2013; 158:1849-56. [PMID: 23525730 DOI: 10.1007/s00705-013-1672-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/09/2013] [Indexed: 10/27/2022]
Abstract
Blue-eye disease is an emergent viral swine infection caused by porcine rubulavirus (PoRV). We have developed a qRT-PCR method to detect and quantify expression of the nucleoprotein gene for different PoRV strains. The limit of detection for this assay was 10(2) copies of synthetic RNA. Viral RNA from PoRV was detectable at a TCID50 of 0.01. Significant differences were observed between viral RNA quantification and virus titration results for nine PoRV strains. For nasal and oral swab samples that were collected from experimentally infected pigs, the qRT-PCR assay was more sensitive (87.1-83.9 %) for the detection of positive samples than methods involving isolation of virus. The implementation of highly sensitive assays that yield results quickly will be of great assistance in the eradication of PoRV from Mexico. We also believe that the newly developed qRT-PCR assay will help reduce the spread of this viral infection to other countries.
Collapse
Affiliation(s)
- José Francisco Rivera-Benitez
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|
18
|
Rivera-Benitez JF, Martínez-Bautista R, Pérez-Torres A, García-Contreras ADC, Reyes-Leyva J, Hernández J, Ramírez-Mendoza H. Persistence of porcine rubulavirus in experimentally infected boars. Vet Microbiol 2013. [DOI: 10.1016/j.vetmic.2012.10.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Cuevas-Romero S, Blomström AL, Alvarado A, Hernández-Jauregui P, Rivera-Benitez F, Ramírez-Mendoza H, Berg M. Development of a real-time RT-PCR method for detection of porcine rubulavirus (PoRV-LPMV). J Virol Methods 2013; 189:1-6. [PMID: 23305816 PMCID: PMC7113651 DOI: 10.1016/j.jviromet.2012.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 11/16/2012] [Accepted: 12/17/2012] [Indexed: 11/25/2022]
Abstract
In order to provide a rapid and sensitive method for detection of the Porcine rubulavirus La Piedad-Michoacan-Mexico Virus (PoRV-LPMV), we have developed a specific real-time reverse transcriptase polymerase chain reaction assay. The detection of PoRV-LPMV, represents a diagnostic challenge due to the viral RNA being present in very small amounts in tissue samples. In this study, a TaqMan(®) real-time PCR assay was designed based on the phosphoprotein gene of PoRV-LPMV, to allow specific amplification and detection of viral RNA in clinical samples. Assay conditions for the primers and probe were optimized using infected PK15 cells and ten-fold serial dilutions of a plasmid containing the whole P-gene. The sensitivity of the developed TaqMan(®) assay was approximately 10 plasmid copies per reaction, and was shown to be 1000 fold better than a conventional nested RT-PCR. The performance of this real-time RT-PCR method enables studies of various aspects of PoRV-LPMV infection. Finally, the assay detects all current known variants of the virus.
Collapse
Affiliation(s)
- Sandra Cuevas-Romero
- Division of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|