1
|
Burtt DG, Stern JC, Webster CR, Hofmann AE, Franz HB, Sutter B, Thorpe MT, Kite ES, Eigenbrode JL, Pavlov AA, House CH, Tutolo BM, Des Marais DJ, Rampe EB, McAdam AC, Malespin CA. Highly enriched carbon and oxygen isotopes in carbonate-derived CO 2 at Gale crater, Mars. Proc Natl Acad Sci U S A 2024; 121:e2321342121. [PMID: 39374395 PMCID: PMC11494307 DOI: 10.1073/pnas.2321342121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024] Open
Abstract
Carbonate minerals are of particular interest in paleoenvironmental research as they are an integral part of the carbon and water cycles, both of which are relevant to habitability. Given that these cycles are less constrained on Mars than they are on Earth, the identification of carbonates has been a point of emphasis for rover missions. Here, we present carbon (δ13C) and oxygen (δ18O) isotope data from four carbonates encountered by the Curiosity rover within the Gale crater. The carbon isotope values range from 72 ± 2‰ to 110 ± 3‰ Vienna Pee Dee Belemnite while the oxygen isotope values span from 59 ± 4‰ to 91 ± 4‰ Vienna Standard Mean Ocean Water (1 SE uncertainties). Notably, these values are isotopically heavy (13C- and 18O-enriched) relative to nearly every other Martian material. The extreme isotopic difference between the carbonates and other carbon- and oxygen-rich reservoirs on Mars cannot be reconciled by standard equilibrium carbonate-CO2 fractionation, thus requiring an alternative process during or prior to carbonate formation. This paper explores two processes capable of contributing to the isotopic enrichments: 1) evaporative-driven Rayleigh distillation and 2) kinetic isotope effects related to cryogenic precipitation. In isolation, each process cannot reproduce the observed carbonate isotope values; however, a combination of these processes represents the most likely source for the extreme isotopic enrichments.
Collapse
Affiliation(s)
- David G. Burtt
- NASA Postdoctoral Fellow, Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Jennifer C. Stern
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | | | - Amy E. Hofmann
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA91109
| | - Heather B. Franz
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Brad Sutter
- Jacobs Technology, Houston, TX77058
- NASA Johnson Space Center, Houston, TX77058
| | - Michael T. Thorpe
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
- University of Maryland/Goddard Space Flight/Center for Research and Exploration in Space and Science Technology (CRESST II), Greenbelt, MD20771
| | - Edwin S. Kite
- Department of Geophysical Sciences, University of Chicago, Chicago, IL60637
| | | | - Alexander A. Pavlov
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Christopher H. House
- Department of Geosciences, Pennsylvania State University, University Park, PA16802
| | - Benjamin M. Tutolo
- Department of Geoscience, University of Calgary, Calgary, ABT2N 1N4, Canada
| | | | | | - Amy C. McAdam
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| | - Charles A. Malespin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD20771
| |
Collapse
|
2
|
Tait AW, Wilson SA, Tomkins AG, Hamilton JL, Gagen EJ, Holman AI, Grice K, Preston LJ, Paterson DJ, Southam G. Preservation of Terrestrial Microorganisms and Organics Within Alteration Products of Chondritic Meteorites from the Nullarbor Plain, Australia. ASTROBIOLOGY 2022; 22:399-415. [PMID: 35100042 DOI: 10.1089/ast.2020.2387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Meteorites that fall to Earth quickly become contaminated with terrestrial microorganisms. These meteorites are out of chemical equilibrium in the environments where they fall, and equilibration promotes formation of low-temperature alteration minerals that can entomb contaminant microorganisms and thus preserve them as microfossils. Given the well-understood chemistry of meteorites and their recent discovery on Mars by rovers, a similarly weathered meteorite on Mars could preserve organic and fossil evidence of a putative past biosphere at the martian surface. Here, we used several techniques to assess the potential of alteration minerals to preserve microfossils and biogenic organics in terrestrially weathered ordinary chondrites from the Nullarbor Plain, Australia. We used acid etching of ordinary chondrites to reveal entombed fungal hyphae, modern biofilms, and diatoms within alteration minerals. We employed synchrotron X-ray fluorescence microscopy of alteration mineral veins to map the distribution of redox-sensitive elements of relevance to chemolithotrophic organisms, such as Mn-cycling bacteria. We assessed the biogenicity of fungal hyphae within alteration veins using a combination of Fourier-transform infrared spectroscopy and pyrolysis gas chromatography-mass spectrometry, which showed that alteration minerals sequester and preserve organic molecules at various levels of decomposition. Our combined analyses results show that fossil microorganisms and the organic molecules they produce are preserved within calcite-gypsum admixtures in meteorites. Furthermore, the distributions of redox-sensitive elements (e.g., Mn) within alteration minerals are localized, which qualitatively suggests that climatically or microbially facilitated element mobilization occurred during the meteorite's residency on Earth. If returned as part of a sample suite from the martian surface, ordinary chondrites could preserve similar, recognizable evidence of putative past life and/or environmental change.
Collapse
Affiliation(s)
- Alastair W Tait
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
| | - Siobhan A Wilson
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew G Tomkins
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
| | - Jessica L Hamilton
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia
| | - Emma J Gagen
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Alex I Holman
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia, Australia
| | - Kliti Grice
- Western Australian Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, Western Australia, Australia
| | - Louisa J Preston
- Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | | | - Gordon Southam
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
3
|
Carbonate formation events in ALH 84001 trace the evolution of the Martian atmosphere. Proc Natl Acad Sci U S A 2015; 112:336-41. [PMID: 25535348 DOI: 10.1073/pnas.1315615112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbonate minerals provide critical information for defining atmosphere-hydrosphere interactions. Carbonate minerals in the Martian meteorite ALH 84001 have been dated to ∼ 3.9 Ga, and both C and O-triple isotopes can be used to decipher the planet's climate history. Here we report Δ(17)O, δ(18)O, and δ(13)C data of ALH 84001 of at least two varieties of carbonates, using a stepped acid dissolution technique paired with ion microprobe analyses to specifically target carbonates from distinct formation events and constrain the Martian atmosphere-hydrosphere-geosphere interactions and surficial aqueous alterations. These results indicate the presence of a Ca-rich carbonate phase enriched in (18)O that formed sometime after the primary aqueous event at 3.9 Ga. The phases showed excess (17)O (0.7‰) that captured the atmosphere-regolith chemical reservoir transfer, as well as CO2, O3, and H2O isotopic interactions at the time of formation of each specific carbonate. The carbon isotopes preserved in the Ca-rich carbonate phase indicate that the Noachian atmosphere of Mars was substantially depleted in (13)C compared with the modern atmosphere.
Collapse
|
4
|
Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings. Sci Rep 2014; 4:7010. [PMID: 25394222 PMCID: PMC4230006 DOI: 10.1038/srep07010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/13/2014] [Indexed: 11/08/2022] Open
Abstract
Controversy continues as to whether chloromethane (CH3Cl) detected during pyrolysis of Martian soils by the Viking and Curiosity Mars landers is indicative of organic matter indigenous to Mars. Here we demonstrate CH3Cl release (up to 8 μg/g) during low temperature (150–400°C) pyrolysis of the carbonaceous chondrite Murchison with chloride or perchlorate as chlorine source and confirm unequivocally by stable isotope analysis the extraterrestrial origin of the methyl group (δ2H +800 to +1100‰, δ13C −19.2 to +10‰,). In the terrestrial environment CH3Cl released during pyrolysis of organic matter derives from the methoxyl pool. The methoxyl pool in Murchison is consistent both in magnitude (0.044%) and isotope signature (δ2H +1054 ± 626‰, δ13C +43.2 ± 38.8‰,) with that of the CH3Cl released on pyrolysis. Thus CH3Cl emissions recorded by Mars lander experiments may be attributed to methoxyl groups in undegraded organic matter in meteoritic debris reaching the Martian surface being converted to CH3Cl with perchlorate or chloride in Martian soil. However we cannot discount emissions arising additionally from organic matter of indigenous origin. The stable isotope signatures of CH3Cl detected on Mars could potentially be utilized to determine its origin by distinguishing between terrestrial contamination, meteoritic infall and indigenous Martian sources.
Collapse
|
5
|
Wilson S, Dipple GM, Power IM, Barker SLL, Fallon SJ, Southam G. Subarctic weathering of mineral wastes provides a sink for atmospheric CO(2). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:7727-36. [PMID: 21854037 DOI: 10.1021/es202112y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The mineral waste from some mines has the capacity to trap and store CO(2) within secondary carbonate minerals via the process of silicate weathering. Nesquehonite [MgCO(3)·3H(2)O] forms by weathering of Mg-silicate minerals in kimberlitic mine tailings at the Diavik Diamond Mine, Northwest Territories, Canada. Less abundant Na- and Ca-carbonate minerals precipitate from sewage treatment effluent deposited in the tailings storage facility. Radiocarbon and stable carbon and oxygen isotopes are used to assess the ability of mine tailings to trap and store modern CO(2) within these minerals in the arid, subarctic climate at Diavik. Stable isotopic data cannot always uniquely identify the source of carbon stored within minerals in this setting; however, radiocarbon isotopic data provide a reliable quantitative estimate for sequestration of modern carbon. At least 89% of the carbon trapped within secondary carbonate minerals at Diavik is derived from a modern source, either by direct uptake of atmospheric CO(2) or indirect uptake though the biosphere. Silicate weathering at Diavik is trapping 102-114 g C/m(2)/y within nesquehonite, which corresponds to a 2 orders of magnitude increase over the background rate of CO(2) uptake predicted from arctic and subarctic river catchment data.
Collapse
Affiliation(s)
- Sasha Wilson
- Mineral Deposit Research Unit, Department of Earth and Ocean Sciences, The University of British Columbia, 6339 Stores Road, Vancouver, British Columbia V6T 1Z4, Canada.
| | | | | | | | | | | |
Collapse
|
6
|
Niles PB, Boynton WV, Hoffman JH, Ming DW, Hamara D. Stable Isotope Measurements of Martian Atmospheric CO
2
at the Phoenix Landing Site. Science 2010; 329:1334-7. [PMID: 20829484 DOI: 10.1126/science.1192863] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Paul B. Niles
- Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, TX 77058, USA
| | - William V. Boynton
- Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - John H. Hoffman
- Physics Department, University of Texas, Dallas, TX 75080, USA
| | - Douglas W. Ming
- Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Dave Hamara
- Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
7
|
Stockstill KR, Moersch JE, Ruff SW, Baldridge A, Farmer J. Thermal Emission Spectrometer hyperspectral analyses of proposed paleolake basins on Mars: No evidence for in-place carbonates. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004je002353] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
|
9
|
Thomas-Keprta KL, Clemett SJ, Bazylinski DA, Kirschvink JL, McKay DS, Wentworth SJ, Vali H, Gibson EK, Romanek CS. Magnetofossils from ancient Mars: a robust biosignature in the martian meteorite ALH84001. Appl Environ Microbiol 2002; 68:3663-72. [PMID: 12147458 PMCID: PMC123990 DOI: 10.1128/aem.68.8.3663-3672.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kathie L Thomas-Keprta
- Lockheed Martin. National Aeronautics and Space Adminstration/Johnson Space Center, Houston, Texas 77058, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Parnell J, Mazzini A, Honghan C. Fluid inclusion studies of chemosynthetic carbonates: strategy for seeking life on Mars. ASTROBIOLOGY 2002; 2:43-57. [PMID: 12449854 DOI: 10.1089/153110702753621330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fluid inclusions in minerals hold the potential to provide important data on the chemistry of the ambient fluids during mineral precipitation. Especially interesting to astrobiologists are inclusions in low-temperature minerals that may have been precipitated in the presence of microorganisms. We demonstrate that it is possible to obtain data from inclusions in chemosynthetic carbonates that precipitated by the oxidation of organic carbon around methane-bearing seepages. Chemosynthetic carbonates have been identified as a target rock for astrobiological exploration. Other surficial rock types identified as targets for astrobiological exploration include hydrothermal deposits, speleothems, stromatolites, tufas, and evaporites, each of which can contain fluid inclusions. Fracture systems below impact craters would also contain precipitates of minerals with fluid inclusions. As fluid inclusions are sealed microchambers, they preserve fluids in regions where water is now absent, such as regions of the martian surface. Although most inclusions are < 5 microns, the possibility to obtain data from the fluids, including biosignatures and physical remains of life, underscores the advantages of technological advances in the study of fluid inclusions. The crushing of bulk samples could release inclusion waters for analysis, which could be undertaken in situ on Mars.
Collapse
Affiliation(s)
- John Parnell
- Department of Geology and Petroleum Geology, University of Aberdeen King's College, Aberdeen AB24 3UE, U.K.
| | | | | |
Collapse
|
11
|
Boynton WV, Bailey SH, Hamara DK, Williams MS, Bode RC, Fitzgibbon MR, Ko W, Ward MG, Sridhar KR, Blanchard JA, Lorenz RD, May RD, Paige DA, Pathare AV, Kring DA, Leshin LA, Ming DW, Zent AP, Golden DC, Kerry KE, Lauer HV, Quinn RC. Thermal and Evolved Gas Analyzer: Part of the Mars Volatile and Climate Surveyor integrated payload. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/1999je001153] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
|
13
|
Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/978-94-017-1035-0_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
14
|
Thomas-Keprta KL, Bazylinski DA, Kirschvink JL, Clemett SJ, McKay DS, Wentworth SJ, Vali H, Gibson EK, Romanek CS. Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. GEOCHIMICA ET COSMOCHIMICA ACTA 2000; 64:4049-4081. [PMID: 11543573 DOI: 10.1016/s0016-7037(00)00481-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Using transmission electron microscopy (TEM), we have analyzed magnetite (Fe3O4) crystals acid-extracted from carbonate globules in Martian meteorite ALH84001. We studied 594 magnetites from ALH84001 and grouped them into three populations on the basis of morphology: 389 were irregularly shaped, 164 were elongated prisms, and 41 were whisker-like. As a possible terrestrial analog for the ALH84001 elongated prisms, we compared these magnetites with those produced by the terrestrial magnetotactic bacteria strain MV-1. By TEM again, we examined 206 magnetites recovered from strain MV-1 cells. Natural (Darwinian) selection in terrestrial magnetotactic bacteria appears to have resulted in the formation of intracellular magnetite crystals having the physical and chemical properties that optimize their magnetic moment. In this study, we describe six properties of magnetite produced by biologically controlled mechanisms (e.g., magnetotactic bacteria), properties that, collectively, are not observed in any known population of inorganic magnetites. These criteria can be used to distinguish one of the modes of origin for magnetites from samples with complex or unknown histories. Of the ALH84001 magnetites that we have examined, the elongated prismatic magnetite particles (similar to 27% of the total) are indistinguishable from the MV-1 magnetites in five of these six characteristics observed for biogenically controlled mineralization of magnetite crystals.
Collapse
|
15
|
Farquhar J, Thiemens MH. Oxygen cycle of the Martian atmosphere-regolith system: Δ17O of secondary phases in Nakhla and Lafayette. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001194] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Glavin DP, Bada JL, Brinton KL, McDonald GD. Amino acids in the Martian meteorite Nakhla. Proc Natl Acad Sci U S A 1999; 96:8835-8. [PMID: 10430856 PMCID: PMC17693 DOI: 10.1073/pnas.96.16.8835] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract. The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.
Collapse
Affiliation(s)
- D P Glavin
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 93093-0212, USA
| | | | | | | |
Collapse
|
17
|
Sleep NH, Zahnle K. Refugia from asteroid impacts on early Mars and the early Earth. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/98je01809] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Shock EL, Schulte MD. Organic synthesis during fluid mixing in hydrothermal systems. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/98je02142] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Mojzsis SJ, Arrhenius G. Phosphates and carbon on Mars: Exobiological implications and sample return considerations. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/98je02141] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Abstract
One of the five lines of evidence used by McKay et al. (1996) for relic life in the Martian meteorite Allan Hills (ALH) 84001 was the presence of objects thought to be microfossils. These ovoid and elongated forms are similar to structures found in terrestrial rocks and described as "nanobacteria" (Folk, 1993; McBride et al., 1994). Using the same procedures and apparatus as McKay et al. (1996), we have found structures on internal fracture surfaces of lunar meteorites that cannot be distinguished from the objects described on similar surfaces in ALH 84001. The lunar surface is currently a sterile environment and probably always has been. However, the lunar and Martian meteorites share a common terrestrial history, which includes many thousands of years of exposure to Antarctic weathering. Although we do not know the origin of these ovoid and elongated forms, we suggest that their presence on lunar meteorites indicates that the objects described by McKay et al. (1996) are not of Martian biological origin.
Collapse
Affiliation(s)
- D W Sears
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville 72701, USA. cosmo@uafsysb,uark.edu
| | | |
Collapse
|
21
|
Krahenbuhl U, Noll K, Dobeli M, Grambole D, Herrmann F, Tobler L. Exposure of Allan Hills 84001 and other achondrites on the Antarctic ice. METEORITICS & PLANETARY SCIENCE 1998; 33:665-670. [PMID: 11543071 DOI: 10.1111/j.1945-5100.1998.tb01671.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The enrichment of F on Antarctic meteorites is the result of their exposure to the atmosphere, and its measurement allows a subdivision of the terrestrial age into a duration of exposure on the ice and the time a meteorite was enclosed by the ice. In many cases, the periods of surface exposure are only small fractions of the terrestrial ages of meteorites collected in Antarctica. The enrichment of F on the surfaces of Antarctic achondrites was investigated by means of nuclear reaction analysis (NRA): scanning proton beams with an energy of 2.7 and 3.4 MeV were used to induce the reactions 19F(p, alpha gamma)16O and 19F(p,p gamma)19F, respectively. Gamma signals proportional to the F content were measured. The following Antarctic achondrites were investigated: Martian meteorite ALH 84001; diogenite ALHA77256; the eucrites ALHA81011 and ALHA78132; and in addition, the H5 chondrite ALHA79025. For ALH 84001, our data indicate a period of exposure on the ice of <500 years. Thus, this specimen was enclosed in the ice >95% of its terrestrial age of 13 000 years.
Collapse
Affiliation(s)
- U Krahenbuhl
- Department of Chemistry and Biochemistry, University of Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
22
|
Farquhar J, Thiemens MH, Jackson T. Atmosphere-surface interactions on Mars: delta 17O measurements of carbonate from ALH 84001. Science 1998; 280:1580-2. [PMID: 9616116 DOI: 10.1126/science.280.5369.1580] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Oxygen isotope measurements of carbonate from martian meteorite ALH 84001 (delta18O = 18.3 +/- 0.4 per mil, delta17O = 10.3 +/- 0.2 per mil, and Delta17O = 0.8 +/- 0.05 per mil) are fractionated with respect to those of silicate minerals. These measurements support the existence of two oxygen isotope reservoirs (the atmosphere and the silicate planet) on Mars at the time of carbonate growth. The cause of the atmospheric oxygen isotope anomaly may be exchange between CO2 and O(1D) produced by the photodecomposition of ozone. Atmospheric oxygen isotope compositions may be transferred to carbonate minerals by CO2-H2O exchange and mineral growth. A sink of 17O-depleted oxygen, as required by mass balance, may exist in the planetary regolith.
Collapse
Affiliation(s)
- J Farquhar
- Department of Chemistry, University of California San Diego, 92093-0356, USA.
| | | | | |
Collapse
|
23
|
Jull AJ, Courtney C, Jeffrey DA, Beck JW. Isotopic evidence for a terrestrial source of organic compounds found in martian meteorites Allan Hills 84001 and Elephant Moraine 79001. Science 1998; 279:366-9. [PMID: 9430584 DOI: 10.1126/science.279.5349.366] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stepped-heating experiments on martian meteorites Allan Hills 84001 (ALH84001) and Elephant Moraine 79001 (EETA79001) revealed low-temperature (200 to 430 degrees Celsius) fractions with a carbon isotopic composition delta13C between -22 and -33 per mil and a carbon-14 content that is 40 to 60 percent of that of modern terrestrial carbon, consistent with a terrestrial origin for most of the organic material. Intermediate-temperature (400 to 600 degrees Celsius) carbonate-rich fractions of ALH84001 have delta13C of +32 to +40 per mil with a low carbon-14 content, consistent with an extraterrestrial origin, whereas some of the carbonate fraction of EETA79001 is terrestrial. In addition, ALH84001 contains a small preterrestrial carbon component of unknown origin that combusts at intermediate temperatures. This component is likely a residual acid-insoluble carbonate or a more refractory organic phase.
Collapse
Affiliation(s)
- A J Jull
- National Science Foundation-Arizona Accelerator Mass Spectrometer Facility, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
24
|
Turner G, Knott SF, Ash RD, Gilmour JD. Ar-Ar chronology of the Martian meteorite ALH84001: evidence for the timing of the early bombardment of Mars. GEOCHIMICA ET COSMOCHIMICA ACTA 1997; 61:3835-3850. [PMID: 11541217 DOI: 10.1016/s0016-7037(97)00285-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
ALH84001, a cataclastic cumulate orthopyroxenite meteorite from Mars, has been dated by Ar-Ar stepped heating and laser probe methods. Both methods give ages close to 3,900 Ma. The age calculated is dependent on assumptions made about 39Ar recoil effects and on whether significant quantities of 40Ar from the Martian atmosphere are trapped in the meteorite. If, as suggested by xenon and nitrogen isotope studies, Martian atmospheric argon is present, then it must reside predominantly in the K-rich phase maskelynite. Independently determined 129Xe abundances in the maskelynite can be used to place limits on the concentration of the atmospheric 40Ar. These indicate a reduction of around 80 Ma to ages calculated on the assumption that no Martian atmosphere is present. After this correction, the nominal ages obtained are: 3940 +/- 50, 3870 +/- 80, and 3970 +/- 100 Ma. by stepped heating, and 3900 +/- 90 Ma by laser probe (1 sigma statistical errors), giving a weighted mean value of 3,920 Ma. Ambiguities in the interpretation of 39Ar recoil effects and in the contribution of Martian atmospheric 40Ar lead to uncertainties in the Ar-Ar age which are difficult to quantify, but we suggest that the true value lies somewhere between 4,050 and 3,800 Ma. This age probably dates a period of annealing of the meteorite subsequent to the shock event which gave it its cataclastic texture. The experiments provide the first evidence of an event occurring on Mars coincident with the time of the late heavy bombardment of the Moon and may reflect a similar period of bombardment in the Southern Highlands of Mars. Whether the age determined bears any relationship to the time of carbonate deposition in ALH84001 is not known. Such a link depends on whether the temperature associated with the metasomatic activity was sufficient to cause argon loss from the maskelynite and/or whether the metasomatism and metamorphism were linked in time through a common heat source.
Collapse
Affiliation(s)
- G Turner
- Department of Earth Sciences, University of Manchester, UK
| | | | | | | |
Collapse
|
25
|
Scott ER, Yamaguchi A, Krot AN. Petrological evidence for shock melting of carbonates in the martian meteorite ALH84001. Nature 1997; 387:377-9. [PMID: 9163421 DOI: 10.1038/387377a0] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The meteorite ALH84001--a shocked igneous rock of probable martian origin-contains chemically and isotopically heterogeneous carbonate globules, associated with which are organic and inorganic structures that have been interpreted as possible fossil remains of ancient martian biota. A critical assumption underlying this suggestion is that the carbonates formed from low-temperature fluids penetrating the cracks and voids of the host rock. Here we report petrological studies of ALH84001 which investigate the effects of shock on the various mineralogical components of the rock. We find that carbonate, plagioclase and silica were melted and partly redistributed by the same shock event responsible for the intense local crushing of pyroxene in the meteorite. Texture and compositional data show that, during the period of shock decompression, monomineralic melts were injected into pyroxene fractures that were subsequently cooled and resealed within seconds. Our results therefore suggest that the carbonates in ALH84001 could not have formed at low temperatures, but instead crystallized from shock-melted material; this conclusion weakens significantly the arguments that these carbonates could host the fossilized remnants of biogenic activity.
Collapse
Affiliation(s)
- E R Scott
- Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu 96822, USA.
| | | | | |
Collapse
|
26
|
Grady MM, Wright IP, Pillinger CT. A carbon and nitrogen isotope study of Zagami. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/97je00414] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Jull AJT, Eastoe CJ, Cloudt S. Isotopic composition of carbonates in the SNC meteorites, Allan Hills 84001 and Zagami. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/96je03111] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Becker L, Glavin DP, Bada JL. Polycyclic aromatic hydrocarbons (PAHs) in Antarctic Martian meteorites, carbonaceous chondrites, and polar ice. GEOCHIMICA ET COSMOCHIMICA ACTA 1997; 61:475-481. [PMID: 11541466 DOI: 10.1016/s0016-7037(96)00400-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent analyses of the carbonate globules present in the Martian meteorite ALH84001 have detected polycyclic aromatic hydrocarbons (PAHs) at the ppm level (McKay et al., 1996). The distribution of PAHs observed in ALH84001 was interpreted as being inconsistent with a terrestrial origin and were claimed to be indigenous to the meteorite, perhaps derived from an ancient martian biota. We have examined PAHs in the Antarctic shergottite EETA79001, which is also considered to be from Mars, as well as several Antarctic carbonaceous chondrites. We have found that many of the same PAHs detected in the ALH84001 carbonate globules are present in Antarctic carbonaceous chondrites and in both the matrix and carbonate (druse) component of EETA79001. We also investigated PAHs in polar ice and found that carbonate is an effective scavenger of PAHs in ice meltwater. Moreover, the distribution of PAHs in the carbonate extract of Antarctic Allan Hills ice is remarkably similar to that found in both EETA79001 and ALH84001. The reported presence of L-amino acids of apparent terrestrial origin in the EETA79001 druse material (McDonald and Bada, 1995) suggests that this meteorite is contaminated with terrestrial organics probably derived from Antarctic ice meltwater that had percolated through the meteorite. Our data suggests that the PAHs observed in both ALH84001 and EETA79001 are derived from either the exogenous delivery of organics to Mars or extraterrestrial and terrestrial PAHs present in the ice meltwater or, more likely, from a mixture of these sources. It would appear that PAHs are not useful biomarkers in the search for extinct or extant life on Mars.
Collapse
Affiliation(s)
- L Becker
- Scripps Institution of Oceanography, University of California San Diego, La Jolla 92093-0212, USA
| | | | | |
Collapse
|
29
|
McKay DS, Gibson EK, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XD, Maechling CR, Zare RN. Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 1996; 273:924-30. [PMID: 8688069 DOI: 10.1126/science.273.5277.924] [Citation(s) in RCA: 470] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fresh fracture surfaces of the martian meteorite ALH84001 contain abundant polycyclic aromatic hydrocarbons (PAHs). These fresh fracture surfaces also display carbonate globules. Contamination studies suggest that the PAHs are indigenous to the meteorite. High-resolution scanning and transmission electron microscopy study of surface textures and internal structures of selected carbonate globules show that the globules contain fine-grained, secondary phases of single-domain magnetite and Fe-sulfides. The carbonate globules are similar in texture and size to some terrestrial bacterially induced carbonate precipitates. Although inorganic formation is possible, formation of the globules by biogenic processes could explain many of the observed features, including the PAHs. The PAHs, the carbonate globules, and their associated secondary mineral phases and textures could thus be fossil remains of a past martian biota.
Collapse
Affiliation(s)
- D S McKay
- NASA Lyndon B. Johnson Space Center (JSC), Houston, TX 77058, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Harvey RP, McSween HY. A possible high-temperature origin for the carbonates in the martian meteorite ALH84001. Nature 1996; 382:49-51. [PMID: 8657303 DOI: 10.1038/382049a0] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The meteorite Allan Hills (ALH) 84001, commonly accepted to be of martian origin, is unique among known martian meteorites in containing abundant, zoned, pre-terrestrial carbonate minerals. Previous studies of the oxygen isotope compositions of these minerals have suggested that they precipitated from a low-temperature (0-80 degrees C) aqueous fluid in the martian crust--perhaps in a near-surface hydrothermal system. Here we report analyses of the major-element compositions of the carbonates, which provide an independent constraint on the composition and temperature of the fluid from which they formed. We argue that the most likely explanation for the observed compositions, and for the absence of co-existing hydrons minerals, is that the carbonates were formed by reactions between hot (> 650 degrees C), CO2-rich fluids and the ultramatic host rock during an impact event. Impact processes on the martian surface can produce both the hot, CO2-rich fluid (by volatilization of surface carbonates or other CO2 sources) and--by brecciation--the condults through which it flowed. Impact metasomatism is also consistent with the observed oxygen isotope disequillbrium, sequence of mineral formation, and carbonate mineral zoning, reflecting carbonate formation during rapid cooling from high temperatures rather than prolonged exposure to low-temperature fluids.
Collapse
Affiliation(s)
- R P Harvey
- Department of Geological Sciences, Case Western Reserve University, Cleveland, Ohio 44106-7216, USA.
| | | |
Collapse
|
31
|
Bradley JP, Harvey RP, McSween HY. Magnetite whiskers and platelets in the ALH84001 Martian meteorite: evidence of vapor phase growth. GEOCHIMICA ET COSMOCHIMICA ACTA 1996; 60:5149-5155. [PMID: 11541129 DOI: 10.1016/s0016-7037(96)00383-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanometer-sized magnetite crystals associated with carbonates in fracture zones within Martian meteorite ALH84001 have been examined using analytical transmission electron microscopy. Some of the crystals exhibit distinctive morphologies: filamentary rods and ribbon, and platelets. The rods and ribbons are elongated along the crystallographic [100] and [111] directions. Some of the rods contain microstructural defects indicating that they grew by spiral growth about screw dislocations. Platelets are flattened along the [100] and [110] directions. These unique morphologies and microstructures constrain the growth conditions of magnetite. The whiskers and platelets most likely formed in the temperature range 500-800 degrees C by direct condensation from a vapor or precipitation from a supercritical fluid, and their properties are inconsistent with a biogenic origin.
Collapse
|
32
|
Abstract
It is often argued that substantially more carbon dioxide and water were degassed from the martian interior than can be found at present in the atmosphere, polar caps and regolith. Calculations have shown that atmospheric escape cannot account for all of the missing volatiles. Suggestions that carbon dioxide is stored as marine or lacustrine deposits, are challenged by Earth-based and spacecraft remote-sensing data. Moreover, recent modelling of the martian atmosphere suggests that rainfall or open bodies of water are in any case unlikely to have persisted for extended periods of time. Hydrothermal carbonates therefore provide a possible solution to this dilemma. Using an accessible terrestrial system (Iceland) as a guide to the underlying processes, and a host rock composition inferred from the least-altered martian meteorite, we present a geochemical model for the formation of carbonates in possible martian hydrothermal systems. Our results suggest that an extensive reservoir of carbonate minerals--equivalent to an atmospheric pressure of carbon dioxide of at least one bar--could have been sequestered beneath the surface by widespread hydrothermal activity in the martian past.
Collapse
Affiliation(s)
- L L Griffith
- Department of Earth and Planetary Sciences, McDonnell Center for the Space Sciences, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|