1
|
Khamaru S, Mukherjee T, Tung KS, Kumar PS, Bandyopadhyay S, Mahish C, Chattopadhyay S, Chattopadhyay S. Chikungunya virus infection inhibits B16 melanoma-induced immunosuppression of T cells and macrophages mediated by interleukin 10. Microb Pathog 2024; 197:107022. [PMID: 39419458 DOI: 10.1016/j.micpath.2024.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
Immunosuppression in cancer poses challenges for immunotherapy and highlights the vulnerability of immunocompromised patients to viral infections. This study explored how Chikungunya virus (CHIKV) infection potentially inhibits B16-F10 melanoma-induced immunosuppressive effects on T cells and RAW 264.7 macrophages. We found high expression of CHIKV entry genes in melanoma and other cancers, with B16-F10 cells demonstrating greater susceptibility to CHIKV infection than non-tumorigenic cells. Interestingly, the CHIKV-infected B16-F10 cell culture supernatant (B16-F10-CS) reversed the immunosuppressive effects of uninfected B16-F10-CS on T cells. This reversal was characterised by decreased STAT3 activation and increased MAPK activation in T cells, an effect amplified by interleukin 10 (IL-10) receptor blockade. In RAW 264.7 cells, B16-F10-CS enhanced CHIKV infectivity without triggering activation. However, blocking the IL-10 receptor (IL-10R) in RAW 264.7 reduced CHIKV infection. CHIKV infection and IL-10R blockade synergistically inhibited B16-F10-CS-mediated polarisation of RAW 264.7 cells towards immunosuppressive macrophage. Our findings suggest that CHIKV modulates cancer-induced immunosuppression through IL-10-dependent pathways, providing new insights into viral-cancer interactions. This research may contribute to developing novel antiviral immunotherapies and virotherapies beneficial for cancer patients and immunocompromised individuals.
Collapse
Affiliation(s)
- Somlata Khamaru
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Tathagata Mukherjee
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India; Institute of Life Sciences, Bhubaneswar, India
| | - Kshyama Subhadarsini Tung
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - P Sanjai Kumar
- Institute of Life Sciences, Bhubaneswar, India; Division of Neonatology and Newborn Nursery, University of Wisconsin, Madison, USA
| | - Saumya Bandyopadhyay
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India; Johns Hopkins University School of Medicine, Department of Biological Chemistry, 725 North Wolfe Street, Baltimore, Maryland, USA
| | - Chandan Mahish
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | | | - Subhasis Chattopadhyay
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India.
| |
Collapse
|
2
|
Ahmadpour S, Habibi MA, Ghazi FS, Molazadeh M, Pashaie MR, Mohammadpour Y. The effects of tumor-derived supernatants (TDS) on cancer cell progression: A review and update on carcinogenesis and immunotherapy. Cancer Treat Res Commun 2024; 40:100823. [PMID: 38875884 DOI: 10.1016/j.ctarc.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Tumors can produce bioactive substances called tumor-derived supernatants (TDS) that modify the immune response in the host body. This can result in immunosuppressive effects that promote the growth and spread of cancer. During tumorigenesis, the exudation of these substances can disrupt the function of immune sentinels in the host and reinforce the support for cancer cell growth. Tumor cells produce cytokines, growth factors, and proteins, which contribute to the progression of the tumor and the formation of premetastatic niches. By understanding how cancer cells influence the host immune system through the secretion of these factors, we can gain new insights into cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mikaeil Molazadeh
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Pashaie
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Mohammadpour
- Department of Medical Education, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
|
4
|
Luo H, Tan D, Peng B, Zhang S, Vong CT, Yang Z, Wang Y, Lin Z. The Pharmacological Rationales and Molecular Mechanisms of Ganoderma lucidum Polysaccharides for the Therapeutic Applications of Multiple Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:53-90. [PMID: 34963429 DOI: 10.1142/s0192415x22500033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As a versatile Chinese herb, Ganoderma lucidum (Leyss. ex Fr.) Karst (G. lucidum) has been applied to treat multiple diseases in clinics and improve the quality of life of patients. Among all of its extracts, the main bioactive components are G. lucidum polysaccharides (GLPs), which possess many therapeutic effects, such as antitumor, immunoregulatory, anti-oxidant, antidiabetic, antibacterial, and antifungal effects and neuroprotection activities. This review briefly summarized the recent studies of the pharmacological rationales of GLPs and their underlying molecular signaling transmission mechanisms in treating diseases. Until now, the clear mechanisms of GLPs for treating diseases have not been reported. In this review, we used the keywords of "Ganoderma lucidum polysaccharides" and "tumor" to search in PubMed (years of 1992-2020), then screened and obtained 160 targets of antitumor activities in the literatures. The network pharmacology and mechanism framework were employed in this study as powerful approaches to systematically analyze the complicated potential antitumor mechanisms and targets of GLPs in cancer. We then found that there are 69 targets and 21 network pathways in "Pathways in cancer". Besides, we summarized the effects of GLPs and the models and methods used in the research of GLPs. In conclusion, GLPs have been studied extensively, but more in-depth research is still needed to determine the exact mechanisms and pathways. Therefore, this review might provide new insights into the vital targets and pathways for researchers to study the pharmacological mechanisms of GLPs for the treatment of diseases.
Collapse
Affiliation(s)
- Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Dechao Tan
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Bo Peng
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Siyuan Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zizhao Yang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P. R. China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhibin Lin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
5
|
Li YC, Ngan NT, Cheng KC, Hwang TL, Thang TD, Tuan NN, Yang ML, Kuo PC, Wu TS. Constituents from the Fruiting Bodies of Trametes cubensis and Trametes suaveolens in Vietnam and Their Anti-Inflammatory Bioactivity. Molecules 2021; 26:molecules26237311. [PMID: 34885893 PMCID: PMC8659016 DOI: 10.3390/molecules26237311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
It is reported that various fungi have been used for medicine and edible foods. The tropical Trametes genus is popular and well-known in Vietnam for its health effects and bioactivities. In this study, the fruiting bodies of the edible fungi T. cubensis and T. suaveolens were collected in Vietnam. The preliminary bioactivity screening data indicated that the methanol extracts of the fruiting bodies of T. cubensis and T. suaveolens displayed significant inhibition of superoxide anion generation and elastase release in human neutrophils. Therefore, the isolation and characterization were performed on these two species by a combination of chromatographic methods and spectrometric analysis. In total, twenty-four compounds were identified, and among these (1-3) were characterized by 1D-, 2D-NMR, and HRMS analytical data. In addition, the anti-inflammatory potentials of some purified compounds were examined by the cellular model for the inhibition of superoxide anion generation and elastase release in human neutrophils. Among the isolated compounds, (5,14), and (19) displayed significant anti-inflammatory potential. As the results suggest, the extracts and isolated compounds from T. cubensis and T. suaveolens are potential candidates for the further development of new anti-inflammatory lead drugs or natural healthy foods.
Collapse
Affiliation(s)
- Yue-Chiun Li
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (Y.-C.L.); (M.-L.Y.)
| | - Nguyen Thi Ngan
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (N.T.N.); (T.D.T.); (N.N.T.)
| | | | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Tran Dinh Thang
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (N.T.N.); (T.D.T.); (N.N.T.)
| | - Nguyen Ngoc Tuan
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam; (N.T.N.); (T.D.T.); (N.N.T.)
| | - Mei-Lin Yang
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (Y.-C.L.); (M.-L.Y.)
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (Y.-C.L.); (M.-L.Y.)
- Correspondence: (P.-C.K.); (T.-S.W.); Tel.: +886-6-2353535 (ext. 6806) (P.-C.K.); Tel.: +886-6-2757575 (ext. 65333) (T.-S.W.)
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (Y.-C.L.); (M.-L.Y.)
- Correspondence: (P.-C.K.); (T.-S.W.); Tel.: +886-6-2353535 (ext. 6806) (P.-C.K.); Tel.: +886-6-2757575 (ext. 65333) (T.-S.W.)
| |
Collapse
|
6
|
Nasr SA, Saad AAEM. Evaluation of the cytotoxic anticancer effect of polysaccharide of Nepeta septemcrenata. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Promoting cancer cells apoptosis is one of the effective methods to treat cancer. Human hepatocellular carcinoma (HepG2) and colorectal cancer (HCT-116) cell lines were used in the present study to evaluate the cytotoxic and anticancer properties of Nepeta septemcrenata Polysaccharide (NSP).
Result
Treatment of the two examined cells with NSP displayed a significant cytotoxicity towards HepG2 in a dose-dependent manner; meanwhile, its effect on HCT-116 was obtained under the influence of low doses. The quantitative real- time PCR (QRT-PCR) investigation revealed that NSP significantly up-regulated the expression levels of p53, p16, Fas, Fas-L, Bax, caspases-3, caspase-9, and TNF-α in association with down-regulation of cyclin D1, TERT, and BCL2. These findings declare the apoptotic characteristic of NSP.NSP, can also inhibit the development of cancer cells through the down-regulation of TGF-β and VEGF.
Conclusions
Our results suggested that the polysaccharides isolated from N. septemcrenata possess anticancer properties that could be explored for the development of novel anticancer agents.
Collapse
|
7
|
Alexandrino CAF, Honda NK, Matos MDFC, Portugal LC, Souza PRBD, Perdomo RT, Guimarães RDCA, Kadri MCT, Silva MCBL, Bogo D. Antitumor effect of depsidones from lichens on tumor cell lines and experimental murine melanoma. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2019.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Sohretoglu D, Huang S. Ganoderma lucidum Polysaccharides as An Anti-cancer Agent. Anticancer Agents Med Chem 2019; 18:667-674. [PMID: 29141563 DOI: 10.2174/1871520617666171113121246] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 01/28/2023]
Abstract
The mushroom Ganoderma lucidum (G. lucidum) has been used for centuries in Asian countries to treat various diseases and to promote health and longevity. Clinical studies have shown beneficial effects of G. lucidum as an alternative adjuvant therapy in cancer patients without obvious toxicity. G. lucidum polysaccharides (GLP) is the main bioactive component in the water soluble extracts of this mushroom. Evidence from in vitro and in vivo studies has demonstrated that GLP possesses potential anticancer activity through immunomodulatory, anti-proliferative, pro-apoptotic, anti-metastatic and anti-angiogenic effects. Here, we briefly summarize these anticancer effects of GLP and the underlying mechanisms.
Collapse
Affiliation(s)
- Didem Sohretoglu
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, TR 06100, Ankara, Turkey.,Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, United States
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, United States.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, United States
| |
Collapse
|
9
|
Antitumor Effect of Ganoderma (Lingzhi) Mediated by Immunological Mechanism and Its Clinical Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1182:39-77. [DOI: 10.1007/978-981-32-9421-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Cao Y, Xu X, Liu S, Huang L, Gu J. Ganoderma: A Cancer Immunotherapy Review. Front Pharmacol 2018; 9:1217. [PMID: 30410443 PMCID: PMC6209820 DOI: 10.3389/fphar.2018.01217] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/05/2018] [Indexed: 01/20/2023] Open
Abstract
Ganoderma is a significant source of natural fungal medicines and has been used for the treatment of various diseases for many years. However, the use of Ganoderma in cancer immunotherapy is poorly elucidated. In this study, we have analyzed 2,398 English-language papers and 6,968 Chinese-language papers published between 1987 and 2017 by using bibliometrics. A steady growth in the number of publications was observed before 2004, followed by an exponential increase between 2004 and 2017. The most common category for publications about Ganoderma was "Pharmacology & Pharmacy," in which immunomodulation (25.60%) and cancer treatment (21.40%) were the most popular subcategories. Moreover, we have provided an overview of the bioactive components and combinatorial immunomodulatory effects for the use of Ganoderma in the treatment of cancer, including the major pathways of immune cells. Immunomodulatory protein and polysaccharides are the key bioactive factors responsible for cancer immunotherapy, and the NF-κB and MAPK pathways are the most comprehensively investigated major pathways. Our results indicate that Ganoderma has a broad-spectrum application for the treatment of cancer through the regulation of the immune system. This review provides guidance for future research into the role of Ganoderma in cancer immunotherapy.
Collapse
Affiliation(s)
- Yu Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Pharmacy, Southwest University for Nationalities, Chengdu, China
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Linfang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian Gu
- Department of Pharmacy, Southwest University for Nationalities, Chengdu, China
| |
Collapse
|
11
|
Han QB. Critical Problems Stalling Progress in Natural Bioactive Polysaccharide Research and Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4581-4583. [PMID: 29659260 DOI: 10.1021/acs.jafc.8b00493] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Natural polysaccharides are attracting increasing attention from food and pharmaceutical industries for their wide range of valuable biological activities. However, the poor repeatability of the methods used in sample preparation and chemical characterization is hampering both research and product development. The unstandardized quality, in turn, undermines efforts to understand the mechanism by which they work via oral dose, which is essential to realize the full beneficial potential of polysaccharides. Some scientists believe polysaccharides work by direct gut absorption; however, increasing evidence points to the gut microbiome and intestinal Peyer's patches as holding the keys to how they work.
Collapse
Affiliation(s)
- Quan-Bin Han
- School of Chinese Medicine , Hong Kong Baptist University , 7 Baptist University Road , Kowloon Tong , Hong Kong, People's Republic of China
| |
Collapse
|
12
|
Wang C, Lin D, Chen Q, Lin S, Shi S, Chen C. Polysaccharide peptide isolated from grass-cultured Ganoderma lucidum induces anti-proliferative and pro-apoptotic effects in the human U251 glioma cell line. Oncol Lett 2018. [PMID: 29541200 PMCID: PMC5835855 DOI: 10.3892/ol.2018.7823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Ganoderma lucidum (G. lucidum) mushroom is one of the most extensively studied functional foods, known for its numerous health benefits, including the inhibition of tumor cell growth. The present study assessed the anti-proliferative and pro-apoptotic activity of a novel G. lucidum polysaccharide peptide (GL-PP) in human glioma U251 cells, which was purified from grass-cultured G. lucidum. GL-PP is a glycopeptide with an average molecular weight of 42,635 Da and a polysaccharide-to-peptide ratio of 88.70:11.30. The polysaccharides were composed of l-arabinose, d-mannose and d-glucose at a molar ratio of 1.329:0.372:2.953 and a total of 17 amino acids were detected. The results of the current study demonstrated that GL-PP significantly inhibited U251 cellular proliferation. The proportion of G0/G1 phase cells and sub-G1 phase cells significantly increased as the concentration of GL-PP increased, as did the activity of caspase-3. These results indicate that GL-PP directly inhibited human glioma U251 proliferation by inducing cell cycle arrest and promoting apoptosis.
Collapse
Affiliation(s)
- Chunhua Wang
- Department of Neurosurgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China.,Fujian Neurosurgical Institute, Fuzhou, Fujian 350001, P.R. China
| | - Dongmei Lin
- National Engineering Research Center of JUNCAO Technology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Quan Chen
- Department of Neurosurgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Shuqian Lin
- National Engineering Research Center of JUNCAO Technology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 350002, P.R. China.,Fuzhou Institute of Green Valley Bio-Pharm Technology, Fuzhou, Fujian 350002, P.R. China
| | - Songsheng Shi
- Department of Neurosurgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China.,Fujian Neurosurgical Institute, Fuzhou, Fujian 350001, P.R. China
| | - Chunmei Chen
- Department of Neurosurgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China.,Fujian Neurosurgical Institute, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
13
|
Sun LX, Lin ZB, Lu J, Li WD, Niu YD, Sun Y, Hu CY, Zhang GQ, Duan XS. The improvement of M1 polarization in macrophages by glycopeptide derived from Ganoderma lucidum. Immunol Res 2017; 65:658-665. [DOI: 10.1007/s12026-017-8893-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Liang Z, Guo YT, Yi YJ, Wang RC, Hu QL, Xiong XY. Ganoderma lucidum polysaccharides target a Fas/caspase dependent pathway to induce apoptosis in human colon cancer cells. Asian Pac J Cancer Prev 2016; 15:3981-6. [PMID: 24935584 DOI: 10.7314/apjcp.2014.15.9.3981] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Ganoderma lucidum polysaccharides (GLP) extracted from Ganoderma lucidum have been shown to induce cell death in some kinds of cancer cells. This study investigated the cytotoxic and apoptotic effect of GLP on HCT-116 human colon cancer cells and the molecular mechanisms involved. Cell proliferation, cell migration, lactate dehydrogenase (LDH) levels and intracellular free calcium levels ([Ca(2+)]i) were determined by MTT, wound-healing, LDH release and fluorescence assays, respectively. Cell apoptosis was observed by scanning and transmission electron microscopy. For the mechanism studies, caspase-8 activation, and Fas and caspase-3 expression were evaluated. Treatment of HCT-116 cells with various concentrations of GLP (0.625-5 mg/mL) resulted in a significant decrease in cell viability (P< 0.01). This study showed that the antitumor activity of GLP was related to cell migration inhibition, cell morphology changes, intracellular Ca(2+) elevation and LDH release. Also, increase in the levels of caspase-8 activity was involved in GLP-induced apoptosis. Western blotting indicated that Fas and caspase-3 protein expression was up-regulated after exposure to GLP. This investigation demonstrated for the first time that GLP shows prominent anticancer activities against the HCT-116 human colon cancer cell line through triggering intracellular calcium release and the death receptor pathway.
Collapse
Affiliation(s)
- Zengenni Liang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China E-mail : ;
| | | | | | | | | | | |
Collapse
|
15
|
Mustapha N, Mokdad-Bzéouich I, Sassi A, Abed B, Ghedira K, Hennebelle T, Chekir-Ghedira L. Immunomodulatory potencies of isolated compounds from Crataegus azarolus through their antioxidant activities. Tumour Biol 2015; 37:7967-80. [PMID: 26711781 DOI: 10.1007/s13277-015-4517-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/25/2015] [Indexed: 01/27/2023] Open
Abstract
The search of natural immunomodulatory agents has become an area of great interest in order to reduce damage to the human body. In this study, the immunomodulatory potential of Crataegus azarolus and its isolated hyperoside on mouse lymphocytes and macrophages in vitro was assessed. The effect of C. azarolus natural compounds on splenocytes proliferation, natural killer (NK) and cytotoxic T lymphocytes (CTL) activities, and on macrophage-mediated cytotoxicity were assessed by MTT test. Phagocytic activity and inhibition of nitric oxide (NO) release by macrophages were also evaluated. The antioxidant capacity of these products was evaluated by determining their cellular antioxidant activity (CAA) in splenocytes and macrophages. Depending on the concentrations, both ethyl acetate (EA) extract and hyperoside (Hyp) from C. azarolus affect macrophage functions by modulating their lysosomal enzyme activity and nitric oxide release. Whereas, the above-mentioned products significantly promote LPS and lectin-stimulated splenocyte proliferation, implying a potential activation of lymphocytes B and T enhancing humoral and cellular immune responses. Moreover, EA extract and Hyp could enhance the activity of NK and T lymphocytes cells, as well as the macrophages-mediated cytotoxicity against B16F10 cells. The anti-inflammatory activity was concomitant with the cellular antioxidant effect of the tested compounds against macrophages and splenocytes. Collectively, C. azarolus and its isolated hyperoside exhibited an immunomodulatory effect through their antioxidant activity. These findings suggest that C. azarolus should be explored as a novel potential immunomodulatory agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Nadia Mustapha
- Laboratoire de biologie cellulaire et moléculaire, Faculté de médecine dentaire, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
- Unité de Substances naturelles bioactives et biotechnologie UR12ES12, Faculté de pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Imèn Mokdad-Bzéouich
- Laboratoire de biologie cellulaire et moléculaire, Faculté de médecine dentaire, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
- Unité de Substances naturelles bioactives et biotechnologie UR12ES12, Faculté de pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Aicha Sassi
- Laboratoire de biologie cellulaire et moléculaire, Faculté de médecine dentaire, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
- Unité de Substances naturelles bioactives et biotechnologie UR12ES12, Faculté de pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Besma Abed
- Laboratoire de biologie cellulaire et moléculaire, Faculté de médecine dentaire, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
- Unité de Substances naturelles bioactives et biotechnologie UR12ES12, Faculté de pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Kamel Ghedira
- Unité de Substances naturelles bioactives et biotechnologie UR12ES12, Faculté de pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Thierry Hennebelle
- Laboratoire de Pharmacognosie, E.A. 1043, Université de Lille 2, Faculté de Pharmacie B.P. 83, 59006, Lille cedex, France
| | - Leila Chekir-Ghedira
- Laboratoire de biologie cellulaire et moléculaire, Faculté de médecine dentaire, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia.
- Unité de Substances naturelles bioactives et biotechnologie UR12ES12, Faculté de pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000, Monastir, Tunisia.
| |
Collapse
|
16
|
Cytokine production suppression by culture supernatant of B16F10 cells and amelioration by Ganoderma lucidum polysaccharides in activated lymphocytes. Cell Tissue Res 2015; 360:379-89. [DOI: 10.1007/s00441-014-2083-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 11/27/2014] [Indexed: 01/09/2023]
|
17
|
Sun LX, Lin ZB, Duan XS, Qi HH, Yang N, Li M, Xing EH, Sun Y, Yu M, Li WD, Lu J. Suppression of the Production of Transforming Growth Factor β1, Interleukin-10, and Vascular Endothelial Growth Factor in the B16F10 Cells byGanoderma lucidumPolysaccharides. J Interferon Cytokine Res 2014; 34:667-75. [PMID: 24673200 DOI: 10.1089/jir.2012.0101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Li-Xin Sun
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Zhi-Bin Lin
- Department of Pharmacology, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xin-Suo Duan
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Hai-Hua Qi
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Ning Yang
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Min Li
- Department of Pharmacology, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - En-Hong Xing
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Yu Sun
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Min Yu
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Wei-Dong Li
- Department of Pharmacology, Health Science Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jie Lu
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| |
Collapse
|
18
|
Lu J, Sun LX, Lin ZB, Duan XS, Ge ZH, Xing EH, Lan TF, Yang N, Li XJ, Li M, Li WD. Antagonism by Ganoderma lucidum
Polysaccharides Against the Suppression by Culture Supernatants of B16F10 Melanoma Cells on Macrophage. Phytother Res 2013; 28:200-6. [PMID: 23519930 DOI: 10.1002/ptr.4980] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/25/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Jie Lu
- Affiliated Hospital of Chengde Medical College; Chengde 067000 Hebei Province China
| | - Li-Xin Sun
- Affiliated Hospital of Chengde Medical College; Chengde 067000 Hebei Province China
- Department of Pharmacology; Peking University Health Science Center, School of Basic Medical Sciences; Beijing 100191 China
| | - Zhi-Bin Lin
- Department of Pharmacology; Peking University Health Science Center, School of Basic Medical Sciences; Beijing 100191 China
| | - Xin-Suo Duan
- Affiliated Hospital of Chengde Medical College; Chengde 067000 Hebei Province China
| | - Zhi-Hua Ge
- Affiliated Hospital of Chengde Medical College; Chengde 067000 Hebei Province China
| | - En-Hong Xing
- Affiliated Hospital of Chengde Medical College; Chengde 067000 Hebei Province China
| | - Tian-Fei Lan
- Affiliated Hospital of Chengde Medical College; Chengde 067000 Hebei Province China
| | - Ning Yang
- Affiliated Hospital of Chengde Medical College; Chengde 067000 Hebei Province China
| | - Xue-Jun Li
- Department of Pharmacology; Peking University Health Science Center, School of Basic Medical Sciences; Beijing 100191 China
| | - Min Li
- Department of Pharmacology; Peking University Health Science Center, School of Basic Medical Sciences; Beijing 100191 China
| | - Wei-Dong Li
- Department of Pharmacology; Peking University Health Science Center, School of Basic Medical Sciences; Beijing 100191 China
| |
Collapse
|
19
|
Duan XS, Lu J, Ge ZH, Xing EH, Lu HT, Sun LX. Effects of T-cadherin expression on B16F10 melanoma cells. Oncol Lett 2013; 5:1205-1210. [PMID: 23599764 PMCID: PMC3629152 DOI: 10.3892/ol.2013.1164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/16/2013] [Indexed: 12/24/2022] Open
Abstract
Melanoma is one of the most deadly skin cancers. T-cadherin is an atypical member of the cadherin superfamily as it lacks the transmembrane and cytoplasmic domains and is anchored to cell membranes through glycosylphosphatidylinositol (GPI) anchors. T-cadherin downregulation is associated with a poorer prognosis in various carcinomas, such as lung, ovarian, cervical and prostate cancer, while in the majority of cancer cell lines, T-cadherin re-expression inhibits cell proliferation and invasiveness, increases susceptibility in apoptosis and reduces tumor growth in in vivo models. The functional relevance of T-cadherin gene expression in melanoma progression remains to be clarified. The present study was designed for this purpose. The T-cadherin gene was transfected into B16F10 melanoma cells to express T-cadherin in the cells which were originally deficient in T-cadherin expression. The proliferation, invasiveness, apoptosis and cell cycle of the transfected B16F10 melanoma cells were analyzed. The present study showed that the expression of T-cadherin in B16F10 melanoma cells markedly reduced cell proliferation and permeation through Matrigel-coated membranes, representing invasiveness. The percentage of early apoptotic cells and cells in the G2/M phase of the cell cycle was markedly increased compared with either parental B16F10 (without transfection) or empty pEGFP-N1 (without T-cadherin gene)-transfected B16F10 cells, suggesting G2/M arrest, with similarity between the parental and empty pEGFP-N1-transfected B16F10 cells. T-cadherin is important in melanoma progression and may be a possible target for therapy in melanoma and certain other types of cancer.
Collapse
Affiliation(s)
- Xin-Suo Duan
- Departments of Dermatology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | | | | | | | | | | |
Collapse
|
20
|
Sun LX, Lin ZB, Duan XS, Lu J, Ge ZH, Li M, Xing EH, Lan TF, Jiang MM, Yang N, Li WD. Ganoderma lucidum polysaccharides counteract inhibition on CD71 and FasL expression by culture supernatant of B16F10 cells upon lymphocyte activation. Exp Ther Med 2013; 5:1117-1122. [PMID: 23596479 PMCID: PMC3628224 DOI: 10.3892/etm.2013.931] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 01/23/2013] [Indexed: 12/19/2022] Open
Abstract
Immune responses to tumor-associated antigens are often detectable in tumor-bearing hosts, but they fail to eliminate malignant cells or prevent development of metastases. Tumor cells produce factors such as interleukin-10, transforming growth factor-β1 and vascular endothelial growth factor (VEGF) that suppress the function of immune cells or induce apoptosis of immune cells. Culture supernatant of tumor cells may contain these immunosuppressive factors which suppress lymphocyte activation. CD71 and FasL are two important molecules that are expressed upon lymphocyte activation. Counteraction against suppression CD71 and FasL expression upon lymphocyte activation may benefit tumor control. A potential component with this effect is Ganoderma lucidum polysaccharides (Gl-PS). In this study, Gl-PS was used on lymphocytes incubating with culture supernatant of B16F10 melanoma cells (B16F10-CS) in the presence of phytohemagglutinin. Following induction with phytohemagglutinin, B16F10-CS suppressed CD71 expression in lymphocytes (as detected by immunofluorescence and flow cytometry), proliferation in lymphocytes (as detected by MTT assay), and FasL expression in lymphocytes (as detected by immunocytochemistry and western blot analysis), while Gl-PS fully or partially counteracted these suppressions. Gl-PS showed counteractive effects against suppression induced by B16F10-CS on CD71 and FasL expression upon lymphocyte activation, suggesting the potential of Gl-PS to facilitate cancer immunotherapy.
Collapse
Affiliation(s)
- Li-Xin Sun
- The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Anticancer polysaccharides from natural resources: a review of recent research. Carbohydr Polym 2012; 90:1395-410. [PMID: 22944395 DOI: 10.1016/j.carbpol.2012.07.026] [Citation(s) in RCA: 442] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 07/05/2012] [Accepted: 07/07/2012] [Indexed: 12/12/2022]
Abstract
Taking into account the rising trend of the incidence of cancers of various organs, effective therapies are urgently needed to control human malignancies. However, almost all of the chemotherapy drugs currently on the market cause serious side effects. Fortunately, several previous studies have shown that some non-toxic biological macromolecules, including polysaccharides and polysaccharide-protein complexes, possess anti-cancer activities or can increase the efficacy of conventional chemotherapy drugs. Based on these encouraging observations, a great deal of effort has been focused on discovering anti-cancer polysaccharides and complexes for the development of effective therapeutics for various human cancers. This review focuses on the advancements in the anti-cancer efficacy of various natural polysaccharides and polysaccharide complexes in the past 5 years. Most polysaccharides were tested using model systems, while several involved clinical trials.
Collapse
|
22
|
Sun LX, Lin ZB, Duan XS, Lu J, Ge ZH, Li XF, Li XJ, Li M, Xing EH, Song YX, Jia J, Li WD. Enhanced MHC class I and costimulatory molecules on B16F10 cells byGanoderma lucidumpolysaccharides. J Drug Target 2012; 20:582-92. [DOI: 10.3109/1061186x.2012.697167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Stronger cytotoxicity in CTLs with granzyme B and porforin was induced by Ganoderma lucidum polysaccharides acting on B16F10 cells. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.bionut.2012.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Jeong SJ, Koh W, Kim B, Kim SH. Are there new therapeutic options for treating lung cancer based on herbal medicines and their metabolites? JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:652-661. [PMID: 22032843 DOI: 10.1016/j.jep.2011.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 05/31/2023]
Abstract
UNLABELLED ETHONOPHARMACOLOGICAL RELEVANCE: Lung cancer is one of the most lethal cancers in terms of mortality and incidence worldwide. Despite intensive research and investigation, treatment of lung cancer is still unsatisfactory due to adverse effects and multidrug resistance. Recently, herbal drugs have been recognized as one of attractive approaches for lung cancer therapy with little side effects. Furthermore, there are evidences that various herbal medicines have proven to be useful and effective in sensitizing conventional agents, prolonging survival time, preventing side effects of chemotherapy, and improving quality of life (QoL) in lung cancer patients. AIM AND METHODS OF THE STUDY Nevertheless, the underlying molecular targets and efficacy of herbal medicines in lung cancer treatment still remain unclear. Thus, we reviewed traditionally used herbal medicines and their phytochemicals with antitumor activity against lung cancer from peer-reviewed papers through Scientific Database Medline, Scopus and Google scholar. CONCLUSIONS We suggest that herbal medicines and phytochemicals can be useful anti-cancer agents for lung cancer treatment by targeting molecular signaling involved in the regulation of angiogenesis, metastasis and severe side effects, only provided quality control and reproducibility issues were solved.
Collapse
Affiliation(s)
- Soo-Jin Jeong
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
25
|
Sun LX, Chen LH, Lin ZB, Qin Y, Zhang JQ, Yang J, Ma J, Ye T, Li WD. Effects of Ganoderma lucidum polysaccharides on IEC-6 cell proliferation, migration and morphology of differentiation benefiting intestinal epithelium healing in vitro. J Pharm Pharmacol 2011; 63:1595-603. [PMID: 22060291 DOI: 10.1111/j.2042-7158.2011.01367.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Restoration of epithelial continuity in the intestinal surface after extensive destruction is important since intestinal epithelial cells stand as a boundary between the body's internal and external environment. Polysaccharides from Ganoderma lucidum (Gl-PS) may benefit intestinal epithelial wound healing in different aspects, which awaits clarification. To identify potential effects, a non-transformed small-intestinal epithelial cell line, IEC-6 cells, was used. METHODS Effects on epithelial cell proliferation, migration, morphology of differentiation and transforming growth factor beta (TGF-β) protein expression, as well as the cellular ornithine decarboxylase (ODC) mRNA and c-Myc mRNA expression, were assessed, respectively, by MTT assay, wound model in vitro, observation under a microscope after hematoxylin and eosin staining, enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction assays. KEY FINDINGS It was shown that Gl-PS stimulated IEC-6 cell proliferation and migration significantly in a dose-dependent manner; 10 µg/ml Gl-PS improved the morphology of differentiation in IEC-6 cells. Inefficacy in expression of TGF-β in IEC-6 cells indicated a possible TGF-β independent action of Gl-PS. However, Gl-PS increased ODC mRNA and c-Myc mRNA expression in a dose-dependent manner, indicating, at least partially possible involvement of ODC and c-Myc gene expression in improvement of intestinal wound healing. CONCLUSIONS These results suggest the potential usefulness of Gl-PS to cure intestinal disorders characterized by injury and ineffective repair of the intestinal mucosa.
Collapse
Affiliation(s)
- Li-Xin Sun
- Department of Pharmacology, Basic Medical School, Peking University Health Science Center, Beijing Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|