1
|
Kinsey N, Belanger JM, Mandigers PJJ, Leegwater PA, Heinonen T, Hytönen MK, Lohi H, Ostrander EA, Oberbauer AM. Idiopathic Epilepsy Risk Allele Trends in Belgian Tervuren: A Longitudinal Genetic Analysis. Genes (Basel) 2024; 15:114. [PMID: 38255002 PMCID: PMC10815166 DOI: 10.3390/genes15010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Idiopathic epilepsy (IE) has been known to be inherited in the Belgian Tervuren for many decades. Risk genotypes for IE in this breed have recently been identified on Canis familiaris chromosomes (CFA) 14 and 37. In the current study, the allele frequencies of these loci were analyzed to determine whether dog breeders had employed a purposeful selection against IE, leading to a reduction in risk-associated allele frequency within the breed over time. The allele frequencies of two generational groupings of Belgian Tervuren with and without IE were compared. Allele frequencies for risk-associated alleles on CFA14 were unchanged between 1985 and 2015, whereas those on CFA37 increased during that time in the control population (p < 0.05). In contrast, dogs with IE showed a decrease (p < 0.05) in the IE risk-associated allele frequency at the CFA37 locus. Seizure prevalence in the Belgian Tervuren appears to be increasing. These results suggest that, despite awareness that IE is inherited, selection against IE has not been successful.
Collapse
Affiliation(s)
- Nathan Kinsey
- Department of Animal Science, University of California, Davis, CA 95616, USA; (N.K.); (J.M.B.)
| | - Janelle M. Belanger
- Department of Animal Science, University of California, Davis, CA 95616, USA; (N.K.); (J.M.B.)
| | - Paul J. J. Mandigers
- Department of Clinical Sciences, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (P.J.J.M.); (P.A.L.)
| | - Peter A. Leegwater
- Department of Clinical Sciences, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (P.J.J.M.); (P.A.L.)
| | - Tiina Heinonen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (T.H.); (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Marjo K. Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (T.H.); (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (T.H.); (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Anita M. Oberbauer
- Department of Animal Science, University of California, Davis, CA 95616, USA; (N.K.); (J.M.B.)
| |
Collapse
|
2
|
Belanger JM, Heinonen T, Famula TR, Mandigers PJJ, Leegwater PA, Hytönen MK, Lohi H, Oberbauer AM. Validation of a Chromosome 14 Risk Haplotype for Idiopathic Epilepsy in the Belgian Shepherd Dog Found to Be Associated with an Insertion in the RAPGEF5 Gene. Genes (Basel) 2022; 13:genes13071124. [PMID: 35885906 PMCID: PMC9323784 DOI: 10.3390/genes13071124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
An idiopathic epilepsy (IE) risk haplotype on canine chromosome (CFA) 14 has been reported to interact with the CFA37 common risk haplotype in the Belgian shepherd (BS). Additional IE cases and control dogs were genotyped for the risk haplotypes to validate these previous findings. In the new cohort, the interaction between the two regions significantly elevated IE risk. When the haplotypes were analyzed individually, particular haplotypes on both CFA14 (ACTG) and 37 (GG) were associated with elevated IE risk, though only the CFA37 AA was significantly associated (p < 0.003) with reduced risk in the new cohort. However, the CFA14 ACTG risk was statistically significant when the new and previous cohort data were combined. The frequency of the ACTG haplotype was four-fold higher in BS dogs than in other breeds. Whole genome sequence analysis revealed that a 3-base pair predicted disruptive insertion in the RAPGEF5 gene, which is adjacent to the CFA14 risk haplotype. RAPGEF5 is involved in the Wnt-β-catenin signaling pathway that is crucial for normal brain function. Although this risk variant does not fully predict the likelihood of a BS developing IE, the association with a variant in a candidate gene may provide insight into the genetic control of canine IE.
Collapse
Affiliation(s)
- Janelle M. Belanger
- Department of Animal Science, University of California, Davis, CA 95616, USA; (J.M.B.); (T.R.F.)
| | - Tiina Heinonen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (T.H.); (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Thomas R. Famula
- Department of Animal Science, University of California, Davis, CA 95616, USA; (J.M.B.); (T.R.F.)
| | - Paul J. J. Mandigers
- Department of Clinical Sciences, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (P.J.J.M.); (P.A.L.)
| | - Peter A. Leegwater
- Department of Clinical Sciences, Utrecht University, Yalelaan 108, 3584 CM Utrecht, The Netherlands; (P.J.J.M.); (P.A.L.)
| | - Marjo K. Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (T.H.); (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland; (T.H.); (M.K.H.); (H.L.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Anita M. Oberbauer
- Department of Animal Science, University of California, Davis, CA 95616, USA; (J.M.B.); (T.R.F.)
- Correspondence: ; Tel.: +1-530-752-5484
| |
Collapse
|
3
|
Huenerfauth E, Nessler J, Erath J, Tipold A. Probable Sudden Unexpected Death in Dogs With Epilepsy (pSUDED). Front Vet Sci 2021; 8:600307. [PMID: 33987215 PMCID: PMC8112544 DOI: 10.3389/fvets.2021.600307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
Sudden unexpected death in human epileptic patients (SUDEP) is defined as death related to recurrent unprovoked seizures, death occurring unexpectedly, and suddenly in a patient with reasonable state of health, without an obvious medical cause of death, trauma, asphyxia, or intractable status epilepticus, and in post mortem examination no obvious reason for death can be found. “Probable SUDEP” (pSUDEP) is defined as SUDEP not confirmed pathologically. The adapted abbreviation for dogs is used in the following: “pSUDED” (probable sudden unexpected death in dogs with epilepsy). The aim of the present monocentric retrospective study using an online questionnaire was to evaluate the occurrence of pSUDED. Data of canine patients presented with seizures between 01/1998 and 05/2018 were retrospectively analyzed and classified according to their etiology (n = 1,503). Owners were contacted by telephone to participate in answering a validated questionnaire. A total of 509 owners were reached, and 373 owners completed the questionnaire. In addition to signalement (e.g., breed), special attention was paid to the frequency and presentation of seizures and seizures in the context of death. Fifty-one percent (191/373) of the dogs were dead at the endpoint of the study. A large proportion of the dogs was euthanized (149/191) because of seizure severity or health problems unrelated to seizures. Idiopathic epilepsy (IE) was diagnosed in 19/34 dogs which died unexpectedly. Of these seven animals had to be excluded for further investigation of pSUDED because of status epilepticus or aspiration pneumonia as a result of the seizures. In 12 dogs with IE the last seizure event occurred between 6 h and ~3 months before death. pSUDED was suspected in these dogs and an occurrence rate of 4.5–10% was calculated. pSUDED appears in a similar occurrence rate as human SUDEP and should be considered as a possible complication in epileptic dogs. The results of this study suggest that dogs with IE but especially those with brachycephalic syndrome and cluster seizures have an increased risk to die of pSUDED. Owners of dogs with seizures should be educated about the risk of sudden death in dogs with epilepsy.
Collapse
Affiliation(s)
- Enrice Huenerfauth
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Jasmin Nessler
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Johannes Erath
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
4
|
Santifort KM, Hamers M, Mandigers P. Epilepsy in veterinary patients: perspectives of Dutch veterinarians in first-line practice. Vet Rec 2020; 187:e44. [PMID: 32727932 DOI: 10.1136/vr.105806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/27/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND This study aims to investigate the perspectives of veterinarians in first-line practice on confidence and satisfaction regarding several important aspects of the description, diagnosis and treatment of canine patients with epilepsy. METHODS A web-based questionnaire was used, focussing on general aspects of canine epilepsy, diagnostic tests, treatment and communication with owners. RESULTS One hundred and two questionnaires were evaluated. No less than 73 per cent of veterinarians had performed euthanasia on one or more patients with epilepsy as the main reason. First-line veterinarians scored confidence on general aspects of epilepsy as 6 or 7 out of 10. Confidence regarding communication with owners was scored 7 or 8 out of 10. CONCLUSIONS This study provides insight into perspectives of Dutch veterinarians in first-line practice regarding canine epilepsy. Several results may provide reasons to adjust (pregraduate or postgraduate) education of veterinarians with regard to management of canine patients with epilepsy. Several factors (such as the importance of diagnostic imaging) may help specialists in the field communicate better with referring veterinarians so that first-line practitioners become better equipped in managing patients with epilepsy. These steps may then positively influence treatment results as well as care-giver burden for the first-line practitioner.
Collapse
Affiliation(s)
- Koen Maurits Santifort
- Evidensia Small Animal Hospital Arnhem, Arnhem, The Netherlands.,Evidensia Small Animal Hospital 'Hart van Brabant', Waalwijk, The Netherlands
| | - Maud Hamers
- Department of Clinical Sciences of Companion Animals, Universiteit Utrecht Faculteit Diergeneeskunde, Utrecht, The Netherlands
| | - Paul Mandigers
- Evidensia Small Animal Hospital Arnhem, Arnhem, The Netherlands .,Department of Clinical Sciences of Companion Animals, Universiteit Utrecht Faculteit Diergeneeskunde, Utrecht, The Netherlands
| |
Collapse
|
5
|
Affiliation(s)
- Rowena M A Packer
- Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| |
Collapse
|
6
|
Blades Golubovic S, Rossmeisl JH. Status epilepticus in dogs and cats, part 1: etiopathogenesis, epidemiology, and diagnosis. J Vet Emerg Crit Care (San Antonio) 2017; 27:278-287. [PMID: 28445615 DOI: 10.1111/vec.12605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/28/2015] [Accepted: 10/20/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To review current knowledge of the etiopathogenesis, diagnosis, and consequences of status epilepticus (SE) in veterinary patients. DATA SOURCES Human and veterinary literature, including clinical and laboratory research and reviews. ETIOPATHOGENESIS Status epilepticus is a common emergency in dogs and cats, and may be the first manifestation of a seizure disorder. It results from the failure of termination of an isolated seizure. Multiple factors are involved in SE, including initiation and maintenance of neuronal excitability, neuronal network synchronization, and brain microenvironmental contributions to ictogenesis. Underlying etiologies of epilepsy and SE in dogs and cats are generally classified as genetic (idiopathic), structural-metabolic, or unknown. DIAGNOSIS Diagnosis of convulsive SE is usually made based on historical information and the nature of the seizures. Patient specific variables, such as the history, age of seizure onset, and physical and interictal neurological examination findings can help hone the rule out list, and are used to guide selection and prioritization of diagnostic tests. Electroencephalographic monitoring is routinely used in people to diagnose SE and guide patient care decisions, but is infrequently performed in veterinary medicine. Nonconvulsive status epilepticus has been recognized in veterinary patients; routine electroencephalography would aid in the diagnosis of this phenomenon in dogs and cats. CLINICAL SEQUELAE Status epilepticus is a medical emergency that can result in life-threatening complications involving the brain and systemic organs. Status epilepticus often requires comprehensive diagnostic testing, treatment with multiple anticonvulsant agents, and intensive supportive care.
Collapse
Affiliation(s)
| | - John H Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, 24060
| |
Collapse
|
7
|
Podell M, Volk HA, Berendt M, Löscher W, Muñana K, Patterson EE, Platt SR. 2015 ACVIM Small Animal Consensus Statement on Seizure Management in Dogs. J Vet Intern Med 2016; 30:477-90. [PMID: 26899355 PMCID: PMC4913615 DOI: 10.1111/jvim.13841] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 11/27/2022] Open
Abstract
This report represents a scientific and working clinical consensus statement on seizure management in dogs based on current literature and clinical expertise. The goal was to establish guidelines for a predetermined, concise, and logical sequential approach to chronic seizure management starting with seizure identification and diagnosis (not included in this report), reviewing decision‐making, treatment strategies, focusing on issues related to chronic antiepileptic drug treatment response and monitoring, and guidelines to enhance patient response and quality of life. Ultimately, we hope to provide a foundation for ongoing and future clinical epilepsy research in veterinary medicine.
Collapse
Affiliation(s)
- M Podell
- Medvet Chicago, Medical and Cancer Centers for Pets, Chicago, IL.,Department of Neurosurgery, Pritzker School of Medicine, The University of Chicago, Chicago, IL
| | - H A Volk
- Department of Clinical Sciences and Services, Small Animal Medicine and Surgery Group, The Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - M Berendt
- Department of Veterinary and Clinical Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - K Muñana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - E E Patterson
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN
| | - S R Platt
- Department of Small Animal Medicine & Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| |
Collapse
|
8
|
Packer RMA, Volk HA. Epilepsy beyond seizures: a review of the impact of epilepsy and its comorbidities on health-related quality of life in dogs. Vet Rec 2015; 177:306-15. [DOI: 10.1136/vr.103360] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Rowena M. A. Packer
- Department of Clinical Science and Services; Royal Veterinary College, Hawkshead Lane Hatfield Hertfordshire AL9 7TA UK
| | - Holger A. Volk
- Department of Clinical Science and Services; Royal Veterinary College, Hawkshead Lane Hatfield Hertfordshire AL9 7TA UK
| |
Collapse
|
9
|
Potschka H, Fischer A, Löscher W, Patterson N, Bhatti S, Berendt M, De Risio L, Farquhar R, Long S, Mandigers P, Matiasek K, Muñana K, Pakozdy A, Penderis J, Platt S, Podell M, Rusbridge C, Stein V, Tipold A, Volk HA. International veterinary epilepsy task force consensus proposal: outcome of therapeutic interventions in canine and feline epilepsy. BMC Vet Res 2015; 11:177. [PMID: 26314300 PMCID: PMC4552098 DOI: 10.1186/s12917-015-0465-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/29/2015] [Indexed: 12/13/2022] Open
Abstract
Common criteria for the diagnosis of drug resistance and the assessment of outcome are needed urgently as a prerequisite for standardized evaluation and reporting of individual therapeutic responses in canine epilepsy. Thus, we provide a proposal for the definition of drug resistance and partial therapeutic success in canine patients with epilepsy. This consensus statement also suggests a list of factors and aspects of outcome, which should be considered in addition to the impact on seizures. Moreover, these expert recommendations discuss criteria which determine the validity and informative value of a therapeutic trial in an individual patient and also suggest the application of individual outcome criteria. Agreement on common guidelines does not only render a basis for future optimization of individual patient management, but is also a presupposition for the design and implementation of clinical studies with highly standardized inclusion and exclusion criteria. Respective standardization will improve the comparability of findings from different studies and renders an improved basis for multicenter studies. Therefore, this proposal provides an in-depth discussion of the implications of outcome criteria for clinical studies. In particular ethical aspects and the different options for study design and application of individual patient-centered outcome criteria are considered.
Collapse
Affiliation(s)
- Heidrun Potschka
- Department of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximillians-University, Königinstr. 16, 80539, Munich, Germany.
| | - Andrea Fischer
- Service Neurology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539, Munich, Germany.
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
| | - Ned Patterson
- University of Minnesota College of Veterinary Medicine, D426 Veterinary Medical Center, 1352 Boyd Avenue, St. Paul, MN, 55108, USA.
| | - Sofie Bhatti
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium.
| | - Mette Berendt
- Department of Veterinary and Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Luisa De Risio
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, CB8 7UU, Suffolk, UK.
| | - Robyn Farquhar
- Fernside Veterinary Centre, 205 Shenley Road, Borehamwood, SG9 0TH, Hertfordshire, UK.
| | - Sam Long
- University of Melbourne, 250 Princes Highway, Weibee, 3015, VIC, Australia.
| | - Paul Mandigers
- Department of Clinical Sciences of Companion Animals, Utrecht University, Yalelaan 108, 3583 CM, Utrecht, The Netherlands.
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539, Munich, Germany.
| | - Karen Muñana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1052 William Moore Drive, Raleigh, NC, 27607, USA.
| | - Akos Pakozdy
- Clinical Unit of Internal Medicine Small Animals, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Jacques Penderis
- Vet Extra Neurology, Broadleys Veterinary Hospital, Craig Leith Road, Stirling, FK7 7LE, Stirlingshire, UK.
| | - Simon Platt
- College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA.
| | - Michael Podell
- Chicago Veterinary Neurology and Neurosurgery, 3123 N. Clybourn Avenue, Chicago, IL, 60618, USA.
| | - Clare Rusbridge
- Fitzpatrick Referrals, Halfway Lane, Eashing, Godalming, GU7 2QQ, Surrey, UK. .,School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, GU2 7TE, Surrey, UK.
| | - Veronika Stein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | - Holger A Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL9 7TA, Hertfordshire, UK.
| |
Collapse
|
10
|
Bhatti SFM, De Risio L, Muñana K, Penderis J, Stein VM, Tipold A, Berendt M, Farquhar RG, Fischer A, Long S, Löscher W, Mandigers PJJ, Matiasek K, Pakozdy A, Patterson EE, Platt S, Podell M, Potschka H, Rusbridge C, Volk HA. International Veterinary Epilepsy Task Force consensus proposal: medical treatment of canine epilepsy in Europe. BMC Vet Res 2015; 11:176. [PMID: 26316233 PMCID: PMC4552371 DOI: 10.1186/s12917-015-0464-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/29/2015] [Indexed: 12/14/2022] Open
Abstract
In Europe, the number of antiepileptic drugs (AEDs) licensed for dogs has grown considerably over the last years. Nevertheless, the same questions remain, which include, 1) when to start treatment, 2) which drug is best used initially, 3) which adjunctive AED can be advised if treatment with the initial drug is unsatisfactory, and 4) when treatment changes should be considered. In this consensus proposal, an overview is given on the aim of AED treatment, when to start long-term treatment in canine epilepsy and which veterinary AEDs are currently in use for dogs. The consensus proposal for drug treatment protocols, 1) is based on current published evidence-based literature, 2) considers the current legal framework of the cascade regulation for the prescription of veterinary drugs in Europe, and 3) reflects the authors' experience. With this paper it is aimed to provide a consensus for the management of canine idiopathic epilepsy. Furthermore, for the management of structural epilepsy AEDs are inevitable in addition to treating the underlying cause, if possible.
Collapse
Affiliation(s)
- Sofie F M Bhatti
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium.
| | - Luisa De Risio
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, CB8 7UU, Suffolk, United Kingdom.
| | - Karen Muñana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1052 William Moore Drive, Raleigh, NC, 27607, USA.
| | - Jacques Penderis
- Vet Extra Neurology, Broadleys Veterinary Hospital, Craig Leith Road, Stirling, FK7 7LE, Stirlingshire, United Kingdom.
| | - Veronika M Stein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | - Mette Berendt
- Department of Veterinary and Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Robyn G Farquhar
- Fernside Veterinary Centre, 205 Shenley Road, Borehamwood, SG9 0TH, Hertfordshire, United Kingdom.
| | - Andrea Fischer
- Clinical Veterinary Medicine, Ludwig-Maximillians-University, Veterinärstr. 13, 80539, Munich, Germany.
| | - Sam Long
- University of Melbourne, 250 Princes Highway, Weibee, 3015, VIC, Australia.
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
| | - Paul J J Mandigers
- Department of Clinical Sciences of Companion Animals, Utrecht University, Yalelaan 108, 3583 CM, Utrecht, The Netherlands.
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539, Munich, Germany.
| | - Akos Pakozdy
- Clinical Unit of Internal Medicine Small Animals, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Edward E Patterson
- University of Minnesota College of Veterinary Medicine, D426 Veterinary Medical Center, 1352 Boyd Avenue, St. Paul, MN, 55108, USA.
| | - Simon Platt
- College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA.
| | - Michael Podell
- Chicago Veterinary Neurology and Neurosurgery, 3123 N. Clybourn Avenue, Chicago, IL, 60618, USA.
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximillians-University, Königinstr. 16, 80539, Munich, Germany.
| | - Clare Rusbridge
- Fitzpatrick Referrals, Halfway Lane, Eashing, Godalming, GU7 2QQ, Surrey, United Kingdom.
- School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, GU2 7TE, Surrey, United Kingdom.
| | - Holger A Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL9 7TA, Hertfordshire, UK.
| |
Collapse
|
11
|
International Veterinary Epilepsy Task Force's current understanding of idiopathic epilepsy of genetic or suspected genetic origin in purebred dogs. BMC Vet Res 2015; 11:175. [PMID: 26316206 PMCID: PMC4552344 DOI: 10.1186/s12917-015-0463-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022] Open
Abstract
Canine idiopathic epilepsy is a common neurological disease affecting both purebred and crossbred dogs. Various breed-specific cohort, epidemiological and genetic studies have been conducted to date, which all improved our knowledge and general understanding of canine idiopathic epilepsy, and in particular our knowledge of those breeds studied. However, these studies also frequently revealed differences between the investigated breeds with respect to clinical features, inheritance and prevalence rates. Awareness and observation of breed-specific differences is important for successful management of the dog with epilepsy in everyday clinical practice and furthermore may promote canine epilepsy research. The following manuscript reviews the evidence available for breeds which have been identified as being predisposed to idiopathic epilepsy with a proven or suspected genetic background, and highlights different breed specific clinical features (e.g. age at onset, sex, seizure type), treatment response, prevalence rates and proposed inheritance reported in the literature. In addition, certain breed-specific diseases that may act as potential differentials for idiopathic epilepsy are highlighted.
Collapse
|
12
|
Pakozdy A, Patzl M, Zimmermann L, Jokinen TS, Glantschnigg U, Kelemen A, Hasegawa D. LGI Proteins and Epilepsy in Human and Animals. J Vet Intern Med 2015; 29:997-1005. [PMID: 26032921 PMCID: PMC4895363 DOI: 10.1111/jvim.12610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/23/2015] [Accepted: 04/11/2015] [Indexed: 12/16/2022] Open
Abstract
Leucine‐rich glioma‐inactivated (LGI) protein was first thought to have a suppressor effect in the formation of some cancers. Developments in physiology and medicine made it possible to characterize the function of the LGI protein family and its crucial role in different conditions more precisely. These proteins play an important role in synaptic transmission, and dysfunction may cause hyperexcitability. Genetic mutation of LGI1was confirmed to be the cause of autosomal dominant lateral temporal lobe epilepsy in humans. The LGI2 mutation was identified in benign familial juvenile epilepsy in Lagotto Romagnolo (LR) dogs. Cats with familial spontaneous temporal lobe epilepsy have been reported, and the etiology might be associated with LGI protein family dysfunction. In addition, an autoimmune reaction against LGI1 was detected in humans and cats with limbic encephalitis. These advances prompted a review of LGI protein function and its role in different seizure disorders.
Collapse
Affiliation(s)
- A Pakozdy
- University Clinic of Small Animals, University of Veterinary Medicine, Vienna, Austria
| | - M Patzl
- Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - L Zimmermann
- Unit of Physiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - T S Jokinen
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - U Glantschnigg
- University Clinic of Small Animals, University of Veterinary Medicine, Vienna, Austria
| | - A Kelemen
- Epilepsy Center, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - D Hasegawa
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, Musashinoshi, Tokyo, Japan
| |
Collapse
|
13
|
De Risio L, Newton R, Freeman J, Shea A. Idiopathic epilepsy in the Italian Spinone in the United Kingdom: prevalence, clinical characteristics, and predictors of survival and seizure remission. J Vet Intern Med 2015; 29:917-24. [PMID: 25929270 PMCID: PMC4895410 DOI: 10.1111/jvim.12599] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/02/2015] [Accepted: 03/24/2015] [Indexed: 11/29/2022] Open
Abstract
Background There is lack of data on idiopathic epilepsy (IE) in the Italian Spinone (IS). Objectives To estimate the prevalence of IE in the IS in the United Kingdom (UK) and to investigate predictors of survival and seizure remission. Animals The target population consisted of 3331 IS born between 2000 and 2011 and registered with the UK Kennel Club (KC). The owners of 1192 dogs returned phase I questionnaire. Sixty‐three IS had IE. Methods Population survey. The owners of all UK KC‐registered IS were invited to complete the phase I questionnaire. Information from the phase I questionnaire and veterinary medical records was used to identify IS with IE and obtain data on treatment and survival. Additional information was obtained from owners of epileptic IS who completed the phase II questionnaire. Results The prevalence of IE in the IS in the UK was estimated as 5.3% (95% CI, 4.03–6.57%). Survival time was significantly shorter in IS euthanized because of poorly controlled IE compared with epileptic IS that died of unrelated disorders (P = 0.001). Survival was significantly longer in IS with no cluster seizures (CS) (P = 0.040) and in IS in which antiepileptic medication was initiated after the second seizure rather than after ≥3 seizures (P = 0.044). Seizure remission occurred only in 3 IS. Conclusions and Clinical Importance The prevalence of IE in IS (5.3%) is higher than in dogs (0.6%) in the UK. Idiopathic epilepsy in IS has a severe phenotype. Antiepileptic medication initiation after the second seizure and aggressive treatment of CS may improve survival.
Collapse
Affiliation(s)
- L De Risio
- Centre for Small Animal Studies, Animal Health Trust, Suffolk, UK
| | - R Newton
- Department of Epidemiology and Disease Surveillance, Animal Health Trust, Suffolk, UK
| | - J Freeman
- Centre for Small Animal Studies, Animal Health Trust, Suffolk, UK
| | - A Shea
- Centre for Small Animal Studies, Animal Health Trust, Suffolk, UK
| |
Collapse
|
14
|
Fredsø N, Koch BC, Toft N, Berendt M. Risk factors for survival in a university hospital population of dogs with epilepsy. J Vet Intern Med 2014; 28:1782-8. [PMID: 25252168 PMCID: PMC4895623 DOI: 10.1111/jvim.12443] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/17/2014] [Accepted: 07/29/2014] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Although a common neurological disorder in dogs, long-term outcome of epilepsy is sparsely documented. OBJECTIVES To investigate risk factors for survival and duration of survival in a population of dogs with idiopathic epilepsy or epilepsy associated with a known intracranial cause. ANIMALS One hundred and two client owned dogs; 78 dogs with idiopathic epilepsy and 24 dogs with epilepsy associated with a known intracranial cause. METHODS A retrospective hospital based study with follow-up. Dogs diagnosed with epilepsy between 2002 and 2008 were enrolled in the study. Owners were interviewed by telephone using a structured questionnaire addressing epilepsy status, treatment, death/alive, and cause of death. RESULTS Median life span was 7.6 years, 9.2 years, and 5.8 years for all dogs, and dogs with idiopathic epilepsy or dogs with epilepsy associated with a known intracranial cause (P < .001), respectively. Survival time for dogs with idiopathic epilepsy was significantly (P = .0030) decreased for dogs euthanized because of epilepsy (median: 35 months) compared to dogs euthanized for other reasons (median: 67.5 months). Neutered male dogs with idiopathic epilepsy had a significant (P = .031) shorter survival (median: 38.5 months) after index seizure compared to intact male dogs (median: 71 months). Treatment with two antiepileptic drugs (AED's) did not negatively influence survival (P = .056). CONCLUSION AND CLINICAL IMPORTANCE Dogs with idiopathic epilepsy can in many cases expect a life span close to what is reported for dogs in general. In dogs where mono-therapy is not sufficient, the need for treatment with two AED's is not linked to a poor prognosis.
Collapse
Affiliation(s)
- N Fredsø
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
15
|
Wahle AM, Brühschwein A, Matiasek K, Putschbach K, Wagner E, Mueller RS, Fischer A. Clinical characterization of epilepsy of unknown cause in cats. J Vet Intern Med 2013; 28:182-8. [PMID: 24237601 PMCID: PMC4895554 DOI: 10.1111/jvim.12250] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/15/2013] [Accepted: 10/08/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The diagnosis of feline epilepsy of unknown cause (EUC) requires a thorough diagnostic evaluation, otherwise the prevalence of EUC could be overestimated. HYPOTHESIS Feline EUC is a clinically defined disease entity, which differs from feline hippocampal necrosis by the absence of magnetic resonance imaging (MRI) signal alteration of the hippocampus. The objectives of this study were (1) to evaluate the prevalence of EUC in a hospital population of cats by applying well-defined inclusion criteria, and (2) to describe the clinical course of EUC. ANIMALS Eighty-one cats with recurrent seizures. METHODS Retrospective study--medical records were reviewed for cats presented for evaluation of recurrent seizures (2005-2010). Inclusion criteria were a defined diagnosis based on laboratory data, and either MRI or histopathology. Final outcome was confirmed by telephone interview with the owner. Magnetic resonance images were reviewed to evaluate hippocampal morphology and signal alterations. RESULTS Epilepsy of unknown cause was diagnosed in 22% of cats with epilepsy. Physical, neurologic, and laboratory examinations, and either 1.5 T MRI and cerebrospinal fluid analysis or postmortem examination failed to identify an underlying cause. Cats with EUC had a higher survival rate (P < .05) and seizure remission occurred frequently (44.4%). CONCLUSION AND CLINICAL IMPORTANCE A detailed clinical evaluation and diagnostic imaging with MRI is recommended in any cat with recurrent seizures. The prognosis of cats with normal MRI findings and a clinical diagnosis of EUC are good. Standardized imaging guidelines should be established to assess the hippocampus in cats.
Collapse
Affiliation(s)
- A M Wahle
- Clinic of Small Animal Medicine, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|