1
|
Schwarz E, Jebbawi F, Keller G, Rhiner T, Fricker A, Waldern N, Canonica F, Schoster A, Fettelschoss-Gabriel A. Phenotypic Shift of an Inflammatory Eosinophil Subset into a Steady-State Resident Phenotype after 2 Years of Vaccination against IL-5 in Equine Insect Bite Hypersensitivity. Vet Sci 2024; 11:476. [PMID: 39453068 PMCID: PMC11512288 DOI: 10.3390/vetsci11100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Eosinophils play a key role in allergic diseases such as insect bite hypersensitivity (IBH). Together with Th2 cells, they shape the course of inflammation in associated type I/IVb allergies. Therefore, a virus-like particle (VLP)-based vaccine targeting equine interleukin-5 (eIL-5), eIL-5-CuMV-TT, was developed to interfere with the IL-5 dependency of eosinophils by inducing the production of anti-self-IL-5 antibodies and alleviating clinical signs in IBH-affected horses. A previous study highlighted the presence of two eosinophil subsets, steady-state resident eosinophils (rEos) and inflammatory eosinophils (iEos), circulating in the blood of healthy and IBH-affected horses, distinguishable by the expression of integrin CD49f. Furthermore, eIL-5-CuMV-TT 1st year vaccination showed a significant decrease of total eosinophils and, in particular, iEos. Nevertheless, the very few remaining eosinophils still shared an iEos phenotype, reflected by bigger size and higher granularity. The aim of this study was to follow up on the phenotype of eosinophils in the 2nd year of vaccination of IBH-affected horses with eIL-5-CuMV-TT. Using flow cytometry analysis of the blood of healthy, IBH, IBH-placebo, and IBH-vaccinated horses, the percentage and count of cells were compared between groups with a focus on pair analysis of eosinophils in 1st and 2nd year vaccinated horses. Our data showed comparably low levels of iEos and a significant increase of rEos in 2nd year compared to 1st year vaccinated horses, suggesting a phenotypic shift toward a resident-like eosinophil population, primarily associated with the phenotype of healthy horses. The reduction of size, granularity, and expression of integrin CD49f in the 2nd year suggests a benefit of long-term treatment with the eIL-5-CuMV-TT vaccine.
Collapse
Affiliation(s)
- Elio Schwarz
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
| | - Fadi Jebbawi
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, 8091 Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Giulia Keller
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, 8091 Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Tanya Rhiner
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
- Equine Department, Vetsuisse Faculty, University of Zurich, 8006 Zurich, Switzerland;
| | - Anna Fricker
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
| | - Nina Waldern
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
| | - Fabia Canonica
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, 8091 Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Angelika Schoster
- Equine Department, Vetsuisse Faculty, University of Zurich, 8006 Zurich, Switzerland;
| | - Antonia Fettelschoss-Gabriel
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, 8091 Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
2
|
Marsella R, White S, Fadok VA, Wilson D, Mueller R, Outerbridge C, Rosenkrantz W. Equine allergic skin diseases: Clinical consensus guidelines of the World Association for Veterinary Dermatology. Vet Dermatol 2023; 34:175-208. [PMID: 37154488 DOI: 10.1111/vde.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/03/2023] [Accepted: 02/26/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Allergic skin diseases are common in horses worldwide. The most common causes are insect bites and environmental allergens. OBJECTIVES To review the current literature and provide consensus on pathogenesis, diagnosis, treatment and prevention. MATERIALS AND METHODS The authors reviewed the literature up to November 2022. Results were presented at North America Veterinary Dermatology Forum (2021) and European Veterinary Dermatology Congress (2021). The report was available to member organisations of the World Association for Veterinary Dermatology for feedback. CONCLUSIONS AND CLINICAL RELEVANCE Insect bite hypersensitivity (IBH) is the best characterised allergic skin disease. An immunoglobulin (Ig)E response against Culicoides salivary antigens is widely documented. Genetics and environmental factors play important roles. Tests with high sensitivity and specificity are lacking, and diagnosis of IBH is based on clinical signs, seasonality and response to insect control. Eosinophils, interleukin (IL)-5 and IL-31 are explored as therapeutic targets. Presently, the most effective treatment is insect avoidance. Existing evidence does not support allergen-specific immunotherapy (ASIT) using commercially available extracts of Culicoides. Hypersensitivity to environmental allergens (atopic dermatitis) is the next most common allergy. A role for IgE is supported by serological investigation, skin test studies and positive response to ASIT. Prospective, controlled, randomised studies are limited, and treatment relies largely on glucocorticoids, antihistamines and ASIT based on retrospective studies. Foods are known triggers for urticaria, yet their role in pruritic dermatitis is unknown. Recurrent urticaria is common in horses, yet our understanding is limited and focussed on IgE and T-helper 2 cell response. Prospective, controlled studies on treatments for urticaria are lacking. Glucocorticoids and antihistamines are primary reported treatments.
Collapse
Affiliation(s)
- R Marsella
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - S White
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - V A Fadok
- Zoetis, US PET CARE, Bellaire, Texas, USA
| | - D Wilson
- School of Clinical Veterinary Sciences, University of Bristol, Bristol, UK
| | - R Mueller
- Medizinische Keleintierklinik, Zentrum für klinische Tiermedizin, LMU, Munich, Germany
| | - C Outerbridge
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | | |
Collapse
|
3
|
Rhiner T, Fettelschoss V, Schoster A, Birkmann K, Fettelschoss-Gabriel A. Targeting eosinophils by active vaccination against interleukin-5 reduces basophil counts in horses with insect bite hypersensitivity in the 2nd year of vaccination. Vet J 2022; 288:105896. [PMID: 36126798 DOI: 10.1016/j.tvjl.2022.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
Abstract
Previously, virus-like particle (VLP)-based self-vaccinations targeting interleukin (IL)-5 or IL-31 have been suggested to treat equine insect bite hypersensitivity (IBH), a seasonal recurrent allergic dermatitis in horses. The IL-5-targeting equine vaccine significantly reduced blood eosinophil counts in horses, similar to human monoclonal antibodies targeting IL-5 or the IL-5 receptor alpha (IL-5Rα). Previous studies in humans have also reported an additional effect on reduction of basophil counts. The aim of the present study was to evaluate whether an equine anti-IL-5 vaccine affected blood basophil counts. Horses with IBH were followed in a 3-year trial consisting of a placebo administered in the 1st year, followed by vaccination using an equine (e)IL-5-VLP vaccine in the 2nd and 3rd years. There was a strong reduction in circulating eosinophil counts after vaccination against IL-5. Additionally, there were reduced basophil counts, but only in the 3rd year of the study, suggesting a bystander effect of the anti-IL-5 vaccine on basophil counts.
Collapse
Affiliation(s)
- Tanya Rhiner
- Vetsuisse Faculty, Equine Department University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; Evax AG, Hörnlistrasse 3, 9542 Münchwilen, Switzerland
| | - Victoria Fettelschoss
- Evax AG, Hörnlistrasse 3, 9542 Münchwilen, Switzerland; University Hospital Zurich, Department of Dermatology, Wagistrasse 18, 8952 Schlieren, Switzerland; Faculty of Medicine, University of Zurich, Switzerland
| | - Angelika Schoster
- Vetsuisse Faculty, Equine Department University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Katharina Birkmann
- Evax AG, Hörnlistrasse 3, 9542 Münchwilen, Switzerland; Faculty of Medicine, University of Zurich, Switzerland
| | - Antonia Fettelschoss-Gabriel
- Evax AG, Hörnlistrasse 3, 9542 Münchwilen, Switzerland; University Hospital Zurich, Department of Dermatology, Wagistrasse 18, 8952 Schlieren, Switzerland; Faculty of Medicine, University of Zurich, Switzerland.
| |
Collapse
|
4
|
Birkmann K, Fettelschoss‐Gabriel A. Letter to the Editor: Eosinophils of the horse: Part II: Eosinophils in clinical diseases. EQUINE VET EDUC 2022. [DOI: 10.1111/eve.13529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K. Birkmann
- Faculty of Medicine University of Zurich 8091 Zurich Switzerland
- Evax AG Hornlistrasse 3, 9542 Münchwilen Switzerland
| | - A. Fettelschoss‐Gabriel
- Faculty of Medicine University of Zurich 8091 Zurich Switzerland
- Department of Dermatology, University Hospital Zurich Wagistrasse 12, 8952 Schlieren Switzerland
- Evax AG Hornlistrasse 3, 9542 Münchwilen Switzerland
| |
Collapse
|
5
|
Brosnahan M. Response to Letter to the Editor from Drs Birkmann and Fettelschoss‐Gabriel. EQUINE VET EDUC 2022. [DOI: 10.1111/eve.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M.M. Brosnahan
- College of Veterinary Medicine Midwestern University Glendale Arizona USA
| |
Collapse
|
6
|
Molecular mechanisms and treatment modalities in equine Culicoides hypersensitivity. Vet J 2021; 276:105741. [PMID: 34416400 DOI: 10.1016/j.tvjl.2021.105741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 07/07/2021] [Accepted: 08/15/2021] [Indexed: 12/25/2022]
Abstract
Equine Culicoides hypersensitivity (CH) is the most common allergic condition in horses affecting the skin. This review focuses on immunopathology and molecular mechanisms of equine CH. The role of eosinophils is emphasized, as well as disease severity and the influence of long-term chronic allergen exposure on T helper (Th) 2 cells. Using current knowledge from human allergic disorders, similar effects are hypothesized in equine patients. Key aspects of CH diagnosis and treatment are discussed, focusing on allergen specific immunotherapy and allergen-independent approaches, such as targeting hypereosinophilia through interleukin-5 and allergic non-histaminic pruritus though interleukin-31.
Collapse
|
7
|
Larson EM, Wagner B. Viral infection and allergy - What equine immune responses can tell us about disease severity and protection. Mol Immunol 2021; 135:329-341. [PMID: 33975251 DOI: 10.1016/j.molimm.2021.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 11/16/2022]
Abstract
Horses have many naturally occurring diseases that mimic similar conditions in humans. The ability to conduct environmentally controlled experiments and induced disease studies in a genetically diverse host makes the horse a valuable intermediate model between mouse studies and human clinical trials. This review highlights important similarities in the immune landscape between horses and humans using current research on two equine diseases as examples. First, equine herpesvirus type 1 (EHV-1) infection initiates a series of innate inflammatory signals at its mucosal entry site in the upper respiratory tract. These inflammatory markers are highly synchronized and predictable between individuals during viral respiratory infection and ultimately lead to adaptive immune induction and protection. The timing of early inflammatory signals, followed by specific adaptive immune markers correlating with immunity and protection, allow accurate outbreak tracking and also provide a foundation for understanding the importance of local mucosal immunity during other viral respiratory infections. Second, rare peripheral blood immune cells that promote allergic inflammation can be analyzed during Culicoides hypersensitivity, a naturally occurring type I IgE-mediated allergic disease of horses. Rare immune cells, such as IgE-binding monocytes or basophils, can be studied repeatedly in the horse model to unravel their larger mechanistic role in inflammation during allergic and other inflammatory diseases. We conclude with a survey of all other common equine inflammatory conditions. Together, this review serves as a reference and rationale for the horse as a non-rodent model for immunological research.
Collapse
Affiliation(s)
- Elisabeth M Larson
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States.
| |
Collapse
|
8
|
Novotny EN, White SJ, Wilson AD, Stefánsdóttir SB, Tijhaar E, Jonsdóttir S, Frey R, Reiche D, Rose H, Rhyner C, Schüpbach‐Regula G, Torsteinsdóttir S, Alcocer M, Marti E. Component-resolved microarray analysis of IgE sensitization profiles to Culicoides recombinant allergens in horses with insect bite hypersensitivity. Allergy 2021; 76:1147-1157. [PMID: 32780483 PMCID: PMC8246938 DOI: 10.1111/all.14556] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 01/20/2023]
Abstract
Background Allergy to bites of blood‐sucking insects, including biting midges, can affect both human and veterinary patients. Horses are often suffering from an IgE‐mediated allergic dermatitis caused by bites of midges (Culicoides spp). With the aim to improve allergen immunotherapy (AIT), numerous Culicoides allergens have been produced as recombinant (r‐) proteins. This study aimed to test a comprehensive panel of differently expressed Culicoides r‐allergens on a cohort of IBH‐affected and control horses using an allergen microarray. Methods IgE levels to 27 Culicoides r‐allergens, including 8 previously unpublished allergens, of which 11 were expressed in more than one expression system, were determined in sera from 347 horses. ROC analyses were carried out, cut‐offs selected using a specificity of 95% and seropositivity rates compared between horses affected with insect bite hypersensitivity (IBH) and control horses. The combination of r‐allergens giving the best performing test was determined using logistic regression analysis. Results Seropositivity was significantly higher in IBH horses compared with controls for 25 r‐allergens. Nine Culicoides r‐allergens were major allergens for IBH with seven of them binding IgE in sera from > 70% of the IBH‐affected horses. Combination of these top seven r‐allergens could diagnose > 90% of IBH‐affected horses with a specificity of > 95%. Correlation between differently expressed r‐allergens was usually high (mean = 0.69, range: 0.28‐0.91). Conclusion This microarray will be a powerful tool for the development of component‐resolved, patient‐tailored AIT for IBH and could be useful for the study of allergy to biting midges in humans and other species.
Collapse
Affiliation(s)
- Ella N. Novotny
- Department of Clinical Research and VPH, Vetsuisse Faculty University of Bern Bern Switzerland
| | - Samuel J. White
- School of Animal, Rural and Environmental Sciences Nottingham Trent University, Brackenhurst Campus Southwell UK
- School of Biosciences University of Nottingham Loughborough UK
| | - A. Douglas Wilson
- Division of Veterinary Pathology, Infection and Immunity University of Bristol Langford UK
| | - Sara B. Stefánsdóttir
- Institute for Experimental Pathology Biomedical Center University of Iceland Reykjavik Iceland
| | - Edwin Tijhaar
- Cell Biology and Immunology Group Wageningen University Wageningen The Netherlands
| | - Sigridur Jonsdóttir
- Department of Clinical Research and VPH, Vetsuisse Faculty University of Bern Bern Switzerland
| | | | - Dania Reiche
- Boehringer Ingelheim Vetmedica GmbH Rohrdorf Germany
| | - Horst Rose
- Boehringer Ingelheim Vetmedica GmbH Rohrdorf Germany
| | - Claudio Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zürich Davos Switzerland
| | | | | | - Marcos Alcocer
- School of Biosciences University of Nottingham Loughborough UK
| | - Eliane Marti
- Department of Clinical Research and VPH, Vetsuisse Faculty University of Bern Bern Switzerland
| |
Collapse
|
9
|
Olomski F, Fettelschoss V, Jonsdottir S, Birkmann K, Thoms F, Marti E, Bachmann MF, Kündig TM, Fettelschoss‐Gabriel A. Interleukin 31 in insect bite hypersensitivity-Alleviating clinical symptoms by active vaccination against itch. Allergy 2020; 75:862-871. [PMID: 31816097 PMCID: PMC7217000 DOI: 10.1111/all.14145] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/15/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Insect bite hypersensitivity (IBH) is the most common seasonal pruritic allergic dermatitis of horses occurring upon insect bites. In recent years, a major role for IL-31 in allergic pruritus of humans, monkeys, dogs, and mice was acknowledged. Here, we investigate the role of IL-31 in IBH of horses and developed a therapeutic vaccine against equine IL-31 (eIL-31). METHODS IL-31 levels were quantified in allergen-stimulated peripheral blood mononuclear cells (PBMCs) and skin punch biopsies of IBH lesions and healthy skin from IBH-affected and healthy horses. The vaccine consisted of eIL-31 covalently coupled to a virus-like particle (VLP) derived from cucumber mosaic virus containing a tetanus toxoid universal T-cell epitope (CuMVTT). Eighteen IBH-affected horses were recruited and immunized with 300 μg of eIL-31-CuMVTT vaccine or placebo and IBH severity score was recorded. RESULTS IL-31 was increased in PBMCs and exclusively detectable in skin lesions of IBH-affected horses. Vaccination against eIL-31 reduced delta clinical scores when compared to previous untreated IBH season of the same horses and to placebo-treated horses in the same year. The vaccine was well tolerated without safety concerns throughout the study. CONCLUSION TH2-derived IL-31 is involved in IBH pathology and accordingly the immunotherapeutic vaccination approach targeting IL-31 alleviated clinical scores in affected horses.
Collapse
Affiliation(s)
- Florian Olomski
- Department of Dermatology University Hospital Zurich Schlieren Switzerland
- Faculty of Medicine University of Zurich Zurich Switzerland
| | - Victoria Fettelschoss
- Department of Dermatology University Hospital Zurich Schlieren Switzerland
- Faculty of Medicine University of Zurich Zurich Switzerland
- Evax AG Münchwilen Switzerland
| | - Sigridur Jonsdottir
- Department for Clinical Research VPH Clinical Immunology Group Vetsuisse Faculty of the University of Bern Bern Switzerland
| | | | - Franziska Thoms
- Department of Dermatology University Hospital Zurich Schlieren Switzerland
- Faculty of Medicine University of Zurich Zurich Switzerland
| | - Eliane Marti
- Department for Clinical Research VPH Clinical Immunology Group Vetsuisse Faculty of the University of Bern Bern Switzerland
| | - Martin F. Bachmann
- RIA Immunology Inselspital University of Bern Bern Switzerland
- Nuffield Department of Medicine The Jenner Institute The Henry Wellcome Building for Molecular Physiology University of Oxford Oxford UK
| | - Thomas M. Kündig
- Faculty of Medicine University of Zurich Zurich Switzerland
- Department of Dermatology University Hospital Zurich Zurich Switzerland
| | - Antonia Fettelschoss‐Gabriel
- Department of Dermatology University Hospital Zurich Schlieren Switzerland
- Faculty of Medicine University of Zurich Zurich Switzerland
- Evax AG Münchwilen Switzerland
| |
Collapse
|
10
|
Brosnahan MM. Eosinophils of the horse: Part II: Eosinophils in clinical diseases. EQUINE VET EDUC 2020. [DOI: 10.1111/eve.13262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M. M. Brosnahan
- College of Veterinary Medicine Midwestern University Glendale Arizona USA
| |
Collapse
|
11
|
Miller JE, Mann S, Fettelschoss-Gabriel A, Wagner B. Comparison of three clinical scoring systems for Culicoides hypersensitivity in a herd of Icelandic horses. Vet Dermatol 2019; 30:536-e163. [PMID: 31441172 DOI: 10.1111/vde.12784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Culicoides hypersensitivity (CH), an intensely pruritic and seasonal allergic dermatitis, is a common allergic disease affecting horses worldwide. Currently, there is no validated clinical scoring system for the quantification of clinical signs associated with CH. OBJECTIVES To (i) determine the best cut-off point of three scoring systems, (ii) test the accuracy of each system when compared to the clinical diagnosis of an experienced veterinarian and (iii) assess agreement between systems. ANIMALS Icelandic horses (n = 20); eight with CH and 12 unaffected, from a research herd receiving no treatments for allergic dermatitis. METHODS AND MATERIALS Lesion scores were recorded biweekly from April until September with three clinical scoring systems (A, B and C) by a single observer initially blinded to CH status. Separate logistic regression analyses for each time point were used to determine appropriate cut-offs for CH classification. Spearman's rho and Cohen's kappa were calculated to analyze correlation of scores and agreement of CH categorization between systems, respectively. RESULTS The best allergic cut-off scores for system A, B and C were determined to be three, eight and 12, respectively. For each system median areas under the curve (>0.85) were excellent and discriminatory ability for correctly classifying CH status was strong. Excellent correlation between scores for each system (Spearman's rho > 0.96) and excellent intersystem agreement for CH categorization (kappa ≥ 0.73) were found across scoring time points. CONCLUSION AND CLINICAL IMPORTANCE Results support the use of these scoring systems as templates for the future standardization of a CH clinical scoring system.
Collapse
Affiliation(s)
- Julia E Miller
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sabine Mann
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Antonia Fettelschoss-Gabriel
- Department of Dermatology, Faculty of Medicine, University Hospital Zurich, Switzerland& University Hospital Zurich, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
12
|
Fettelschoss-Gabriel A, Fettelschoss V, Thoms F, Giese C, Daniel M, Olomski F, Kamarachev J, Birkmann K, Bühler M, Kummer M, Zeltins A, Marti E, Kündig TM, Bachmann MF. Treating insect-bite hypersensitivity in horses with active vaccination against IL-5. J Allergy Clin Immunol 2018; 142:1194-1205.e3. [PMID: 29627082 DOI: 10.1016/j.jaci.2018.01.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Insect-bite hypersensitivity is the most common allergic dermatitis in horses. Excoriated skin lesions are typical symptoms of this seasonal and refractory chronic disease. On a cellular level, the skin lesions are characterized by massive eosinophil infiltration caused by an underlying allergic response. OBJECTIVE To target these cells and treat disease, we developed a therapeutic vaccine against equine IL-5 (eIL-5), the master regulator of eosinophils. METHODS The vaccine consisted of eIL-5 covalently linked to a virus-like particle derived from cucumber mosaic virus containing the tetanus toxoid universal T-cell epitope tt830-843 (CMVTT). Thirty-four Icelandic horses were recruited and immunized with 400 μg of eIL-5-CMVTT formulated in PBS without adjuvant (19 horses) or PBS alone (15 horses). RESULTS The vaccine was well tolerated and did not reveal any safety concerns but was able to induce anti-eIL-5 autoantibody titers in 17 of 19 horses. This resulted in a statistically significant reduction in clinical lesion scores when compared with previous season levels, as well as levels in placebo-treated horses. Protection required a minimal threshold of anti-eIL-5 antibodies. Clinical improvement by disease scoring showed that 47% and 21% of vaccinated horses reached 50% and 75% improvement, respectively. In the placebo group no horse reached 75% improvement, and only 13% reached 50% improvement. CONCLUSION Our therapeutic vaccine inducing autoantibodies against self IL-5 brings biologics to horses, is the first successful immunotherapeutic approach targeting a chronic disease in horses, and might facilitate development of a similar vaccine against IL-5 in human subjects.
Collapse
Affiliation(s)
- Antonia Fettelschoss-Gabriel
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland; Evax AG, Münchwilen, Switzerland.
| | - Victoria Fettelschoss
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland; Evax AG, Münchwilen, Switzerland
| | - Franziska Thoms
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
| | - Christoph Giese
- ETH Zurich, Institute of Molecular Biology & Biophysics, Zurich, Switzerland
| | - Michelle Daniel
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
| | - Florian Olomski
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
| | - Jivko Kamarachev
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | - Andris Zeltins
- Latvian Biomedical Research & Study Centre, Riga, Latvia
| | - Eliane Marti
- Department for Clinical Research VPH, Vetsuisse Faculty of the University of Bern, Clinical Immunology Group, Bern, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Martin F Bachmann
- RIA Immunology, Inselspital, University of Bern, Bern, Switzerland; Jenner Institute, Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Schnabel CL, Steinig P, Schuberth HJ, Koy M, Wagner B, Wittig B, Juhls C, Willenbrock S, Murua Escobar H, Jaehnig P, Feige K, Cavalleri JMV. Influences of age and sex on leukocytes of healthy horses and their ex vivo cytokine release. Vet Immunol Immunopathol 2015; 165:64-74. [PMID: 25782350 DOI: 10.1016/j.vetimm.2015.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 02/13/2015] [Accepted: 02/27/2015] [Indexed: 01/04/2023]
Abstract
Leukocytes and their functional capacities are used extensively as biomarkers in immunological research. Commonly employed indicators concerning leukocytes are as follows: number, composition in blood, response to discrete stimuli, cytokine release, and morphometric characteristics. In order to employ leukocytes as biomarkers for disease and therapeutic monitoring, physiological variations and influencing factors on the parameters measured have to be considered. The aim of this report was to describe the ranges of selected leukocyte parameters in a sample of healthy horses and to analyse whether age, sex, breed, and sampling time point (time of day) influence peripheral blood leukocyte composition, cell morphology and release of cytokines ex vivo. Flow cytometric comparative characterisation of cell size and complexity in 24 healthy horses revealed significant variance. Similarly, basal release of selected cytokines by blood mononuclear cells also showed high variability [TNFα (65-16,624pg/ml), IFNγ (4-80U/ml), IL-4 (0-5069pg/ml), IL-10 (49-1862pg/ml), and IL-17 (4-1244U/ml)]. Each animal's age influenced leukocyte composition, cell morphology and cytokine release (TNFα, IL-4, IL-10) ex vivo. Geldings showed smaller monocytes and higher spontaneous production of IL-10 when compared to the mares included. The stimulation to spontaneous release ratios of TNFα, IL-4 and IL-17 differed in Warmblood and Thoroughbred types. Sampling time influenced leukocyte composition and cell morphology. In summary, many animal factors - age being the dominant one - should be considered for studies involving the analysis of equine leukocytes. In addition, high inter-individual variances argue for individual baseline measurements.
Collapse
Affiliation(s)
- C L Schnabel
- University of Veterinary Medicine Hannover, Foundation, Clinic for Horses, Buenteweg 9, 30559 Hannover, Germany.
| | - P Steinig
- University of Veterinary Medicine Hannover, Foundation, Clinic for Horses, Buenteweg 9, 30559 Hannover, Germany
| | - H-J Schuberth
- University of Veterinary Medicine Hannover, Foundation, Immunology Unit, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - M Koy
- University of Veterinary Medicine Hannover, Foundation, Immunology Unit, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - B Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University College of Veterinary Medicine, 240 Farrier Rd, Ithaca, NY 14853, USA
| | - B Wittig
- Foundation Institute Molecular Biology and Bioinformatics, Freie Universitaet Berlin, Berlin, Germany
| | - C Juhls
- Mologen AG, Fabeckstrasse 30, 14195 Berlin, Germany
| | - S Willenbrock
- University of Veterinary Medicine Hannover, Foundation, Small Animal Clinic, Buenteweg 9, 30559 Hannover, Germany
| | - H Murua Escobar
- University of Veterinary Medicine Hannover, Foundation, Small Animal Clinic, Buenteweg 9, 30559 Hannover, Germany; University of Rostock, Division of Medicine, Clinic III, Haematology, Oncology and Palliative Medicine, 18057 Rostock, Germany
| | - P Jaehnig
- pj statistics, Niedstrasse. 16, 12159 Berlin, Germany
| | - K Feige
- University of Veterinary Medicine Hannover, Foundation, Clinic for Horses, Buenteweg 9, 30559 Hannover, Germany
| | - J-M V Cavalleri
- University of Veterinary Medicine Hannover, Foundation, Clinic for Horses, Buenteweg 9, 30559 Hannover, Germany
| |
Collapse
|
14
|
Wilson AD. Immune responses to ectoparasites of horses, with a focus on insect bite hypersensitivity. Parasite Immunol 2015; 36:560-72. [PMID: 25180696 DOI: 10.1111/pim.12142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/18/2014] [Indexed: 12/24/2022]
Abstract
Horses are affected by a wide variety of arthropod ectoparasites, ranging from lice which spend their entire life on the host, through ticks which feed over a period of days, to numerous biting insects that only transiently visit the host to feed. The presence of ectoparasites elicits a number of host responses including innate inflammatory responses, adaptive immune reactions and altered behaviour; all of which can reduce the severity of the parasite burden. All of these different responses are linked through immune mechanisms mediated by mast cells and IgE antibodies which have an important role in host resistance to ectoparasites, yet immune responses also cause severe pathological reactions. One of the best described examples of such pathological sequelae is insect bite hypersensitivity (IBH) of horses; an IgE-mediated type 1 hypersensitivity to the salivary proteins of Culicoides spp. associated with T-helper-2 production of IL4 and IL13. Importantly, all horses exposed to Culicoides have an expanded population of Culicoides antigen-specific T cells with this pattern of cytokine production, but in those which remain healthy, the inflammatory reaction is tempered by the presence of FoxP3+ CD4+ regulatory T cells that express IL10 and TGF-beta, which suppresses the IL4 production by Culicoides antigen-activated T cells.
Collapse
Affiliation(s)
- A D Wilson
- School of Clinical Veterinary Science, University of Bristol, Bristol, UK
| |
Collapse
|
15
|
Woodward MC, Andrews FM, Kearney MT, Del Piero F, Hammerberg B, Pucheu-Haston CM. Characterization of IgE-mediated cutaneous immediate and late-phase reactions in nonallergic horses. Am J Vet Res 2014; 75:633-41. [PMID: 24959729 DOI: 10.2460/ajvr.75.7.633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To characterize the response of skin of nonallergic horses following ID injection of polyclonal rabbit anti-canine IgE (anti-IgE) and rabbit IgG. ANIMALS 6 healthy horses. PROCEDURES Skin in the cervical area was injected ID with anti-IgE and IgG. Wheal measurements and skin biopsy specimens were obtained before and 20 minutes and 6, 24, and 48 hours after injection. Tissue sections were evaluated for inflammatory cells at 4 dermal depths. Immunohistochemical analysis for CD3, CD4, and CD8 was performed, and cell counts were evaluated. RESULTS Anti-IgE wheals were significantly larger than IgG wheals at 20 minutes and 6 and 24 hours after injection. There were significantly more degranulated mast cells after anti-IgE injection than after IgG injection. There were significantly more eosinophils at 6, 24, and 48 hours and neutrophils at 6 hours after anti-IgE injection, compared with cell numbers at those same times after IgG injection. There were significantly more eosinophils in the deeper dermis of anti-IgE samples, compared with results for IgG samples. No significant differences between treatments were detected for CD3(+), CD4(+), or CD8(+) cells. CONCLUSIONS AND CLINICAL RELEVANCE Injection of anti-IgE antibodies was associated with the development of gross and microscopic inflammation characterized by mast cell degranulation and accumulation of inflammatory cells, particularly eosinophils and neutrophils. This pattern appeared to be similar to that of horses with naturally developing allergic skin disease, although lymphocytes were not increased; thus, ID injection of anti-IgE in horses may be of use for evaluating allergic skin diseases of horses.
Collapse
Affiliation(s)
- Michelle C Woodward
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | | | | | | | | | | |
Collapse
|
16
|
Meulenbroeks C, van der Meide N, Zaiss D, Sloet van Oldruitenborgh-Oosterbaan M, van der Lugt J, Smak J, Rutten V, Willemse T. Seasonal differences in cytokine expression in the skin of Shetland ponies suffering from insect bite hypersensitivity. Vet Immunol Immunopathol 2013; 151:147-56. [DOI: 10.1016/j.vetimm.2012.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/03/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
|
17
|
Schaffartzik A, Hamza E, Janda J, Crameri R, Marti E, Rhyner C. Equine insect bite hypersensitivity: what do we know? Vet Immunol Immunopathol 2012; 147:113-26. [PMID: 22575371 DOI: 10.1016/j.vetimm.2012.03.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 02/26/2012] [Accepted: 03/27/2012] [Indexed: 11/29/2022]
Abstract
Insect bite hypersensitivity (IBH) is an allergic dermatitis of the horse caused by bites of insects of the genus Culicoides and is currently the best characterized allergic disease of horses. This article reviews knowledge of the immunopathogenesis of IBH, with a particular focus on the causative allergens. Whereas so far hardly any research has been done on the role of antigen presenting cells in the pathogenesis of IBH, recent studies suggest that IBH is characterized by an imbalance between a T helper 2 (Th2) and regulatory T cell (T(reg)) immune response, as shown both locally in the skin and with stimulated peripheral blood mononuclear cells. Various studies have shown IBH to be associated with IgE-mediated reactions against salivary antigens from Culicoides spp. However, until recently, the causative allergens had not been characterized at the molecular level. A major advance has now been made, as 11 Culicoides salivary gland proteins have been identified as relevant allergens for IBH. Currently, there is no satisfactory treatment of IBH. Characterization of the main allergens for IBH and understanding what mechanisms induce a healthy or allergic immune response towards these allergens may help to develop new treatment strategies, such as immunotherapy.
Collapse
Affiliation(s)
- A Schaffartzik
- Swiss Institute of Allergy and Asthma Research-SIAF, University of Zürich, Obere Strasse 22, CH-7270 Davos, Switzerland
| | | | | | | | | | | |
Collapse
|
18
|
Skin-infiltrating T cells and cytokine expression in Icelandic horses affected with insect bite hypersensitivity: A possible role for regulatory T cells. Vet Immunol Immunopathol 2011; 140:63-74. [DOI: 10.1016/j.vetimm.2010.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/12/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
|
19
|
Langner KFA, Jarvis DL, Nimtz M, Heselhaus JE, McHolland LE, Leibold W, Drolet BS. Identification, expression and characterisation of a major salivary allergen (Cul s 1) of the biting midge Culicoides sonorensis relevant for summer eczema in horses. Int J Parasitol 2008; 39:243-50. [PMID: 18708061 DOI: 10.1016/j.ijpara.2008.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
Abstract
Salivary proteins of Culicoides biting midges are thought to play a key role in summer eczema (SE), a seasonal recurrent allergic dermatitis in horses. The present study describes the identification, expression and clinical relevance of a candidate allergen of the North American midge Culicoides sonorensis. Immunoblot analysis of midge saliva revealed a 66 kDa protein (Cul s 1) that was bound by IgE from several SE-affected (SE+) horses. Further characterisation by fragmentation, mass spectrometry and bioinformatics identified Cul s 1 as maltase, an enzyme involved in sugar meal digestion. A cDNA encoding Cul s 1 was isolated and expressed as a polyhistidine-tagged fusion protein in a baculovirus/insect cell expression system. The clinical relevance of the affinity-purified recombinant Cul s 1 (rCul s 1) was investigated by immunoblotting, histamine release testing (HRT) and intradermal testing (IDT) in eight SE+ and eight control horses. Seven SE+ horses had rCul s 1-specific IgE, whereas only one control animal had IgE directed against this allergen. Furthermore, the HRT showed rCul s 1 induced basophil degranulation in samples from seven of eight SE+ horses but in none of the control animals. rCul s 1 also induced immediate (7/8), late-phase (8/8) and delayed (1/8) skin reactivity in IDT on all SE+ horses that had a positive test with the whole body extract (WBE) of C. sonorensis. None of the control horses showed immediate or delayed skin reactivity with rCul s 1, and only one control horse had a positive late-phase response, while several non-specific late-phase reactions were observed with the insect WBE. Thus, we believe rCul s 1 is the first specific salivary allergen of C. sonorensis to be described that promises to advance both in vitro and in vivo diagnosis and may contribute to the development of immunotherapy for SE in horses.
Collapse
Affiliation(s)
- Kathrin F A Langner
- Immunology Unit, University of Veterinary Medicine, Bischofsholer Damm 15, 30173 Hannover, Lower Saxony, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Comparison of cellular and humoral immunoassays for the assessment of summer eczema in horses. Vet Immunol Immunopathol 2008; 122:126-37. [DOI: 10.1016/j.vetimm.2007.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/30/2007] [Accepted: 11/01/2007] [Indexed: 11/15/2022]
|
21
|
Milnes AS, Bailey M, Knowles TG, Coles GC, Green LE, Day MJ. An Immunohistochemical Assessment of the Cutaneous Immune Response to Louse Infestation in Cattle. J Comp Pathol 2007; 136:240-9. [PMID: 17459406 DOI: 10.1016/j.jcpa.2007.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 02/12/2007] [Indexed: 11/20/2022]
Abstract
Skin samples were taken from 10 experimental cattle exposed naturally, during a period extending over two winters, to Bovicola bovis and Solenoptes capillatus, five becoming infested and five being protected from infestation by repeated treatment with ectoparasiticides. Skin sections were examined histopathologically and immunohistochemically for expression of the immune cell markers CD3, CD4, CD8 and class II antigens of the major histocompatibility complex (MHC). Louse-infested cattle had a mixed infiltration of the superficial dermis and perifollicular regions with eosinophils and mononuclear cells. The skin of infested cattle differed from that of non-infested cattle in showing significantly more cells expressing CD3, CD4 and MHC class II (P<0.05). Many of the MHC class II(+) cells had dendritic morphology, suggesting active antigen presentation within the lesions. Louse infestations have previously been thought to produce a type 1 hypersensitivity response, mediated by Th2 lymphocytes. However, the increased number of lymphocytes and antigen-presenting cells observed in the present study suggests that in chronic infestation there is activation of local cell-mediated (Th1) immunity.
Collapse
Affiliation(s)
- A S Milnes
- School of Clinical Veterinary Science, University of Bristol, Langford, UK
| | | | | | | | | | | |
Collapse
|
22
|
Langner KFA, Darpel KE, Denison E, Drolet BS, Leibold W, Mellor PS, Mertens PPC, Nimtz M, Greiser-Wilke I. Collection and analysis of salivary proteins from the biting midge Culicoides nubeculosus (Diptera: Ceratopogonidae). JOURNAL OF MEDICAL ENTOMOLOGY 2007; 44:238-48. [PMID: 17427692 DOI: 10.1603/0022-2585(2007)44[238:caaosp]2.0.co;2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Salivary proteins of hematophagous Culicoides spp. are thought to play an important role in pathogen transmission and skin hypersensitivity. Analysis of these proteins, however, has been problematic due to the difficulty in obtaining adequate amounts of secreted Culicoides saliva. In the current study, a collection method for midge saliva was developed. Over a 3-d period, 3- to 5-d-old male and female Culicoides nubeculosus Meigen (Diptera: Ceratopogonidae) were repeatedly placed onto the collection system and allowed to deposit saliva into a filter. Salivary products were eluted from the filters and evaluated by gel electrophoresis and mass spectrometry as well as by intradermal testing and determination of clotting time. Gel electrophoresis revealed approximately 55 protein spots displaying relative molecular masses from 5 to 67 kDa and isoelectric points ranging from 4.5 to 9.8. The majority of molecular species analyzed by mass spectrometry showed high convergence with salivary proteins recently obtained from a cDNA library of Culicoides sonorensis Wirth & Jones, including proteins involved in sugarmeal digestion, defense, and coagulation inhibition as well as members of the D7 family and unclassified salivary proteins. In addition, the proteome analysis revealed a number of peptides that were related to proteins from insect species other than Culicoides. Intradermal injection of the saliva in human skin produced edema, vasodilatation, and pruritus. The anticoagulant activity of the saliva was demonstrated by significantly prolonged clotting times for human platelets. The potential role of the identified salivary proteins in the transmission of pathogens and the induction of allergies is discussed.
Collapse
Affiliation(s)
- Kathrin F A Langner
- USDA-ARS, Arthropod-Borne Animal Diseases Research Laboratory, 1000 E. University Ave., Laramie, WY 82071, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wilson AD, Harwood L, Torsteinsdottir S, Marti E. Production of monoclonal antibodies specific for native equine IgE and their application to monitor total serum IgE responses in Icelandic and non-Icelandic horses with insect bite dermal hypersensitivity. Vet Immunol Immunopathol 2006; 112:156-70. [PMID: 16574245 DOI: 10.1016/j.vetimm.2006.02.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 01/16/2006] [Accepted: 02/15/2006] [Indexed: 11/28/2022]
Abstract
Immunoglobulin E forms a minor component of serum antibody in mammals. In tissues IgE is bound by FcvarepsilonRI receptors on the surface of mast cells and mediates their release of inflammatory substances in response to antigen. IgE and mast cells have a central role in immunity to parasites and the pathogenesis of allergic diseases in horses and other mammals. This paper describes the production of several novel monoclonal antibodies that detect native equine IgE in immunohistology, ELISA and Western blotting. An antigen capture ELISA to quantify equine IgE in serum has been developed using two of these antibodies. The mean serum IgE concentration of a group of 122 adult horses was 23,523ng/ml with a range of 425-82,610ng/ml. Total serum IgE of healthy horses was compared with that of horses with insect bite dermal hypersensitivity (IBDH) an allergic reaction to the bites of blood feeding insects of Culicoides or Simulium spp. IBDH does not occur in Iceland where Culicoides spp. are absent, but following importation into mainland Europe native Icelandic horses have an exceptionally high incidence of this condition. In the present study Icelandic horses with IBDH had significantly higher total IgE than healthy Icelandic horse controls (P<0.05). By contrast in horses of other breeds the difference in total serum IgE between those affected with IBDH and healthy controls was not statistically significant. Total serum IgE was also monitored in a cohort of Icelandic horses prior to import into Switzerland and for a period of 3 years thereafter. High levels of serum IgE were present in all horses at the start of the study but dropped in the first year after import. Thereafter the total serum IgE remained low in Icelandic horses that remained healthy but rose significantly (P<0.05) in those that developed IBDH. These results support the conclusion that IBDH is a type I hypersensitivity response to insect allergens but indicate that IBDH in Icelandic horses may have a different pathogenesis from the same condition in other breeds.
Collapse
Affiliation(s)
- A Douglas Wilson
- Division of Pathology Infection and Immunity, University of Bristol, School of Clinical Veterinary Science, Langford House, Langford BS40 5DU, UK.
| | | | | | | |
Collapse
|
24
|
Rickards KJ, Page CP, Hamblin AS, Goode NT, Cunningham FM. Biochemical and functional assessment of equine lymphocyte phosphodiesterases and protein kinase C. Vet Immunol Immunopathol 2004; 98:153-65. [PMID: 15010224 DOI: 10.1016/j.vetimm.2003.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Revised: 10/24/2003] [Accepted: 12/02/2003] [Indexed: 12/01/2022]
Abstract
Lymphocytes play an important role in allergic inflammation and have been implicated in the pathogenesis of equine allergic skin and respiratory disease. Targeting intracellular signalling pathways in human lymphocytes has demonstrated a role for both phosphodiesterase and protein kinase C in cell activation. The aim of this study was to measure total cyclic nucleotide hydrolysing phosphodiesterase activity and to identify the phosphodiesterase and protein kinase C isoenzymes present in equine lymphocytes. The functional significance of these isoenzymes was then investigated by examining their role in peripheral blood mononuclear cell proliferation using isoenzyme selective inhibitors. Total cyclic adenosine monophosphate hydrolysing phosphodiesterase activity was double that of cyclic guanosine monophosphate (30+/-2 pmol/min mg versus 16+/-3 pmol/min mg for cyclic adenosine and cyclic guanosine monophosphate phosphodiesterase activity, respectively). Evidence for the presence of PDE1, 3, 4 and 5 was obtained and PKCalpha, beta, delta, eta, iota, theta and zeta were identified. Selective inhibitors of PDE4, PKCdelta and conventional PKCs alpha and beta caused significant inhibition of mitogen-induced peripheral blood mononuclear cell proliferation. This study demonstrates a functional role for specific signalling isoenzymes and suggests that, in the context of allergic inflammation, targeting inflammatory cells involved in disease pathogenesis with relevant isoenzyme inhibitors may have therapeutic potential.
Collapse
Affiliation(s)
- K J Rickards
- Department of Veterinary Basic Sciences, The Royal Veterinary College, Hawkshead Campus, North Mymms, Hertfordshire AL9 7TA, UK.
| | | | | | | | | |
Collapse
|
25
|
Cunningham FM, Vandergrifft E, Bailey SR, Sepulveda MF, Goode NT, Horohov DW. Cloning, expression and biological activity of equine interleukin (IL)-5. Vet Immunol Immunopathol 2003; 95:63-72. [PMID: 12969637 DOI: 10.1016/s0165-2427(03)00100-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cytokine, interleukin (IL)-5 stimulates eosinophil differentiation, activation and survival and can prime these cells, increasing the response to other mediators. In view of its many effects on eosinophils, IL-5 has been implicated in the pathogenesis of allergic disease in man. Here we report the cloning of equine IL-5 and expression of the recombinant protein by transfection of Chinese hamster ovary (CHO) cells. The cloned cDNA sequence consisted of 405 nucleotides and encoded a protein of 135 amino acids. There is >85% identity with feline, bovine, ovine, canine, and human IL-5 sequences at the nucleotide and protein level. Supernatants containing equine IL-5 were also examined for biological activity. CHO supernatant containing equine recombinant (eqr) IL-5, like the human ortholog (hrIL-5), induced concentration dependent equine eosinophil adherence to autologous serum-coated plastic (9.7+/-1.5% with a 1:100 dilution of eqrIL-5 and 9.1+/-1.6% adherence with 1 nM hrIL-5; n = 4). The eqr protein also caused concentration dependent superoxide production (11.9+/-2.4 nmol (reduced cytochrome (cyt) C)/10(6) cells at a 1:50 dilution, n = 4). In contrast, hrIL-5 only caused significant superoxide production when diluted in conditioned CHO medium, an effect that was inhibited by the anti-human mAb, TRFK5 (4.4+/-0.3 versus 0.3+/-0.4 nmol/10(6) cells for 0.5 nM hrIL-5 in the presence of the isotype matched IgG1 control (10 microM) and TRFK5 (10 microM), respectively). TRFK5 also significantly inhibited hrIL-5 induced adherence at concentrations of 0.3 microg/ml and above but had no significant inhibitory effect on either superoxide or adherence caused by eqrIL-5. These results demonstrate that equine IL-5 expressed by CHO cells stimulates equine eosinophils, suggesting that this cytokine could play a role in eosinophil recruitment and activation in equine allergic disease. The anti-human and murine moAb TRFK5 does not appear to recognise the equine protein.
Collapse
Affiliation(s)
- F M Cunningham
- Department of Veterinary Basic Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Marti E, Horohov DW, Antzak DF, Lazary S, Paul Lunn D. Advances in equine immunology: Havemeyer workshop reports from Santa Fe, New Mexico, and Hortobagy, Hungary. Vet Immunol Immunopathol 2003; 91:233-43. [PMID: 12586486 DOI: 10.1016/s0165-2427(02)00314-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The horse has been human kind's most important partner throughout history. Similarly, in the field of immunology, many critical scientific advances have depended on the horse. Equine immunology today is an active and important field of study, with a focus on control of many common infectious diseases and immunopathologic conditions of broad comparative interest. In 2001 two major equine immunology workshops were held, in Santa Fe, USA, and in Hortobagy, Hungary, with major sponsorship from the Havemeyer Foundation. This report summarizes the scientific themes and foci of those meetings.
Collapse
Affiliation(s)
- Eliane Marti
- Division of Clinical Immunology, Department of Clinical Veterinary Medicine, Länggass-Strasse 124, 3012 Berne, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Wilson AD, Harwood LJ, Björnsdottir S, Marti E, Day MJ. Detection of IgG and IgE serum antibodies to Culicoides salivary gland antigens in horses with insect dermal hypersensitivity (sweet itch). Equine Vet J 2001; 33:707-13. [PMID: 11770994 DOI: 10.2746/042516401776249363] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We postulated that all horses exposed to the bites of Culcoides (midges) would have an antibody response to the antigen secreted in Culcoides saliva, but that IgE antibody would be restricted to allergic individuals. Using immunohistology on sections of fixed Culicoides, we have demonstrated the presence of antibodies in horse serum which recognise Culicoides salivary glands. Antibodies were detected in the serum of horses with insect dermal hypersensitivity and in the serum of normal horses exposed to Culicoides bites. In contrast, no antibodies were detected in serum from native Icelandic ponies which had not been exposed to Culicoides. Anti-salivary gland IgG antibodies were detected in serum from both allergic and healthy horses exposed to Culicoides. IgE antibodies were only detected in horses with signs of insect dermal hypersensitivity, they were not found in serum of healthy controls nor in the serum of horses with a history of hypersensitivity but in remission at the time of sampling. Using western blotting we confirmed the presence of antibodies to Culicoides antigens and demonstrated that individual horses react to different numbers of antigens. This paper demonstrates the ability of serum from allergic horses to detect Culcoides antigens and will enable further studies to isolate and characterise the allergens.
Collapse
Affiliation(s)
- A D Wilson
- Department of Pathology and Microbiology, University of Bristol, School of Medical Sciences, UK
| | | | | | | | | |
Collapse
|
28
|
van der Haegen A, Griot-Wenk M, Welle M, Busato A, von Tscharner C, Zurbriggen A, Marti E. Immunoglobulin-E-bearing cells in skin biopsies of horses with insect bite hypersensitivity. Equine Vet J 2001; 33:699-706. [PMID: 11770993 DOI: 10.2746/042516401776249444] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to investigate, with immunohistochemistry and in situ hybridisation, if immunoglobulin-E (IgE) and mast cells are involved in the pathogenesis of insect bite hypersensitivity (IBH), an allergic dermatitis of horses. In tissue sections fixed in paraformaldehyde (PFA) for <24 h, significantly more IgE protein-bearing cells were found in the dermis and epidermis of acute and chronic IBH lesions than in skin biopsies from healthy horses (medians = 466, 236 and 110 cells/mm2, respectively; P < or = 0.01). More IgE-mRNA positive (+) cells were observed in the dermis of acute IBH lesions than in the dermis of healthy skin (median = 2.8 vs. 0.0 cells/mm2; P < or = 0.01). Significantly, more mast cells were detected with metachromatic (median = 160 vs. 62 cells/mm2; P < or = 0.001) and tryptase-specific stainings (median = 120 vs. 69 cells/mm2; P < or = 0.001) in the dermis of acute IBH biopsies compared to healthy skin. No chymase+ mast cells were found in any skin biopsy. IBH lesions fixed in PFA for >24 h were compared to dermatomycosis (DM) lesions; IBH biopsies contained a similar number of IgE-protein+ cells to DM biopsies (median = 249 vs. 192 cells/mm2; P = 0.08) but had significantly more IgE-mRNA+, metachromatic and tryptase+ mast cells than DM biopsies. This study suggests an involvement of IgE-mediated immune reactions in the pathogenesis of IBH as well as, sometimes, in dermatomycosis. Using double labelling, cells which expressed IgE protein and contained mast cell enzymes were detected.
Collapse
|
29
|
Mckelvie J, Foster AP, Hamblin AS, Cunningham FM. Culicoides antigen extract stimulates equine blood mononuclear (BMN) cell proliferation and the release of eosinophil adherence-inducing factor(s). Res Vet Sci 2001; 70:115-22. [PMID: 11356090 DOI: 10.1053/rvsc.2000.0452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intradermal injection of a Culicoides antigen extract (CAgX) induces T lymphocyte and eosinophil accumulation in the skin of horses with sweet itch. Blood mononuclear (BMN) cells from normal ponies proliferate when stimulated by mitogen (phytohaemagglutinin, PHA) or antigen (tetanus toxoid, TT) and, as shown here, release soluble factor(s) that induce eosinophil adherence. CAgX also caused concentration dependent proliferation of BMN cells from sweet itch and normal ponies [stimulation index: 29 (13) and 17 (7) for BMN cells from sweet itch and normal ponies, respectively during the active phase of disease; 4 microg protein ml(-1)CAgX; 168 h]. A heat labile factor(s) which caused eosinophil adherence was also released [sweet itch ponies: 6.0 (1.6) per cent adherence versus 1.3 (0.4) per cent; normal ponies: 6.6 (0.5) per cent adherence versus 0.9 (0.1) per cent for supernatants from CAgX (4 microg protein ml(-1); 48 hours) stimulated versus unstimulated BMN cells, respectively]. These results suggest that soluble proteins released from T lymphocytes could affect eosinophil function in the lesional skin of sweet itch horses.
Collapse
Affiliation(s)
- J Mckelvie
- Department of Veterinary Basic Sciences, The Royal Veterinary College, Hawkshead Campus, North Mymms, Hertfordshire, UK
| | | | | | | |
Collapse
|
30
|
Benarafa C, Cunningham FM, Hamblin AS, Horohov DW, Collins ME. Cloning of equine chemokines eotaxin, monocyte chemoattractant protein (MCP)-1, MCP-2 and MCP-4, mRNA expression in tissues and induction by IL-4 in dermal fibroblasts. Vet Immunol Immunopathol 2000; 76:283-98. [PMID: 11044560 DOI: 10.1016/s0165-2427(00)00222-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report the cloning of four equine CC chemokines, eotaxin, monocyte chemoattractant protein (MCP)-1, MCP-2 and MCP-4, which show high levels of identity with their respective homologous sequences in other species. Using a multiplex RT-PCR, we have studied the constitutive mRNA expression of these four CC chemokines in skin, lung, liver, spleen, jejunum, colon and kidney of normal adult horses and compared this data with the eosinophil counts in the same samples. We demonstrate that eotaxin mRNA is only expressed in jejunum and colon, where there are large numbers of eosinophils suggesting that eotaxin might be recruiting eosinophils in the normal digestive tract of the horse. MCP-1 and MCP-4 are expressed in all tissues whereas MCP-2 is only found in some samples of lung, spleen, liver and kidney. We also report the early induction (2h) of equine eotaxin and MCP-4, and the up-regulation of MCP-1 by interleukin-4 in dermal fibroblasts, suggesting these chemokines might be involved in equine skin allergic diseases.
Collapse
Affiliation(s)
- C Benarafa
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, UK.
| | | | | | | | | |
Collapse
|