1
|
Chen M, Wu G, Lu Y, Sun S, Yu Z, Pan X, Chen W, Xu H, Qiu H, He W, Li X, Wang X, Luo Y, Du Y, Wu J, Wei K, Zhang W, Liu Z, He Z. A p21-ATD mouse model for monitoring and eliminating senescent cells and its application in liver regeneration post injury. Mol Ther 2024; 32:2992-3011. [PMID: 38582962 PMCID: PMC11403235 DOI: 10.1016/j.ymthe.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/10/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Cellular senescence associates with pathological aging and tissue dysfunctions. Studies utilizing mouse models for cell lineage tracings have emphasized the importance of senescence heterogeneity in different organs and cell types. Here, we constructed a p21- (Akaluc - tdTomato - Diphtheria Toxin Receptor [DTR]) (ATD) mouse model to specifically study the undefined mechanism for p21-expressing senescent cells in the aged and liver injury animals. The successful expressions of these genes enabled in vitro flow cytometric sorting, in vivo tracing, and elimination of p21-expressing senescent cells. During the natural aging process, p21-expressing cells were found in various tissues of p21-ATD mice. Eliminating p21-expressing cells in the aged p21-ATD mice recovered their multiple biological functions. p21-ATD/Fah-/- mice, bred from p21-ATD mice and fumarylacetoacetate hydrolase (Fah)-/- mice of liver injury, showed that the majority of their senescent hepatocytes were the phenotype of p21+ rather than p16+. Furthermore, eliminating the p21-expressing hepatocytes significantly promoted the engraftment of grafted hepatocytes and facilitated liver repopulation, resulting in significant recovery from liver injury. Our p21-ATD mouse model serves as an optimal model for studying the pattern and function of p21-expressing senescent cells under the physical and pathological conditions during aging.
Collapse
Affiliation(s)
- Miaomiao Chen
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Guoxiu Wu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Yanli Lu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Shiwen Sun
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Zhao Yu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Xin Pan
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Wenjian Chen
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Hongyu Xu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Hua Qiu
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P.R. China
| | - Weizhi He
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Xiuhua Li
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Xicheng Wang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yi Luo
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Yuan Du
- Department of General Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, P.R. China
| | - Jialing Wu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Ke Wei
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China; Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Zhiying He
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, P.R. China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, P.R. China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200123, P.R. China.
| |
Collapse
|
2
|
Cao L, Ma L, Zhao J, Wang X, Fang X, Li W, Qi Y, Tang Y, Liu J, Peng S, Yang L, Zhou L, Li L, Hu X, Ji Y, Hou Y, Zhao Y, Zhang X, Zhao YY, Zhao Y, Wei Y, Malik AB, Saiyin H, Xu J. An unexpected role of neutrophils in clearing apoptotic hepatocytes in vivo. eLife 2023; 12:RP86591. [PMID: 37728612 PMCID: PMC10511239 DOI: 10.7554/elife.86591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Billions of apoptotic cells are removed daily in a human adult by professional phagocytes (e.g. macrophages) and neighboring nonprofessional phagocytes (e.g. stromal cells). Despite being a type of professional phagocyte, neutrophils are thought to be excluded from apoptotic sites to avoid tissue inflammation. Here, we report a fundamental and unexpected role of neutrophils as the predominant phagocyte responsible for the clearance of apoptotic hepatic cells in the steady state. In contrast to the engulfment of dead cells by macrophages, neutrophils burrowed directly into apoptotic hepatocytes, a process we term perforocytosis, and ingested the effete cells from the inside. The depletion of neutrophils caused defective removal of apoptotic bodies, induced tissue injury in the mouse liver, and led to the generation of autoantibodies. Human autoimmune liver disease showed similar defects in the neutrophil-mediated clearance of apoptotic hepatic cells. Hence, neutrophils possess a specialized immunologically silent mechanism for the clearance of apoptotic hepatocytes through perforocytosis, and defects in this key housekeeping function of neutrophils contribute to the genesis of autoimmune liver disease.
Collapse
Affiliation(s)
- Luyang Cao
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL)GuangzhouChina
| | - Lixiang Ma
- Department of Anatomy, Histology & Embryology, Shanghai Medical CollegeShanghaiChina
| | - Juan Zhao
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Xiangyu Wang
- Department of Anatomy, Histology & Embryology, Shanghai Medical CollegeShanghaiChina
| | - Xinzou Fang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Wei Li
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL)GuangzhouChina
| | - Yawen Qi
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL)GuangzhouChina
| | - Yingkui Tang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Jieya Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Shengxian Peng
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Li Yang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Liangxue Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Li Li
- Department of Anatomy, Histology & Embryology, Shanghai Medical CollegeShanghaiChina
| | - Xiaobo Hu
- Clinical Laboratory, Longhua Hospital, Shanghai University of Traditional MedicineShanghaiChina
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital Fudan UniversityShanghaiChina
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital Fudan UniversityShanghaiChina
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan UniversityChengduChina
| | - Xianming Zhang
- Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, and Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - You-yang Zhao
- Program for Lung and Vascular Biology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, and Department of Pediatrics, Division of Critical Care, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Yuquan Wei
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois, College of MedicineChicagoUnited States
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Jingsong Xu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Helal MG, El-Kashef DH. Krill oil alleviates oxidative stress, iron accumulation and fibrosis in the liver and spleen of iron-overload rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3950-3961. [PMID: 31823254 DOI: 10.1007/s11356-019-06983-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Krill oil (KO) is a recent supplement which is rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These fatty acids are found in both krill oil and fish oil. In krill oil, they esterified to phospholipids, but in fish oil, they are esterified to triacylglycerols. The target of this study was to investigate whether KO could help against iron overload-induced toxicity in liver and spleen. Rats were randomly assigned into 3 categories: control rats, rats received iron in a drinking water for 8 weeks followed by either vehicle or KO (40 mg/kg) treatment for an extra 8 weeks. Extent of hepatic and splenic injury was assessed via biochemical, histopathological and immunohistochemical evaluations. KO effectively improved the microscopic features of liver and spleen. Moreover, it decreased the increased levels of serum transaminases, ALP, LDH, iron, and ferritin and increased albumin serum level as well. In addition, it restored the balance between oxidants and antioxidants in the hepatic and splenic tissues. Furthermore, it decreased HO-1 levels, upregulated the production of Nrf2, and limited the expression of MMP9. These findings altogether suggest that KO might be a new candidate for treatment of iron overload-induced toxicity. Graphical abstract Graphical abstract.
Collapse
Affiliation(s)
- Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
8
|
Origassa CST, Câmara NOS. Cytoprotective role of heme oxygenase-1 and heme degradation derived end products in liver injury. World J Hepatol 2013; 5:541-9. [PMID: 24179613 PMCID: PMC3812456 DOI: 10.4254/wjh.v5.i10.541] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/08/2012] [Accepted: 11/25/2012] [Indexed: 02/06/2023] Open
Abstract
The activation of heme oxygenase-1 (HO-1) appears to be an endogenous defensive mechanism used by cells to reduce inflammation and tissue damage in a number of injury models. HO-1, a stress-responsive enzyme that catabolizes heme into carbon monoxide (CO), biliverdin and iron, has previously been shown to protect grafts from ischemia/reperfusion and rejection. In addition, the products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin, have been shown to exert protective effects in the liver against a number of stimuli, as in chronic hepatitis C and in transplanted liver grafts. Furthermore, the induction of HO-1 expression can protect the liver against damage caused by a number of chemical compounds. More specifically, the CO derived from HO-1-mediated heme catabolism has been shown to be involved in the regulation of inflammation; furthermore, administration of low concentrations of exogenous CO has a protective effect against inflammation. Both murine and human HO-1 deficiencies have systemic manifestations associated with iron metabolism, such as hepatic overload (with signs of a chronic hepatitis) and iron deficiency anemia (with paradoxical increased levels of ferritin). Hypoxia induces HO-1 expression in multiple rodent, bovine and monkey cell lines, but interestingly, hypoxia represses expression of the human HO-1 gene in a variety of human cell types (endothelial cells, epithelial cells, T cells). These data suggest that HO-1 and CO are promising novel therapeutic molecules for patients with inflammatory diseases. In this review, we present what is currently known regarding the role of HO-1 in liver injuries and in particular, we focus on the implications of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against chemically induced injury.
Collapse
Affiliation(s)
- Clarice Silvia Taemi Origassa
- Clarice Silvia Taemi Origassa, Laboratory of Experimental and Clinical Immunology, Nephrology Division, Medicine Department, Federal University of São Paulo, 04039-032 São Paulo, Brazil
| | | |
Collapse
|
9
|
Kupffer cell depletion reduces hepatic inflammation and apoptosis but decreases survival in abdominal sepsis. Eur J Gastroenterol Hepatol 2010; 22:1039-49. [PMID: 20300005 DOI: 10.1097/meg.0b013e32833847db] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE During abdominal sepsis, the activation of hepatic Kupffer cells (KC) and its consequences are of central interest. This study evaluates the impact of selective KC depletion on hepatic microcirculation, cytokine release, and systemic alterations in the colon ascendens stent peritonitis (CASP), a model of polymicrobial abdominal sepsis. METHODS For KC depletion clodronate liposomes were injected 24 h before CASP surgery in female C57BL/6N mice. Three and 12 h after CASP, in-vivo fluorescence microscopy of the liver was performed. Analysis of hepatocellular apoptosis was conducted by immunohistochemistry. In addition, levels of tumor necrosis factor (TNF), IL-6, and IL-10 in the liver, lungs, spleen, and plasma were determined, and bacteriology and survival analysis were performed. RESULTS CASP led to significant sinusoidal perfusion failure, increased leukocyte recruitment, hepatocellular apoptosis and increased levels of TNF, IL-6, and IL-10 in the liver and plasma. KC depletion before CASP significantly reduced leukocyte recruitment to the liver and hepatocellular apoptosis. IL-10 secretion decreased dramatically in the liver and plasma of KC-depleted septic mice. In contrast, TNF levels were clearly elevated after clodronate treatment. In the lung and spleen, a compensatory upregulation of IL-10 could be detected after KC depletion. Clodronate treatment resulted in a significant reduction in survival. CONCLUSION The results indicate that KC depletion is locally protective in polymicrobial abdominal sepsis, as it reduces hepatic inflammation and apoptosis. These effects could be observed in the presence of clearly elevated TNF levels. However, the lack of IL-10 in KC-depleted mice resulted in a detrimental systemic proinflammation.
Collapse
|