1
|
Liang Q, Wang JW, Bai YR, Li RL, Wu CJ, Peng W. Targeting TRPV1 and TRPA1: A feasible strategy for natural herbal medicines to combat postoperative ileus. Pharmacol Res 2023; 196:106923. [PMID: 37709183 DOI: 10.1016/j.phrs.2023.106923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Under physiological or pathological conditions, transient receptor potential (TRP) channel vanilloid type 1 (TRPV1) and TRP ankyrin 1 (TRPA1) possess the ability to detect a vast array of stimuli and execute diverse functions. Interestingly, increasing works have reported that activation of TRPV1 and TRPA1 could also be beneficial for ameliorating postoperative ileus (POI). Increasing research has revealed that the gastrointestinal (GI) tract is rich in TRPV1/TRPA1, which can be stimulated by capsaicin, allicin and other compounds. This activation stimulates a variety of neurotransmitters, leading to increased intestinal motility and providing protective effects against GI injury. POI is the most common emergent complication following abdominal and pelvic surgery, and is characterized by postoperative bowel dysfunction, pain, and inflammatory responses. It is noteworthy that natural herbs are gradually gaining recognition as a potential therapeutic option for POI due to the lack of effective pharmacological interventions. Therefore, the focus of this paper is on the TRPV1/TRPA1 channel, and an analysis and summary of the processes and mechanism by which natural herbs activate TRPV1/TRPA1 to enhance GI motility and relieve pain are provided, which will lay the foundation for the development of natural herb treatments for this disease.
Collapse
Affiliation(s)
- Qi Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jing-Wen Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yu-Ru Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Chun-Jie Wu
- Institute of Innovation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
2
|
Shibata M, Takahashi T, Kozakai T, Shindo J, Kurose Y. Development of active jejunal glucose absorption in broiler chickens. Poult Sci 2023; 102:102804. [PMID: 37321034 PMCID: PMC10404788 DOI: 10.1016/j.psj.2023.102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Growth in chickens, especially meat-type chickens (broilers), is extremely rapid, but studies on the regulatory mechanism of intestinal glucose absorption with growth are few, contradictory, and unclear. Here, we investigated the regulation of intestinal glucose absorption with growth in broiler chickens using oral glucose gavage, intestinal Evans blue transit, intestinal glucose absorption, scanning electron microscopy, and glucose absorption- and cell junction-related gene expression analyses. Peak blood glucose levels after oral glucose gavage occurred at 10 and 50 min in chickens at 1 wk (C1W) and 5 wk (C5W) of age, respectively. The area under the curve for glucose levels was greater for the C5W than the C1W (P = 0.035). The stain ratio in the small intestine in the C5W was lower than that in the C1W (P = 0.01), but there were no differences in the tissue regions stained with Evans blue and the migration distance of Evans blue from Meckel's diverticulum. In everted sac and Ussing chamber experiments, we observed reduced intestinal glucose uptake and electrogenic glucose absorption in the jejunum of the C5W. Phloridzin, an inhibitor of sodium/glucose cotransporter 1 (SGLT1), suppressed the glucose-induced short-circuit current in the C1W (P = 0.016) but not the C5W. Although the addition of NaCl solution stimulated the glucose-induced short-circuit current in the C1W, no differences between the treatments were observed (P = 0.056), which was also the case in the C5W. Additionally, tissue conductance was diminished in the C5W compared with that in the C1W. Moreover, in the C5W, the intestinal tract was more developed and the jejunal villi were enlarged. In conclusion, glucose absorption throughout the intestine could be greater in C5W than in C1W; however, reduced SGLT1 sensitivity, decreased ion permeability, and intestinal overdevelopment lead to decreased local glucose absorption in the jejunum with growth in broiler chickens. These data provide a detailed analysis of intestinal glucose absorption in growing broiler chickens, and can contribute to the development of novel feeds.
Collapse
Affiliation(s)
- Mikako Shibata
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Tatsuyuki Takahashi
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan.
| | - Takaharu Kozakai
- Faculty of Education, Art and Science, Yamagata University, Yamagata, Japan
| | - Junji Shindo
- Laboratory of Wildlife Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Yohei Kurose
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| |
Collapse
|
3
|
Zhong F, Chen Y, Chen J, Liao H, Li Y, Ma Y. Jatrorrhizine: A Review of Sources, Pharmacology, Pharmacokinetics and Toxicity. Front Pharmacol 2022; 12:783127. [PMID: 35095493 PMCID: PMC8793695 DOI: 10.3389/fphar.2021.783127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 02/02/2023] Open
Abstract
Jatrorrhizine, an isoquinoline alkaloid, is a bioactive metabolite in common medicinal plants, such as Berberis vernae Schneid., Tinospora sagittata (Oliv.) Gagnep. and Coptis chinensis Franch. These plants have been used for centuries in traditional medicine for their wide-ranging pharmacological properties. This review emphasizes the latest and comprehensive information on the sources, pharmacology, pharmacokinetics and toxicity of jatrorrhizine. Studies on this alkaloid were collected from scientific internet databases, including the Web of Science, PubMed, ScienceDirect, Google Scholar, Elsevier, Springer, Wiley Online Library and Europe PMC and CNKI, using a combination of keywords involving “jatrorrhizine”, “sources”, “pharmacology,” “pharmacokinetics,” and “toxicology”. Jatrorrhizine exhibits anti-diabetic, antimicrobial, antiprotozoal, anticancer, anti-obesity and hypolipidemic properties, along with central nervous system activities and other beneficial activity. Studies of jatrorrhizine have laid the foundation for its application to the treatment of various diseases, but some issues still exist. Further investigations might emphasize 1) specific curative mechanisms of jatrorrhizine and clinical utility, 2) application prospect in the treatment of metabolic disorders, 3) comprehensive investigations of the toxicity mechanisms and 4) interactions of jatrorrhizine with other pharmaceuticals and development of derivatives.
Collapse
Affiliation(s)
- Furong Zhong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailang Liao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yirou Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuntong Ma
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Rolle J, Asante DO, Kok-Fong LL, Boucetta H, Seidu TA, Tai LLK, Alolga RN. Jatrorrhizine: a review of its pharmacological effects. J Pharm Pharmacol 2021; 73:709-719. [PMID: 33822109 DOI: 10.1093/jpp/rgaa065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Jatrorrhizine is an isoquinoline alkaloid found in medicinal plants. It is the main bioactive compound of the Chinese herbs, Coptis chinensis, Rhizoma coptidis, and Phellodendron chinense Schneid, plants that are predominantly used in traditional Chinese medicine (TCM) for the treatment of metabolic disorders, gastritis, stomachache among a host of others. This manuscript aims to provide a comprehensive review of the pharmacological effects of jatrorrhizine, proffer suggestions on research areas that need redress and potentially serve as a reference for future studies. KEY FINDINGS Published scientific literature was therefore retrieved from all credible sources including Pubmed, Elsevier, Research Gate, Web of Science, Google Scholar, Science Direct, Europe PMC and Wiley Online library using key words such as 'jatrorrhizine', 'botanical sources', 'pharmacology', 'toxicology', 'pharmacokinetics' or their combinations. A cursory examination of relevant scientific literature using the aforementioned key words produced more than 400 publications. CONCLUSIONS Using an inclusion/exclusion criteria the subject matter of this review was adequately addressed. It is our hope that this review will provide a good platform for further research on fully harnessing the potential of this bioactive compound.
Collapse
Affiliation(s)
- Janiqua Rolle
- School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Dorothy O Asante
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Linsey L Kok-Fong
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hamza Boucetta
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Theodora A Seidu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lesieli L K Tai
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Raphael N Alolga
- Department of Pharmacognosy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Wang D, Zhao R, Duan HX, Zhang MM, He L, Ye X, Wei DN, Wu CJ. Research progress regarding potential effects of traditional Chinese medicine on postoperative intestinal obstruction. J Pharm Pharmacol 2021; 73:1007-1022. [PMID: 33861338 DOI: 10.1093/jpp/rgaa054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/10/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Postoperative intestinal obstruction is a common postoperative complication with typical symptoms of abdominal pain, vomiting, abdominal distension and constipation. The principal aim of this paper is to provide a full-scale review on the categories and characteristics of postoperative intestinal obstruction, pathophysiology, effects and detailed mechanisms of compounds and monomers from traditional Chinese medicine for treating postoperative intestinal obstruction. Moreover, the possible development and perspectives for future research are also analyzed. METHODS Literature regarding postoperative intestinal obstruction as well as the anti-pio effect of aqueous extracts and monomers from traditional Chinese medicine in the last 20 years was summarized. KEY FINDINGS To date, approximately 30 compounds and 25 monomers isolated from traditional Chinese medicine including terpenes, alkaloids, polysaccharides, flavonoids, phenylpropanoids and quinones, have exerted significant antipio effect. This paper reviews the effective doses, models, detailed mechanisms, and composition of these traditional Chinese medicine compounds, as well as the structure of these monomers. Moreover, challenges existed in the current investigation and further perspectives were discussed as well, hoping to provide a reference for future clinical treatment of postoperative intestinal obstruction and the development of new drugs. CONCLUSIONS Above all, the convincing evidence from modern pharmacology studies powerfully supported the great potential of traditional Chinese medicine in the management of postoperative intestinal obstruction. Regrettably, less attention was currently paid on the mechanisms of traditional Chinese medicine compounds and monomers with antipio effect. Consequently, future study should focus on monomer-mechanism and structure-function relationship.
Collapse
Affiliation(s)
- Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng-Meng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xun Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Da-Neng Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Jatrorrhizine Balances the Gut Microbiota and Reverses Learning and Memory Deficits in APP/PS1 transgenic mice. Sci Rep 2019; 9:19575. [PMID: 31862965 PMCID: PMC6925119 DOI: 10.1038/s41598-019-56149-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a complex disorder influenced by both genetic and environmental components and has become a major public health issue throughout the world. Oxidative stress and inflammation play important roles in the evolution of those major pathological symptoms. Jatrorrhizine (JAT), a main component of a traditional Chinese herbal, coptidis rhizome, has been shown to have neuroprotective effects and we previously showed that it is also able to clear oxygen free radicals and reduce inflammatory responses. In this study, we demonstrated that JAT administration could alleviate the learning and memory deficits in AD. Furthermore, we also found that JAT treatment reduced the levels of Aβ plaques in the cortex and hippocampus of APP/PS1 double-transgenic mice. Other studies suggest that there are gut microbiome alterations in AD. In order to explore the underlying mechanisms between gut microbiota and AD, DNA sequencing for 16s rDNA V3-V4 was performed in fecal samples from APP/PS1 transgenic mice and C57BL/6 wild-type (WT) mice. Our results indicated that APP/PS1 mice showed less Operational Taxonomic Units (OTUs) abundance in gut microbiota than WT mice and with different composition. Furthermore, JAT treatment enriched OTUs abundance and alpha diversity in APP/PS1 mice compared to WT mice. High dose of JAT treatment altered the abundance of some specific gut microbiota such as the most predominant phylum Firmicutes and Bacteroidetes in APP/PS1 mice. In conclusion, APP/PS1 mice display gut dysbiosis, and JAT treatment not only improved the memory deficits, but also regulated the abundance of the microbiota. This may provide a therapeutic way to balance the gut dysbiosis in AD patients.
Collapse
|
7
|
Wang J, Wang L, Lou GH, Zeng HR, Hu J, Huang QW, Peng W, Yang XB. Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. PHARMACEUTICAL BIOLOGY 2019; 57:193-225. [PMID: 30963783 PMCID: PMC6461078 DOI: 10.1080/13880209.2019.1577466] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/04/2019] [Accepted: 01/20/2019] [Indexed: 05/09/2023]
Abstract
CONTEXT Coptidis rhizome (CR), also known as Huanglian in Chinese, is the rhizome of Coptis chinensis Franch., C. deltoidea C.Y. Cheng et Hsiao, or C. teeta Wall (Ranunculaceae). It has been widely used to treat bacillary dysentery, diabetes, pertussis, sore throat, aphtha, and eczema in China. OBJECTIVES The present paper reviews the latest advances of CR, focusing on the botany, phytochemistry, traditional usages, pharmacokinetics, pharmacology and toxicology of CR and its future perspectives. METHODS Studies from 1985 to 2018 were reviewed from books; PhD. and MSc. dissertations; the state and local drug standards; PubMed; CNKI; Scopus; the Web of Science; and Google Scholar using the keywords Coptis, Coptidis Rhizoma, Huanglian, and goldthread. RESULTS Currently, 128 chemical constituents have been isolated and identified from CR. Alkaloids are the characteristic components, together with organic acids, coumarins, phenylpropanoids and quinones. The extracts/compounds isolated from CR cover a wide pharmacological spectrum, including antibacterial, antivirus, antifungal, antidiabetic, anticancer and cardioprotective effects. Berberine is the most important active constituent and the primary toxic component of CR. CONCLUSIONS As an important herbal medicine in Chinese medicine, CR has the potential to treat various diseases. However, further research should be undertaken to investigate the clinical effects, toxic constituents, target organs and pharmacokinetics, and to establish criteria for quality control, for CR and its related medications. In addition, the active constituents, other than alkaloids, in both raw and processed products of CR should be investigated.
Collapse
Affiliation(s)
- Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-Bo Yang
- Ya'an Xun Kang Pharmaceutical Co., Ltd, Ya'an, China
| |
Collapse
|
8
|
He Y, Yang C, Wang P, Yang L, Wu H, Liu H, Qi M, Guo Z, Li J, Shi H, Wu X, Hu Z. Child compound Endothelium corneum attenuates gastrointestinal dysmotility through regulating the homeostasis of brain-gut-microbiota axis in functional dyspepsia rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 240:111953. [PMID: 31082513 DOI: 10.1016/j.jep.2019.111953] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nowadays, there is no specific effective western medicine for functional dyspepsia (FD), especially in children. Clinically, child compound Endothelium corneum (CCEC) has shown to be effective for the therapy of FD, however, the underlying mechanism has not been elucidated yet. MATERIALS AND METHODS FD was induced in rats by irregular diet plus dilute hydrochloric acid feeding. Gastric emptying and small intestinal transit were examined by intragastric gavage with Evans blue. Histopathology was assessed by H&E staining. Gastrointestinal hormones and brain gut peptides were measured by ELISA assay. mRNA expression level was quantified by real-time PCR. Protein expression level was detected by western blotting assay. Gut microbiota was analyzed by 16S rRNA miseq sequencing. RESULTS CCEC significantly enhanced gastric emptying and small intestinal transit of FD rats, and prominently suppressed gastrointestinal microinflammation. At phylum level, CCEC prevented the decrease of Firmicutes and the increase of Bacteroidetes in gut of FD rats. In stomach of FD rats, MTL, CCK and VIP levels were significantly increased, which could be repressed by CCEC; however, the decreased GAS level could not be elevated by CCEC. In small intestine of FD rats, MTL and GAS levels were decreased, while VIP content was increased. These alterations could be effectively reversed by CCEC. NPY levels in serum, small intestine and hypothalamus of FD rats were significantly decreased, which could be rescued by CCEC. Moreover, the over-activated POMC/Stat3/Akt pathway in hypothalamus of FD rats could be suppressed by CCEC. CONCLUSION CCEC enhanced gastrointestinal motility probably through rebalancing the homeostasis of brain-gut-microbiota axis in FD rats. The novel findings may provide insightful theoretical basis for its clinical employment.
Collapse
Affiliation(s)
- Yixin He
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Zhengzhou University, Zhengzhou, 450001, China.
| | - Chun Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ping Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hongmin Liu
- School of Pharmacy, Zhengzhou University, Zhengzhou, 450001, China.
| | - Muge Qi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhonghua Guo
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jianghua Li
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhibi Hu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Sun S, Zhou S, Lei S, Zhu S, Wang K, Jiang H, Zhou H. Jatrorrhizine reduces 5-HT and NE uptake via inhibition of uptake-2 transporters and produces antidepressant-like action in mice. Xenobiotica 2019; 49:1237-1243. [DOI: 10.1080/00498254.2018.1542188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Siyuan Sun
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
- Department of Dermatology and Venereology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, PR China
| | - Sisi Zhou
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Shaowei Lei
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Shujie Zhu
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Kai Wang
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Huidi Jiang
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Hui Zhou
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
10
|
Meng FC, Wu ZF, Yin ZQ, Lin LG, Wang R, Zhang QW. Coptidis rhizoma and its main bioactive components: recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin Med 2018. [PMID: 29541156 PMCID: PMC5842587 DOI: 10.1186/s13020-018-0171-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Coptidis rhizoma (CR) is the dried rhizome of Coptis chinensis Franch., C. deltoidea C. Y. Cheng et Hsiao or C. teeta Wall. (Ranunculaceae) and is commonly used in Traditional Chinese Medicine for the treatment of various diseases including bacillary dysentery, typhoid, tuberculosis, epidemic cerebrospinal meningitis, empyrosis, pertussis, and other illnesses. Methods A literature survey was conducted via SciFinder, ScieneDirect, PubMed, Springer, and Wiley databases. A total of 139 selected references were classified on the basis of their research scopes, including chemical investigation, quality evaluation and pharmacological studies. Results Many types of secondary metabolites including alkaloids, lignans, phenylpropanoids, flavonoids, phenolic compounds, saccharides, and steroids have been isolated from CR. Among them, protoberberine-type alkaloids, such as berberine, palmatine, coptisine, epiberberine, jatrorrhizine, columamine, are the main components of CR. Quantitative determination of these alkaloids is a very important aspect in the quality evaluation of CR. In recent years, with the advances in isolation and detection technologies, many new instruments and methods have been developed for the quantitative and qualitative analysis of the main alkaloids from CR. The quality control of CR has provided safety for pharmacological applications. These quality evaluation methods are also frequently employed to screen the active components from CR. Various investigations have shown that CR and its main alkaloids exhibited many powerful pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetic, neuroprotective, cardioprotective, hypoglycemic, anti-Alzheimer and hepatoprotective activities. Conclusion This review summarizes the recent phytochemical investigations, quality evaluation methods, the biological studies focusing on CR as well as its main alkaloids.
Collapse
Affiliation(s)
- Fan-Cheng Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Zheng-Feng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Zhi-Qi Yin
- 2Department of Traditional Chinese Medicines Pharmaceuticals, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| |
Collapse
|
11
|
Abstract
Preclinical research remains an important tool for discovery and validation of novel therapeutics for gastrointestinal disorders. While in vitro assays can be used to verify receptor-ligand interactions and test for structural activity of new compounds, only whole-animal studies can demonstrate drug efficacy within the gastrointestinal system. Most major gastrointestinal disorders have been modeled in animals; however the translational relevance of each model is not equal. The purpose of this chapter is to provide a critical evaluation of common animal models that are being used to develop pharmaceuticals for gastrointestinal disorders. For brevity, the models are presented for upper gastrointestinal disorders involving the esophagus, stomach, and small intestine and lower gastrointestinal disorders that focus on the colon. Particular emphasis is used to explain the face and construct validity of each model, and the limitations of each model, including data interpretation, are highlighted. This chapter does not evaluate models that rely on surgical or other non-pharmacological interventions for treatment.
Collapse
|
12
|
Tsuchiya K, Kubota K, Ohbuchi K, Kaneko A, Ohno N, Mase A, Matsushima H, Yamamoto M, Miyano K, Uezono Y, Kono T. Transient receptor potential ankyrin 1 agonists improve intestinal transit in a murine model of postoperative ileus. Neurogastroenterol Motil 2016; 28:1792-1805. [PMID: 27284001 DOI: 10.1111/nmo.12877] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/10/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Stimulation of transient receptor potential ankyrin 1 (TRPA1), which abundantly expressed in enterochromaffin cells (ECC), has been reported to exert apparently contradictory results in in vitro contractility and in vivo gastrointestinal (GI) transit evaluations. The pharmaceutical-grade Japanese traditional medicine daikenchuto (TU-100) has been reported to be beneficial for postoperative ileus (POI) and accelerate GI transit in animals and humans. TU-100 was recently shown to increase intestinal blood flow via stimulation of TRPA1 in the epithelial cells of the small intestine (SI). METHODS The effects of various TRPA1 agonists on motility were examined in a manipulation-induced murine POI model, in vitro culture of SI segments and an ECC model cell line, RIN-14B. KEY RESULTS Orally administered TRPA1 agonists, aryl isothiocyanate (AITC) and cinnamaldehyde (CA), TU-100 ingredients, [6]-shogaol (6S) and γ-sanshool (GS), improved SI transit in a POI model. The effects of AITC, 6S and GS but not CA were abrogated in TRPA1-deficient mice. SI segments show periodic peristaltic motor activity whose periodicity disappeared in TRPA1-deficient mice. TU-100 augmented the motility. AITC, CA and 6S increased 5-HT release from isolated SI segments and the effects of all these compounds except for CA were lost in TRPA1-deficient mice. 6S and GS induced a release of 5-HT from RIN-14B cells in a dose- and TRPA1-dependent manner. CONCLUSIONS & INFERENCES Intraluminal TRPA1 stimulation is a potential therapeutic strategy for GI motility disorders. Further investigation is required to determine whether 5-HT and/or ECC are involved in the effect of TRPA1 on motility.
Collapse
Affiliation(s)
- K Tsuchiya
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - K Kubota
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - K Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - A Kaneko
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - N Ohno
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - A Mase
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - H Matsushima
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - M Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - K Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Y Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - T Kono
- Laboratory of Pathophysiology & Therapeutics, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| |
Collapse
|
13
|
Kim HJ, Kim H, Jung MH, Kwon YK, Kim BJ. Berberine induces pacemaker potential inhibition via cGMP-dependent ATP-sensitive K+ channels by stimulating mu/delta opioid receptors in cultured interstitial cells of Cajal from mouse small intestine. Mol Med Rep 2016; 14:3985-91. [PMID: 27601272 DOI: 10.3892/mmr.2016.5698] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/29/2016] [Indexed: 11/06/2022] Open
Abstract
Berberine is traditionally used to treat gastrointestinal (GI) motility disorders. The interstitial cells of Cajal (ICCs) are the pacemaker cells of the gastrointestinal tract, which are responsible for the production of gut movements. The present study aimed to investigate the effects of berberine on pacemaker potentials (PPs) in cultured ICC clusters from the mouse small intestine, and sought to identify the receptors involved and the underlying mechanisms of action. All experiments were performed on cultured ICCs, and a whole‑cell patch‑clamp configuration was used to record PPs from ICC clusters (current clamp mode). Under current clamp mode, berberine was shown to decrease the amplitude and frequency of PPs. However, these effects were suppressed by treatment with glibenclamide, a specific ATP‑sensitive K+ channel blocker. Nor‑binaltorphimine dihydrochloride (a kappa opioid receptor antagonist) did not suppress berberine‑induced PP inhibition, whereas ICI 174,864 (a delta opioid receptor antagonist) and CTOP (a mu opioid receptor antagonist) did suppress the inhibitory effects of berberine. Pretreatment with SQ‑22536 (an adenylate cyclase inhibitor) or with KT‑5720 (a protein kinase A inhibitor) did not suppress the effects of berberine; however, pretreatment with 1H‑[1,2,4] oxadiazolo [4,3‑a] quinoxalin‑1‑one (a guanylate cyclase inhibitor) or KT‑5823 [a protein kinase G (PKG) inhibitor] did. In addition, berberine stimulated cyclic guanosine monophosphate (cGMP) production in ICCs. These observations indicate that berberine may inhibit the pacemaker activity of ICC clusters via ATP‑sensitive K+ channels and the cGMP‑PKG‑dependent pathway by stimulating mu and delta opioid receptors. Therefore, berberine may provide a basis for the development of novel agents for the treatment of GI motility dysfunction.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Hyungwoo Kim
- Division of Pharmacology, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Myeong Ho Jung
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Young Kyu Kwon
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Gyeongsangnam‑do 50612, Republic of Korea
| |
Collapse
|
14
|
Rtibi K, Selmi S, Jabri MA, Mamadou G, Limas-Nzouzi N, Sebai H, El-Benna J, Marzouki L, Eto B, Amri M. Effects of aqueous extracts from Ceratonia siliqua L. pods on small intestinal motility in rats and jejunal permeability in mice. RSC Adv 2016. [DOI: 10.1039/c6ra03457h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The current study was performed to assess the effects of carob pod aqueous extracts (CPAE, pulp, seeds or mixture) on gastrointestinal transit (GIT) and intestinal epithelium permeability.
Collapse
Affiliation(s)
- Kaïs Rtibi
- Laboratory of Neurophysiology and Functional Pathology
- Department of Biological Sciences
- Faculty of Sciences of Tunis
- Tunis 2092
- Tunisia
| | - Slimen Selmi
- Laboratory Functional Physiology and Bio-resources Valorisation
- Higher Institute of Biotechnology of Beja
- University of Jendouba
- 9000 Beja
- Tunisia
| | - Mohamed-Amine Jabri
- Laboratory Functional Physiology and Bio-resources Valorisation
- Higher Institute of Biotechnology of Beja
- University of Jendouba
- 9000 Beja
- Tunisia
| | | | | | - Hichem Sebai
- Laboratory Functional Physiology and Bio-resources Valorisation
- Higher Institute of Biotechnology of Beja
- University of Jendouba
- 9000 Beja
- Tunisia
| | - Jamel El-Benna
- INSERM U1149 Biomedical Research Centre
- Faculty of Medicine X. Bichat
- 75018 Paris
- France
| | - Lamjed Marzouki
- Laboratory of Neurophysiology and Functional Pathology
- Department of Biological Sciences
- Faculty of Sciences of Tunis
- Tunis 2092
- Tunisia
| | - Bruno Eto
- TransCell-Lab
- Faculty of Medicine X. Bichat
- 75018 Paris
- France
| | - Mohamed Amri
- Laboratory of Neurophysiology and Functional Pathology
- Department of Biological Sciences
- Faculty of Sciences of Tunis
- Tunis 2092
- Tunisia
| |
Collapse
|
15
|
Mangiferin ameliorates the intestinal inflammatory response and the impaired gastrointestinal motility in mouse model of postoperative ileus. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:531-8. [PMID: 25653124 DOI: 10.1007/s00210-015-1095-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/19/2015] [Indexed: 12/13/2022]
Abstract
Our previous study has shown that mangiferin (MGF), a glucosylxanthone from Mangifera indica, exerts gastrointestinal prokinetic action involving a cholinergic mechanism. Postoperative ileus (POI) is a temporary disturbance in gastrointestinal motility following surgery, and intestinal inflammatory response plays a critical role in the pathogenesis of POI. The present study investigated to know whether MGF having anti-inflammatory and prokinetic actions can ameliorate the intestinal inflammation and impaired gastrointestinal transit seen in the mouse model of POI. Experimental POI was induced in adult male Swiss mice by standardized small intestinal manipulation (IM). Twenty-four hours later, gastrointestinal transit was assessed by charcoal transport. MGF was administered orally 1 h before the measurement of GIT. To evaluate the inflammatory response, plasma levels of proinflammatory cytokines TNF-α, IL-1β, IL-6, and chemokine MCP-1, and the myeloperoxidase activity, nitrate/nitrite level, and histological changes of ileum were determined in mice treated or not with MGF. Experimental POI in mice was characterized by decreased gastrointestinal transit and marked intestinal and systemic inflammatory response. MGF treatment led to recovery of the delayed intestinal transit induced by IM. MGF in ileum significantly inhibited the myeloperoxidase activity, a marker of neutrophil infiltration, and nitrate/nitrite level and reduced the plasma levels of TNF-α, IL-1β, IL-6, and MCP-1 as well. MGF treatment ameliorates the intestinal inflammatory response and the impaired gastrointestinal motility in the mouse model of POI.
Collapse
|
16
|
An R, You L, Zhang Y, Wang X, Ma Y. A rapid UPLC method for simultaneous determination of eleven components in 'Ge-Gen-Qin-Lian' decoction. Pharmacogn Mag 2014; 10:464-9. [PMID: 25422547 PMCID: PMC4239724 DOI: 10.4103/0973-1296.141821] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/02/2013] [Accepted: 09/26/2014] [Indexed: 11/24/2022] Open
Abstract
Background: ‘Ge-Gen-Qin-Lian’ Decoction derived from ‘Shang-Han-Lun’ compiled by Zhang Zhongjing. It is widely used in the treatment of acute gastroenteritis, bacillary dysentery, virus diarrhea. This paper describes a sensitive and specific assay for the determination of the 11-marker compounds using ultra performance liquid chromatography (UPLC). Objective: To develop an UPLC method for simultaneous determination of 11 bioactive compounds in ‘Ge-Gen-Qin-Lian’ preparations. Materials and Methods: The chromatography analysis was performed on an Agilent Proshell 120 EC-C18 column (4.6 × 50 mm, 2.7 μm) at 30°C with a gradient elution of methanol, 0.5% formic acid and 0.5% ammonium acetate at a flow rate 1.0 ml/min and UV detected at 270 nm. Results: All calibration curves showed good linear regression (r ≥ 0.9993) within tested ranges. Limits of detection (LOD) and limits of quantification (LOQ) fell in the range between 0.0691-1.04 μg/ml and 0.23–3.43 μg/ml, respectively. The mean recovery of each herbal medicine ranged from 96.60 to 102.11%. Conclusion: The method was validated for repeatability, precision, stability, accuracy, and selectivity. The validated method was successfully applied to simultaneous analysis of these active components in ‘Ge-Gen-Qin-Lian’ decoction.
Collapse
Affiliation(s)
- Rui An
- Department of Chemistry, College of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Lisha You
- Department of Chemistry, College of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yizhu Zhang
- Department of Chemistry, College of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xinhong Wang
- Department of Chemistry, College of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yuemin Ma
- Department of Chemistry, College of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Chen C, Yu Z, Li Y, Fichna J, Storr M. Effects of berberine in the gastrointestinal tract - a review of actions and therapeutic implications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:1053-70. [PMID: 25183302 DOI: 10.1142/s0192415x14500669] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Berberine is an isoquinoline alkaloid present in several plant species, including Coptis sp. and Berberis sp. In traditional medicine, extracts of berberine are used in the treatment of diarrhea of different origins. Recent studies have shown that berberine and its derivatives have significant biological effects on gastrointestinal (GI) and other functions and may become therapeutics for the treatment of diarrhea, gastroenteritis, diabetes, hyperlipidemia, cardiovascular diseases and inflammatory conditions. This paper summarizes the current knowledge on the actions of berberine in the GI tract. Binding and target sites, activated intracellular pathways, as well as the absorption and metabolism of berberine are discussed. Effects that may be useful in future clinical treatment, like antidiarrheal, anti-inflammatory and antitumor effects are critically reviewed and potential clinical applications are presented in detail.
Collapse
Affiliation(s)
- Chunqiu Chen
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
18
|
Desgrouas C, Taudon N, Bun SS, Baghdikian B, Bory S, Parzy D, Ollivier E. Ethnobotany, phytochemistry and pharmacology of Stephania rotunda Lour. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:537-563. [PMID: 24768769 DOI: 10.1016/j.jep.2014.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stephania rotunda Lour. (Menispermaceae) is an important traditional medicinal plant that is grown in Southeast Asia. The stems, leaves, and tubers have been used in the Cambodian, Lao, Indian and Vietnamese folk medicine systems for years to treat a wide range of ailments, including asthma, headache, fever, and diarrhoea. AIM OF THE REVIEW To provide an up-to-date, comprehensive overview and analysis of the ethnobotany, phytochemistry, and pharmacology of Stephania rotunda for its potential benefits in human health, as well as to assess the scientific evidence of traditional use and provide a basis for future research directions. MATERIAL AND METHODS Peer-reviewed articles on Stephania rotunda were acquired via an electronic search of the major scientific databases (Pubmed, Google Scholar, and ScienceDirect). Data were collected from scientific journals, theses, and books. RESULTS The traditional uses of Stephania rotunda were recorded in countries throughout Southeast Asia (Cambodia, Vietnam, Laos, and India). Different parts of Stephania rotunda were used in traditional medicine to treat about twenty health disorders. Phytochemical analyses identified forty alkaloids. The roots primarily contain l-tetrahydropalmatine (l-THP), whereas the tubers contain cepharanthine and xylopinine. Furthermore, the chemical composition differs from one region to another and according to the harvest period. The alkaloids exhibited approximately ten different pharmacological activities. The main pharmacological activities of Stephania rotunda alkaloids are antiplasmodial, anticancer, and immunomodulatory effects. Sinomenine, cepharanthine, and l-stepholidine are the most promising components and have been tested in humans. The pharmacokinetic parameters have been studied for seven compounds, including the three most promising compounds. The toxicity has been evaluated for liriodenine, roemerine, cycleanine, l-tetrahydropalmatine, and oxostephanine. CONCLUSION Stephania rotunda is traditionally used for the treatment of a wide range of ailments. Pharmacological investigations have validated different uses of Stephania rotunda in folk medicine. The present review highlights the three most promising compounds of Stephania rotunda, which could constitute potential leads in various medicinal fields, including malaria and cancer.
Collapse
Affiliation(s)
- Camille Desgrouas
- UMR-MD3, IRBA, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France; UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| | | | - Sok-Siya Bun
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| | - Beatrice Baghdikian
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| | - Sothavireak Bory
- Faculté de Pharmacie, Université des Sciences de la Santé, no. 73, Monivong Blvd, Daun Penh, Phnom Penh, Cambodia.
| | - Daniel Parzy
- UMR-MD3, IRBA, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| | - Evelyne Ollivier
- UMR-MD3, Laboratoire de Pharmacognosie et Ethnopharmacologie, Faculté de Pharmacie, 27 boulevard Jean Moulin CS30064 13385 Marseille cedex 5, Aix-Marseille Université, France.
| |
Collapse
|
19
|
Souli A, Sebai H, Rtibi K, Chehimi L, Sakly M, Amri M, El-Benna J. Effects of dates pulp extract and palm sap (Phoenix dactylifera L.) on gastrointestinal transit activity in healthy rats. J Med Food 2014; 17:782-6. [PMID: 24611963 PMCID: PMC4098977 DOI: 10.1089/jmf.2013.0112] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 01/03/2014] [Indexed: 01/05/2023] Open
Abstract
The current study was performed to measure the chemical composition and the effects of dates pulp extract and palm sap on gastrointestinal transit (GIT) activity in healthy adult rats. In this respect, male Wistar rats fasted for 24 hours were used and received per orally (p.o.) sodium chloride (NaCl) (0,9%) (control group) or various doses of dates pulp extract (150 and 300 mg/kg, body weight [b.w.]) and palm sap (0.4 and 4 mL/kg, b.w.). Two other groups of rats (batch tests) received, respectively, clonidine (an alpha-2 adrenergic agonist, 1 mg/kg, b.w.) and yohimbine (an alpha-2 adrenergic antagonist, 2mg/kg, b.w.). Chemical analysis showed that the dates pulp extract is more rich in sugars and minerals, especially potassium and sucrose, as compared with palm sap composition. On the other hand, in vivo study showed that the aqueous dates pulp extract significantly, and dose dependently, increased the GIT activity while the palm sap slightly increased it. Moreover, a converse effect has been observed using clonidine (decreased 68%) and yohimbine (increased 33%) on the GIT activity. These findings suggest that dates pulp extract and palm sap have a stimulating effect on GIT activity in rats and confirm their use in traditional Tunisian medicine for the treatment of constipation.
Collapse
Affiliation(s)
- Abdellaziz Souli
- Laboratoire de Nutrition et Physiologie Animale, Institut Supérieur de Biotechnologie de Béja, Avenue Habib Bourguiba, Béja, Tunisia
- Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, Département des Sciences Biologiques, Faculté des Sciences de Tunis, Campus Universitaire El Manar, Tunis, Tunisia
| | - Hichem Sebai
- Laboratoire de Nutrition et Physiologie Animale, Institut Supérieur de Biotechnologie de Béja, Avenue Habib Bourguiba, Béja, Tunisia
- Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Jarzouna, Tunisia
| | - Kaïs Rtibi
- Laboratoire de Nutrition et Physiologie Animale, Institut Supérieur de Biotechnologie de Béja, Avenue Habib Bourguiba, Béja, Tunisia
- Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, Département des Sciences Biologiques, Faculté des Sciences de Tunis, Campus Universitaire El Manar, Tunis, Tunisia
| | - Latifa Chehimi
- Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Jarzouna, Tunisia
| | - Mohsen Sakly
- Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Jarzouna, Tunisia
| | - Mohamed Amri
- Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, Département des Sciences Biologiques, Faculté des Sciences de Tunis, Campus Universitaire El Manar, Tunis, Tunisia
| | - Jamel El-Benna
- INSERM U773 Centre de Recherche Biomédicale, Faculté de Médecine X, Paris, France
| |
Collapse
|
20
|
Yang TC, Chao HF, Shi LS, Chang TC, Lin HC, Chang WL. Alkaloids from Coptis chinensis root promote glucose uptake in C2C12 myotubes. Fitoterapia 2014; 93:239-44. [DOI: 10.1016/j.fitote.2014.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/03/2014] [Accepted: 01/09/2014] [Indexed: 01/14/2023]
|
21
|
Mi R, Hu YJ, Fan XY, Ouyang Y, Bai AM. Exploring the site-selective binding of jatrorrhizine to human serum albumin: spectroscopic and molecular modeling approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 117:163-169. [PMID: 23988532 DOI: 10.1016/j.saa.2013.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/19/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
This paper exploring the site-selective binding of jatrorrhizine to human serum albumin (HSA) under physiological conditions (pH=7.4). The investigation was carried out using fluorescence spectroscopy, UV-vis spectroscopy, and molecular modeling. The results of fluorescence quenching and UV-vis absorption spectra experiments indicated the formation of the complex of HSA-jatrorrhizine. Binding parameters calculating from Stern-Volmer method and Scatchard method were calculated at 298, 304 and 310 K, with the corresponding thermodynamic parameters ΔG, ΔH and ΔS as well. Binding parameters calculating from Stern-Volmer method and Scatchard method showed that jatrorrhizine bind to HSA with the binding affinities of the order 10(4) L mol(-1). The thermodynamic parameters studies revealed that the binding was characterized by negative enthalpy and positive entropy changes and the electrostatic interactions play a major role for jatrorrhizine-HSA association. Site marker competitive displacement experiments and molecular modeling calculation demonstrating that jatrorrhizine is mainly located within the hydrophobic pocket of the subdomain IIIA of HSA. Furthermore, the synchronous fluorescence spectra suggested that the association between jatrorrhizine and HSA changed molecular conformation of HSA.
Collapse
Affiliation(s)
- Ran Mi
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China
| | | | | | | | | |
Collapse
|
22
|
Sandoval D, Dunki-Jacobs A, Sorrell J, Seeley RJ, D’Alessio DD. Impact of intestinal electrical stimulation on nutrient-induced GLP-1 secretion in vivo. Neurogastroenterol Motil 2013; 25:700-5. [PMID: 23663526 PMCID: PMC3706027 DOI: 10.1111/nmo.12152] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/13/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Increases in L-cell release of GLP-1 are proposed to serve as a negative feedback signal for postprandial changes in gastric emptying and/or motility. Previous ex vivo data suggests that direct electrical stimulation (E-stim) of ileal segments stimulates secretion of GLP-1. This suggests potential feed-forward increases in GLP-1 driven by intestinal neuronal and/or motor activity. METHODS To determine if E-stim could increase GLP-1 levels in an in vivo setting, we administered E-stim and nutrients to male Long- Evans rats (300-350 g) under general anesthesia. KEY RESULTS Nutrient infusion into the duodenum or ileum significantly increased plasma GLP-1 levels, but E-stim applied to these locations did not (P < 0.05). However, the combination of E-stim and nutrient infusion, in either the ileum or duodenum, significantly increased plasma GLP-1 when compared to nutrient infusion alone (P < 0.05), and this effect was not blocked by either norepinephrine or atropine. To test the impact of intestinal motor activity, the effect of extra-luminal mechanical stimulation (M-stim) on GLP-1 levels was assessed. In the duodenum, but not the ileum, M-stim plus nutrient infusion significantly increased GLP-1 over nutrient infusion or M-stim alone (P < 0.05). CONCLUSIONS & INFERENCES Thus, both E- and M-stim of the duodenum, but only E-stim of the ileum augmented nutrient-stimulated GLP-1 release. These data demonstrate that factors beyond enteral nutrients could contribute to the regulation of GLP-1 secretion.
Collapse
Affiliation(s)
- Darleen Sandoval
- University of Cincinnati, Division of Endocrinology and Metabolism, 2170 E. Galbraith Rd. Cincinnati, OH, 45237
| | - Adam Dunki-Jacobs
- Ethicon Endo-Surgery, Research & Development, 4545 Creek Rd, Cincinnati, OH 45242
| | - Joyce Sorrell
- University of Cincinnati, Division of Endocrinology and Metabolism, 2170 E. Galbraith Rd. Cincinnati, OH, 45237
| | - Randy J. Seeley
- University of Cincinnati, Division of Endocrinology and Metabolism, 2170 E. Galbraith Rd. Cincinnati, OH, 45237
| | - David D. D’Alessio
- University of Cincinnati, Division of Endocrinology and Metabolism, 2170 E. Galbraith Rd. Cincinnati, OH, 45237,Cincinnati VAMC, 3200 Vine St, Cincinnati, OH 45220
| |
Collapse
|
23
|
Biophysical studies on the interactions of jatrorrhizine with bovine serum albumin by spectroscopic and molecular modeling methods. Mol Biol Rep 2013; 40:4397-404. [DOI: 10.1007/s11033-013-2529-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/29/2013] [Indexed: 01/08/2023]
|
24
|
Tan Z, Zhu R, Shi R, Zhong J, Ma Y, Wang C, Wang X, Cheng N. Involvement of Rat Organic Cation Transporter 2 in the Renal Uptake of Jatrorrhizine. J Pharm Sci 2013; 102:1333-42. [DOI: 10.1002/jps.23432] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/10/2012] [Accepted: 12/05/2012] [Indexed: 11/09/2022]
|
25
|
Zhou H, Shi R, Ma B, Ma Y, Wang C, Wu D, Wang X, Cheng N. CYP450 1A2 and multiple UGT1A isoforms are responsible for jatrorrhizine metabolism in human liver microsomes. Biopharm Drug Dispos 2013; 34:176-85. [DOI: 10.1002/bdd.1835] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/28/2012] [Accepted: 01/01/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Hui Zhou
- Department of Pharmacology; Shanghai University of Traditional Chinese Medicine; Shanghai; China
| | | | - Bingliang Ma
- Department of Pharmacology; Shanghai University of Traditional Chinese Medicine; Shanghai; China
| | - Yueming Ma
- Department of Pharmacology; Shanghai University of Traditional Chinese Medicine; Shanghai; China
| | - Changhong Wang
- Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; Shanghai; China
| | - Dazheng Wu
- Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; Shanghai; China
| | - Xinhong Wang
- Department of Chemistry; Shanghai University of Traditional Chinese Medicine; Shanghai; China
| | - Nengneng Cheng
- Department of Pharmacology, School of Pharmacy; Fudan University; Shanghai; China
| |
Collapse
|
26
|
van Bree SHW, Nemethova A, Cailotto C, Gomez-Pinilla PJ, Matteoli G, Boeckxstaens GE. New therapeutic strategies for postoperative ileus. Nat Rev Gastroenterol Hepatol 2012; 9:675-83. [PMID: 22801725 DOI: 10.1038/nrgastro.2012.134] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients undergoing an abdominal surgical procedure develop a transient episode of impaired gastrointestinal motility or postoperative ileus. Importantly, postoperative ileus is a major determinant of recovery after intestinal surgery and leads to increased morbidity and prolonged hospitalization, which is a great economic burden to health-care systems. Although a variety of strategies reduce postoperative ileus, including multimodal postoperative rehabilitation (fast-track care) and minimally invasive surgery, none of these methods have been completely successful in shortening the duration of postoperative ileus. The aetiology of postoperative ileus is multifactorial, but insights into the pathogenesis of postoperative ileus have identified intestinal inflammation, triggered by surgical handling, as the main mechanism. The importance of this inflammatory response in postoperative ileus is underscored by the beneficial effect of pharmacological interventions that block the influx of leukocytes. New insights into the pathophysiology of postoperative ileus and the involvement of the innate and the adaptive (T-helper type 1 cell-mediated immune response) immune system offer interesting and important new approaches to prevent postoperative ileus. In this Review, we discuss the latest insights into the mechanisms behind postoperative ileus and highlight new strategies to intervene in the postoperative inflammatory cascade.
Collapse
Affiliation(s)
- Sjoerd H W van Bree
- Tytgat Institute of Liver and Intestinal Research, Department of Gastroenterology & Hepatology, Academic Medical Center, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|