1
|
Zhou Y, Chen Z, Su F, Tao Y, Wang P, Gu J. NMR-based metabolomics approach to study the effect and related molecular mechanisms of Saffron essential oil against depression. J Pharm Biomed Anal 2024; 247:116244. [PMID: 38810330 DOI: 10.1016/j.jpba.2024.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
Depression currently ranks as the fourth leading cause of disability globally, affecting approximately 20% of the world's population. we established a chronic restraint stress (CRS) induced depression model in mice and employed fluoxetine as a reference drug. We assessed the therapeutic potential of saffron essential oil (SEO) and elucidated its underlying mechanisms through behavioral indices and NMR-based metabolomic analysis. The findings indicate that SEO ameliorates behavioral symptoms of depression, such as the number of entries into the central area, fecal count, latency to immobility, and duration of immobility in both the Tail Suspension Test (TST) and the Forced Swim Test (FST), along with correcting the dysregulation of 5-serotonin. Metabolomic investigations identified sixteen potential biomarkers across the liver, spleen, and kidneys. SEO notably modulated nine of these biomarkers: dimethylglycine, glycerol, adenosine, β-glucose, α-glucose, uridine, mannose, sarcosine, and aspartate, with glycerol emerging as a common biomarker in both the liver and spleen. Pathway analysis suggests that these biomarkers participate in glycolysis, glycine serine threonine metabolism, and energy metabolism, potentially implicating a role in neural regulation. In summary, SEO effectively mitigates depressive-like behaviors in CRS mice, predominantly via modulation of glycolysis, amino acid metabolism, and energy metabolism, and potentially exerts antidepressant effects through neural regulation. Our study offers insights into small molecule metabolite alterations in CRS mice through a metabolomics lens, providing evidence for the antidepressant potential of plant essential oils and contributing to our understanding of the mechanisms of traditional Chinese medicine in treating depression.
Collapse
Affiliation(s)
- Ying Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310006, China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou 310006, China
| | - Feng Su
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310006, China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou 310006, China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Zhejiang University of Technology, Hangzhou 310006, China.
| | - Jinping Gu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310006, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou 310006, China.
| |
Collapse
|
2
|
Wang Y, Cai X, Ma Y, Yang Y, Pan CW, Zhu X, Ke C. Metabolomics on depression: A comparison of clinical and animal research. J Affect Disord 2024; 349:559-568. [PMID: 38211744 DOI: 10.1016/j.jad.2024.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Depression is a major cause of suicide and mortality worldwide. This study aims to conduct a systematic review to identify metabolic biomarkers and pathways for major depressive disorder (MDD), a prevalent subtype of clinical depression. METHODS We searched for metabolomics studies on depression published between January 2000 and January 2023 in the PubMed and Web of Science databases. The reported metabolic biomarkers were systematically evaluated and compared. Pathway analysis was implemented using MetaboAnalyst 5.0. RESULTS We included 26 clinical studies on MDD and 78 metabolomics studies on depressive-like animal models. A total of 55 and 77 high-frequency metabolites were reported consistently in two-thirds of clinical and murine studies, respectively. In the comparison between murine and clinical studies, we identified 9 consistently changed metabolites (tryptophan, tyrosine, phenylalanine, methionine, fumarate, valine, deoxycholic acid, pyruvate, kynurenic acid) in the blood, 1 consistently altered metabolite (indoxyl sulfate) in the urine and 14 disturbed metabolic pathways in both types of studies. These metabolic dysregulations and pathways are mainly implicated in enhanced inflammation, impaired neuroprotection, reduced energy metabolism, increased oxidative stress damage and disturbed apoptosis, laying solid molecular foundations for MDD. LIMITATIONS Due to unavailability of original data like effect-size results in many metabolomics studies, a meta-analysis cannot be conducted, and confounding factors cannot be fully ruled out. CONCLUSIONS This systematic review delineated metabolic biomarkers and pathways related to depression in the murine and clinical samples, providing opportunities for early diagnosis of MDD and the development of novel diagnostic targets.
Collapse
Affiliation(s)
- Yibo Wang
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Xinyi Cai
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuchen Ma
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Yang Yang
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Chen-Wei Pan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaohong Zhu
- Suzhou Centers for Disease Control and Prevention, Suzhou, China.
| | - Chaofu Ke
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Zhu R, Yuan Y, Qi R, Liang J, Shi Y, Weng H. Quantitative profiling of carboxylic compounds by gas chromatography-mass spectrometry for revealing biomarkers of diabetic kidney disease. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1231:123930. [PMID: 38029665 DOI: 10.1016/j.jchromb.2023.123930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
Diabetic kidney disease (DKD), a common microvascular complication of diabetes, currently lacks specific diagnostic indicators and therapeutic targets, resulting in miss of early intervention. To profile metabolic conditions in complex and precious biological samples and screen potential biomarkers for DKD diagnosis and prognosis, a rapid, convenient and reliable quantification method for carboxyl compounds by gas chromatography-mass spectrometry (GC-MS) was established with isobutyl chloroformate derivatization. The derivatives were extracted with hexane, injected into GC-MS and quantified with selected ion monitoring mode. This method showed excellent linearity(R2 > 0.99), good recoveries (81.1%-115.5%), good repeatability (RSD < 20%) and sensitivity (LODs: 0.20-499.90 pg, LOQs: 2.00-1007.00 pg). Among the 37 carboxyl compounds analyzed, 12 metabolites in short-chain fatty acids (SCFAs) metabolism pathway and amino acid metabolism pathway were linked with DKD development and among them, 6 metabolites were associated with both development and prognosis of DKD in mice. In conclusion, a reliable, convenient and sensitive method based on isobutyl chloroformate derivatization and GC-MS analysis is established and successfully applied to quantify 37 carboxyl compounds in biological samples of mice and 12 potential biomarkers for DKD development and prognosis are screened.
Collapse
Affiliation(s)
- Rongrong Zhu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Yuan
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Rourou Qi
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianying Liang
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Yan Shi
- Institute for Clinical Trials of drug, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Hongbo Weng
- School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
4
|
Liu X, Wu X, Wang S, Qin X. Gut microbiome and tissue metabolomics reveal the compatibility effects of Xiaoyaosan on depression based on "gut-liver-kidney" axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154628. [PMID: 36731299 DOI: 10.1016/j.phymed.2022.154628] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Depression affects not only the central nervous system, but also the peripheral system. Xiaoyaosan (XYS), a classical traditional Chinese medicine (TCM) prescription, exhibits definite anti-depression effects demonstrated both clinically and experimentally. However, its compatibility has not been entirely revealed due partly to the complex compositions of herbs contained. AIM Based on the strategy of "Efficacy Group", this study aimed to reveal the compatibility of XYS from the perspective of "gut-liver-kidney" axis. METHODS Firstly, XYS was divided into two efficacy groups, i.e. Shugan (SG) and Jianpi (JP) groups. Classic behaviors of rats were measured to confirm the anti-depression effects of XYS and its two efficacy groups. On top of this, gut microbiota analysis and kidney metabolomics were performed by 16S rRNA sequencing and 1H NMR, respectively. RESULTS We found that XYS and its efficacy groups significantly regulated the abnormalities of behaviors and kidney metabolism of depressed rats, as well as intestinal disorders, but to different degrees. The regulatory effects of XYS and its efficacy groups on behaviors and kidney metabolomics of depressed rats had the same order, i.e. XYS > SG > JP, while the order of regulating gut microbiota was XYS > JP > SG. Both XYS and its efficacy groups significantly ameliorated gut microbiota disturbed, especially significant modulation of Peptostreptococcaceae. XYS significantly regulated nine kidney metabolites, while SG and JP regulated four and five differential metabolites, respectively, indicating that the two efficacy groups synergistically exhibited anti-depression effects, consequently contributing to the overall anti-depression effects of XYS. CONCLUSION The current findings not only innovatively demonstrate the anti-depression effects and compatibility of XYS from the perspective of "gut-liver-kidney" axis, comprehensively using "Efficacy Group" strategy, macro behavioristics, metabolome and microbiome, and also provide a new perspective, strategy, and methodology for studying complex diseases and the compatibility of TCMs.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist. Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist. Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist. Taiyuan 030006, Shanxi, China.
| | - Xiaoling Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist. Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist. Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist. Taiyuan 030006, Shanxi, China
| | - Senyan Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist. Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist. Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist. Taiyuan 030006, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist. Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist. Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist. Taiyuan 030006, Shanxi, China
| |
Collapse
|
5
|
Li B, Xu M, Wang Y, Feng L, Xing H, Zhang K. Gut microbiota: A new target for traditional Chinese medicine in the treatment of depression. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116038. [PMID: 36529248 DOI: 10.1016/j.jep.2022.116038] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE The causes of depression are complex. Many factors are involved in its pathogenesis, including the individual's biological and social environment. Although numerous studies have reported that the gut microbiota plays a significant role in depression, drugs that regulate the gut microbiota to treat depression have not yet been comprehensively reviewed. At the same time, more and more attention has been paid to the characteristics of traditional Chinese medicine (TCM) in improving depression by regulating gut microbiota. In ancient times, fecal microbiota transplantation was recorded in TCM for the treatment of severe diseases. There are also records in Chinese ancient books about the use of TCM to adjust gut microbiota to treat diseases, which has opened up a unique research field in TCM. Therefore, this article focuses on the pharmacological effects, targets, and mechanisms of TCM in improving depression by mediating the influence of gut microbiota. AIM OF THIS REVIEW To summarize the role the gut microbiota plays in depression, highlight potential regulatory targets, and elucidate the anti-depression mechanisms of TCMs through regulation of the gut microbiota. METHODS A systematic review of 256 clinical trials and pharmaceutical studies published until June 2022 was conducted in eight electronic databases (Web of Science, PubMed, SciFinder, Research Gate, ScienceDirect, Google Scholar, Scopus, and China Knowledge Infrastructure), according to the implemented PRISMA criteria, using the search terms "traditional Chinese medicine," "depression," and "gut microbiota." RESULTS Numerous studies reported the effects of different gut bacteria on depression and that antidepressants work through the gut microbiota. TCM preparations based on compound Chinese medicine, the Chinese Materia Medica, and major bioactive components exerted antidepressant-like effects by improving levels of neurotransmitters, short-chain fatty acids, brain-derived neurotrophic factor, kynurenine, and cytokines via regulation of the gut microbiota. CONCLUSION This review summarized the anti-depression effects of TCM on the gut microbiota, providing evidence that TCMs are safe and effective in the treatment of depression and may provide a new therapeutic approach.
Collapse
Affiliation(s)
- Boru Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meijing Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lijin Feng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hang Xing
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China; Jiangsu Kanion Pharmaceutical Co, Ltd, Lianyungang, 222001, China.
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China; Tianjin UBasio Biotechnology Group, Tianjin, 300457, China.
| |
Collapse
|
6
|
Liu X, Zhao Z, Fan Y, Zhao D, Wang Y, Lv M, Qin X. Microbiome and metabolome reveal the metabolic and microbial variations induced by depression and constipation. Psychogeriatrics 2023; 23:319-336. [PMID: 36683263 DOI: 10.1111/psyg.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Depressed patients are often accompanied with constipation symptoms, and vice versa. However, the underlying mechanisms of such a bidirectional correlation have remained elusive. We aim to reveal the possible correlations between depression and constipation from the perspectives of gut microbiome and plasma metabolome. METHODS We constructed the depressed model and the constipated model of rats, respectively. First, we measured the locomotor activity status and the gastrointestinal functions of rats. And then, nuclear magnetic resonance plasma metabolomics was applied to reveal the shared and the unique metabolites of depression and constipation. In addition, 16 S ribosomal RNA gene sequencing was used to detect the impacts of constipation and depression on gut microbiota of rats. Finally, a multiscale and multifactorial network, that is, the 'phenotypes - differential metabolites - microbial biomarkers' integrated network, was constructed to visualise the mechanisms of connections between depression and constipation. RESULTS We found that spontaneous locomotor activity and gastrointestinal functions of both depressed rats and constipated rats significantly decreased. Further, eight metabolites and 14 metabolites were associated depression and constipation, respectively. Among them, seven metabolites and four metabolic pathways were shared by constipation and depression, mainly perturbing energy metabolism and amino acid metabolism. Additionally, depression and constipation significantly disordered the functions and the compositions of gut microbiota of rats, and decreased the ratio of Firmicutes to Bacteroidetes. CONCLUSION The current findings provide multiscale and multifactorial perspectives for understanding the correlations between depression and constipation, and demonstrate new mechanisms of comorbidity of depression and constipation.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Ziyu Zhao
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Yuhui Fan
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Di Zhao
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Yaze Wang
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Meng Lv
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Xuemei Qin
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| |
Collapse
|
7
|
Therapeutic treatment with fluoxetine using the chronic unpredictable stress model induces changes in neurotransmitters and circulating miRNAs in extracellular vesicles. Heliyon 2023; 9:e13442. [PMID: 36852042 PMCID: PMC9958461 DOI: 10.1016/j.heliyon.2023.e13442] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The most widely prescribed antidepressant, fluoxetine (FLX), is known for its antioxidant and anti-inflammatory effects when administered post-stress. Few studies have evaluated the effects of FLX treatment when chronic stress has induced deleterious effects in patients. Our objective was to evaluate FLX treatment (20 mg/kg/day, i.v.) once these effects are manifested, and the drug's relation to extracellular circulating microRNAs associated with inflammation, a hedonic response (sucrose intake), the forced swim test (FST), and corticosterone levels (CORT) and monoamine concentrations in limbic areas. A group of Wistar rats was divided into groups: Control; FLX; CUMS (for six weeks of exposure to chronic, unpredictable mild stress); and CUMS + FLX, a mixed group. After CUMS, the rats performed the FST, and serum levels of CORT and six microRNAs (miR-16, -21, -144, -155, -146a, -223) were analyzed, as were levels of dopamine, noradrenaline, and serotonin in the prefrontal cortex, hippocampus, and hypothalamus. CUMS reduced body weight, sucrose intake, and hippocampal noradrenaline levels, but increased CORT, immobility behavior on the FST, dopamine concentrations in the prefrontal cortex, and all miRNAs except miR-146a expression. Administering FLX during CUMS reduced CORT levels and immobility behavior on the FST and increased the expression of miR-16, -21, -146a, -223, and dopamine. FLX protects against the deleterious effects of stress by reducing CORT and has an antidepressant effect on the FST, with minimally-modified neurotransmitter levels. FLX increased the expression of miRNAs as part of the antidepressant effect. It also regulates both neuroinflammation and serotoninergic neurotransmission through miRNAs, such as the miR-16.
Collapse
|
8
|
Jin Y, Pang H, Zhao L, Zhao F, Cheng Z, Liu Q, Cui R, Yang W, Li B. Ginseng total saponins and Fuzi total alkaloids exert antidepressant-like effects in ovariectomized mice through BDNF-mTORC1, autophagy and peripheral metabolic pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154425. [PMID: 36137328 DOI: 10.1016/j.phymed.2022.154425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Shenfu decoction (SFD) is a classic Chinese medicine prescription that has a strong cardiotonic effect. The combination of ginseng (the dried root of Panax ginseng C. A. Meyer) and Fuzi (processed product of sub-root of Aconitum carmichaeli Debx), the main constituents of SFD, has been reported to improve the pharmacological effect of each other. Moreover, research has shown that the main active components of SFD, ginseng total saponins (GTS) and Fuzi total alkaloids (FTA), have antidepressant activity. However, the effects of these ingredients on depressive-like behavior induced by ovariectomy, a model of menopausal depression, have not been studied. PURPOSE Our research aims to elucidate the antidepressant-like effects of GTS and FTA compatibility (GF) in ovariectomized mice and the potential mechanisms. METHODS To elucidate the antidepressant-like effects of GF in mice in ovariectomy condition, behavioral tests were performed after 7 days of intragastric administration of different doses of GF. Underlying molecular mechanisms of CREB-BDNF, BDNF-mTORC1 and autophagy signaling were detected by western blotting, serum metabolites were examined by UPLC-QE plus-MS and dendritic spine density was determined by Golgi-Cox staining. RESULTS GF remarkably decreased the immobility time in the forced swim test. GF also increased levels of pCREB/CREB, BDNF, Akt, mTORC1 and p62 in the prefrontal cortex and hippocampus, as well as decreased LC3-II/LC3-I in the prefrontal cortex and hippocampus of ovariectomized mice. Furthermore, 15 serum differential metabolites (9 of which are lipids and lipid molecules) were identified by metabonomics. Next, the antidepressant-like effects of GF was blocked by rapamycin, an inhibitor of mTORC1. The antidepressant actions of GF on levels of pCREB, mTORC1, LC3-Ⅱ/LC3-Ⅰ and p62 in the prefrontal cortex and the levels of BDNF, Akt, mTORC1 and p62 in the hippocampus were inhibited by rapamycin, and the dendritic spines density was also regulated. CONCLUSION GF has antidepressant effects in ovariectomized mice, and like other antidepressants, these effects involve activation of BDNF-mTORC1, autophagy regulation and consequent effects on hippocampal synaptic plasticity. Moreover, metabolomic results suggest that GF also has effects on peripheral lipid profiles that may provide potential biomarkers for these antidepressant-like effects. These results indicate that GF is worthy of further exploration as a promising pharmaceutical treatment for depression. This study provides a new direction for the development of new indications for traditional Chinese medicine compounds.
Collapse
Affiliation(s)
- Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China; Department of Pharmacy, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Huanhuan Pang
- Cosmetics Laboratory, Jilin Institute for Drug Control, Changchun 130033, PR China
| | - Lihong Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Qianqian Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China.
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun 130041, PR China; Jilin Engineering Laboratory for Screening of Antidepressant, Changchun 130041, PR China; Central Laboratory, Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
9
|
Mudimela S, Vishwanath NK, Pillai A, Morales R, Marrelli SP, Barichello T, Giridharan VV. Clinical significance and potential role of trimethylamine N-oxide in neurological and neuropsychiatric disorders. Drug Discov Today 2022; 27:103334. [PMID: 35998800 PMCID: PMC10392962 DOI: 10.1016/j.drudis.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/18/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
In the past three decades, research on the gut microbiome and its metabolites, such as trimethylamines (TMA), trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), branched-chain amino acids (BCAAs), bile acids, tryptophan and indole derivatives, has attracted the attention of many scientists and industrialists. Among these metabolites, TMAO is produced from dietary choline, phosphatidylcholine, carnitine,andbetaine. TMAO and other gut metabolites, such as TMA and SCFAs, reach the brain by crossing the blood-brain barrier (BBB) and are involved in brain development, neurogenesis, and behavior. Gut-microbiota composition is influenced by diet, lifestyle, antibiotics, and age. Several studies have confirmed that altered TMAO levels contribute to metabolic, vascular, psychiatric, and neurodegenerative disorders. This review focuses on how altered TMAO levels impact oxidative stress, microglial activation, and the apoptosis of neurons, and may lead to neuroinflammation, which can subsequently result in the development of psychiatric, cognitive, and behavioral disorders.
Collapse
Affiliation(s)
- Sowjanya Mudimela
- Faculty of Pharmaceutical Sciences, PES University, HN-Campus, Bengaluru, Karnataka, India
| | | | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center at Houston (UTHealth), Houston, TX, USA; Research and Development, Charlie Norwood VA Medical Center, Augusta, GA, USA; Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Sean P Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Tatiana Barichello
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center at Houston (UTHealth), Houston, TX, USA; Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| |
Collapse
|
10
|
Hernandez-Baixauli J, Puigbò P, Abasolo N, Palacios-Jordan H, Foguet-Romero E, Suñol D, Galofré M, Caimari A, Baselga-Escudero L, Bas JMD, Mulero M. Alterations in Metabolome and Microbiome Associated with an Early Stress Stage in Male Wistar Rats: A Multi-Omics Approach. Int J Mol Sci 2021; 22:12931. [PMID: 34884735 PMCID: PMC8657954 DOI: 10.3390/ijms222312931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022] Open
Abstract
Stress disorders have dramatically increased in recent decades becoming the most prevalent psychiatric disorder in the United States and Europe. However, the diagnosis of stress disorders is currently based on symptom checklist and psychological questionnaires, thus making the identification of candidate biomarkers necessary to gain better insights into this pathology and its related metabolic alterations. Regarding the identification of potential biomarkers, omic profiling and metabolic footprint arise as promising approaches to recognize early biochemical changes in such disease and provide opportunities for the development of integrative candidate biomarkers. Here, we studied plasma and urine metabolites together with metagenomics in a 3 days Chronic Unpredictable Mild Stress (3d CUMS) animal approach that aims to focus on the early stress period of a well-established depression model. The multi-omics integration showed a profile composed by a signature of eight plasma metabolites, six urine metabolites and five microbes. Specifically, threonic acid, malic acid, alpha-ketoglutarate, succinic acid and cholesterol were proposed as key metabolites that could serve as key potential biomarkers in plasma metabolome of early stages of stress. Such findings targeted the threonic acid metabolism and the tricarboxylic acid (TCA) cycle as important pathways in early stress. Additionally, an increase in opportunistic microbes as virus of the Herpesvirales was observed in the microbiota as an effect of the primary stress stages. Our results provide an experimental biochemical characterization of the early stage of CUMS accompanied by a subsequent omic profiling and a metabolic footprinting that provide potential candidate biomarkers.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Pere Puigbò
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Nerea Abasolo
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Hector Palacios-Jordan
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - Elisabet Foguet-Romero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (N.A.); (H.P.-J.); (E.F.-R.)
| | - David Suñol
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Mar Galofré
- Eurecat, Centre Tecnològic de Catalunya, Digital Health, 08005 Barcelona, Spain; (D.S.); (M.G.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Laura Baselga-Escudero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Josep M. Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (P.P.); (A.C.); (L.B.-E.)
| | - Miquel Mulero
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
11
|
Linghu T, Liu C, Wang Q, Tian J, Qin X. Discovery of biomarkers for depressed patients and evaluation of Xiaoyaosan efficacy based on liquid chromatography-mass spectrometry. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1975294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ting Linghu
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Institute for Biomedicine and Health, Shanxi University, Taiyuan, China
| | - Caichun Liu
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Institute for Biomedicine and Health, Shanxi University, Taiyuan, China
| | - Qi Wang
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Institute for Biomedicine and Health, Shanxi University, Taiyuan, China
| | - Junsheng Tian
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Institute for Biomedicine and Health, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Institute for Biomedicine and Health, Shanxi University, Taiyuan, China
| |
Collapse
|
12
|
Emerging application of metabolomics on Chinese herbal medicine for depressive disorder. Biomed Pharmacother 2021; 141:111866. [PMID: 34225013 DOI: 10.1016/j.biopha.2021.111866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Depressive disorder is a kind of emotional disorder that is mainly manifested with spontaneous and persistent low mood. Its etiology is complex and still not fully understood. Metabolomics, an important part of system biology characterized by its integrity and systematicness, analyzes endogenous metabolites of small molecules in vivo and examines the metabolic status of the organism. It is widely used in the field of disease research for its unique advantage in the disease molecular marker discovering Due to fewer adverse reactions and high safety, Chinese herbal medicine (CHM) has great advantages in the treatment of chronic diseases including depression. Metabolomics has been gradually applied to the efficacy evaluation of CHM in treatment of depression and the metabolomics analysis exhibits a systemic metabolic shift in amino acids (such as alanine, glutamic acid, valine, etc.), organic acids (lactic acid, citric acid, stearic acid, palmitic acid, etc.), and sugars, amines, etc. These differential metabolites are mainly involved in energy metabolism, amino acid metabolism, lipid metabolism, etc. In this review, we have exemplified the study of CHM in animals or clinics on the depression, and revealed that CHM treatment has significantly changed the metabolic disorders associated with depression, promoting metabolic network reorganization through restoring of key metabolites, and metabolic pathways, which may be the main mechanism basis of CHM's treatment on depression. Besides, we further envisioned the future application of metabolomics in the study of CHM treatment of depression.
Collapse
|
13
|
Liu X, Lv M, Wang Y, Qu P, Li S, Yu Z, Qin X. Anti-depressive effects of Xiaoyaosan, Shugan and Jianpi herbal treatments: Role on the gut microbiome of CUMS rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153581. [PMID: 34091149 DOI: 10.1016/j.phymed.2021.153581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Xiaoyaosan (XYS), a classic traditional Chinese medicine (TCM) prescription that contained eight Chinese herbs, has been used for treating depression for thousands of years. Yet, the underlying mechanisms are still unclear, which need to be investigated from various perspectives. Disassembling a prescription is one of the effective approaches to study the effects and the mechanisms of TCM prescriptions. By disassembling the prescription, we can find effective combinations of individual herbs to simplify the scale of a given prescription. Accordingly, herein, XYS was disassembled into Shugan and Jianpi groups. PURPOSE This study aimed to explore the anti-depressive effects of XYS and its disassembled groups on the digestive system functions and the cecal microbiota of rats. METHODS XYS was divided into two efficacy groups, i.e., the Shugan (SG) and the Jianpi (JP) groups. A depression model was applied by using the chronic unpredictable mild stress (CUMS) method. Various classic behavioral tests were performed to assess the anti-depressive effects of the XYS, the SG, and the JP. Afterward, the effects of the three groups on the digestive system functions and the cecum microbiota of depression rats were evaluated. On top of this, correlation analyses between behavioral and digestive system function indexes and cecum microbiota were conducted. RESULTS The XYS, the SG, and the JP had significant callback effects on depressive behaviors and gastrointestinal dysfunctions of CUMS rats. The compositions of the gut bacterial community were variable among the five groups. The community composition of the SG was the most similar to that of NC, followed by the XYS and the JP. At phylum, family, and genus levels, 31 potential microbial biomarkers associated with CUMS were identified. Twenty biomarkers were significantly reversed by the SG while 16 and 11 biomarkers were reversed by the XYS and the JP, respectively. The results of degrees of regulatory effects showed that the SG had the highest efficacy index (EI) than the XYS and the JP. CONCLUSION Regarding the regulation of cecal microbiota of depression rats, the SG treatment was better than XYS and JP. Therefore, SG could be used individually for the clinical treatment of depression, especially in patients with gastrointestinal and gut microbiota disorders.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China.
| | - Meng Lv
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Yaze Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| | - Ping Qu
- Shanxi Institute for Food and Drug Control, Taiyuan 030001, China
| | - Shunyong Li
- School of Mathematics Sciences, Shanxi University, Taiyuan 030006, China
| | - Zhiyi Yu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China
| |
Collapse
|
14
|
Su Z, Ruan J, Liu X, Zheng H, Ruan J, Lu Y, Cheng B, Wu F, Wu J, Liu X, Song F, Chen Z, Song H, Liang Y, Guo H. Combining 1H-NMR-based metabonomics and network pharmacology to dissect the mechanism of antidepression effect of Milletia speciosa Champ on mouse with chronic unpredictable mild stress-induced depression. J Pharm Pharmacol 2021; 73:881-892. [PMID: 33836071 DOI: 10.1093/jpp/rgaa010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Milletia speciosa Champ (MS), a traditional Chinese medicine, has the abilities of antistress, antifatigue, anti-oxidation and so on. In our previous study, MS was found to antidepression while the underlying mechanism of which needs further elucidation. METHODS Here, a proton nuclear magnetic resonance (1H-NMR)-based metabonomics combined network pharmacology research approach was performed to investigate the antidepressive mechanism of MS act on mouse with chronic unpredictable mild stress-induced depression. KEY FINDINGS Results showed that MS could alleviate the ethology of depression (including sucrose preference degree, crossing lattice numbers and stand-up times) and disordered biochemical parameters (5-hydroxytryptamine, norepinephrine and brain-derived neurotrophic factor). Metabonomics study and network pharmacology analysis showed that MS might improve depression through synergistically regulating five targets including Maoa, Maob, Ache, Ido1 and Comt, and three metabolic pathways such as tryptophan metabolism, synthesis of neurotransmitter and phospholipid metabolism. CONCLUSIONS This study for the first time preliminary clarified the potential antidepressive mechanism of MS and provided theoretical basis for developing MS into novel effective antidepressant.
Collapse
Affiliation(s)
- Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Junxiang Ruan
- Pharmaceutical College, Guangxi Medical University, Nanning, China.,Guangxi Yuhualing Technology Development Co. LTD, Nanning, China
| | - Xi Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hua Zheng
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Jingzhou Ruan
- Guangxi Yuhualing Technology Development Co. LTD, Nanning, China
| | - Yuying Lu
- Guangxi Yuhualing Technology Development Co. LTD, Nanning, China
| | - Bang Cheng
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Fang Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinxia Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xuwen Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, China.,Department of pharmacy, The People's Hospital of Guangxi Zhuang autonomous region, Nanning, China
| | - Fangming Song
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Zhaoni Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hui Song
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yonghong Liang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hongwei Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| |
Collapse
|
15
|
Liu X, Wang Y, Lv M, Zhao S, Chen S, Li S, Qin X. Serum metabolomics reveals compatibility rules of the antidepressant effects of Xiaoyaosan and its efficacy groups. Psychiatry Res 2021; 299:113827. [PMID: 33676173 DOI: 10.1016/j.psychres.2021.113827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/21/2021] [Indexed: 01/03/2023]
Abstract
Traditional Chinese medicines (TCMs) have attracted more attentions in the treatment of depression. Xiaoyaosan (XYS), a classic anti-depression TCM prescription, contains eight herbs. However, the compatibility effects of XYS in modern pharmacology need to be investigated in depth. In this study, the chronic unpredictable mild stress (CUMS) depression-like model was constructed. Afterwards, XYS was divided into the Shugan and the Jianpi groups according to the research strategy ofefficacy groups. Meanwhile, a proton nuclear magnetic resonance spectrometry (1H NMR) based serum metabolomics was applied. XYS and its efficacy groups significantly regulated the abnormal levels of differential metabolites related to depression, but to different degrees. Metabolic profiling by orthogonal partial least squares discriminant analysis showed that XYS at high dose (XH) exhibited the strongest effects than other treatment groups. Ten metabolites related to depression were identified as differential metabolites. Besides, relative distance (Rd) was calculated to quantitatively evaluate the effects. We found that XH group had the highest Rd value. Moreover, among the five metabolic pathways of depression, XYS and Jianpi groups significantly regulated all pathways while Shugan group regulated four pathways. These findings lay a solid foundation for comprehensively and deeply understanding the compatibility effects of XYS against depression.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Institute of Biomedicine and Health, Shanxi University, Taiyuan 030006, China.
| | - Yaze Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Institute of Biomedicine and Health, Shanxi University, Taiyuan 030006, China
| | - Meng Lv
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Institute of Biomedicine and Health, Shanxi University, Taiyuan 030006, China
| | - Sijun Zhao
- Shanxi Institute for Food and Drug Control, Taiyuan 030001, China
| | - Shijian Chen
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Shunyong Li
- School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Institute of Biomedicine and Health, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
16
|
Wang X, Lu G, Liu X, Li J, Zhao F, Li K. Assessment of Phytochemicals and Herbal Formula for the Treatment of Depression through Metabolomics. Curr Pharm Des 2021; 27:840-854. [PMID: 33001005 DOI: 10.2174/1381612826666201001125124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Depression is a widespread and persistent psychiatric disease. Due to various side effects and no curative treatments of conventional antidepressant drugs, botanical medicines have attracted considerable attention as a complementary and alternative approach. The pathogenesis of depression is quite complicated and unclear. Metabolomics is a promising new technique for the discovery of novel biomarkers for exploring the potential mechanisms of diverse diseases and assessing the therapeutic effects of drugs. In this article, we systematically reviewed the study of botanical medicine for the treatment of depression using metabolomics over a period from 2010 to 2019. Additionally, we summarized the potential biomarkers and metabolic pathways associated with herbal medicine treatment for depression. Through a comprehensive evaluation of herbal medicine as novel antidepressants and understanding of their pharmacomechanisms, a new perspective on expanding the application of botanical medicines for the treatment of depression is provided.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guanyu Lu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinhui Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fei Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kefeng Li
- School of Medicine, University of California, San Diego, CA 92103, United States
| |
Collapse
|
17
|
Zhang L, Ma Z, Wu Z, Jin M, An L, Xue F. Curcumin Improves Chronic Pain Induced Depression Through Regulating Serum Metabolomics in a Rat Model of Trigeminal Neuralgia. J Pain Res 2020; 13:3479-3492. [PMID: 33402844 PMCID: PMC7778445 DOI: 10.2147/jpr.s283782] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022] Open
Abstract
Background Depression is a prevalent and complex psychiatric disorder with high incidence in patients with chronic pain. The underlying pathogenesis of chronic pain-induced depression is complicated and remains largely unclear. An integrated analysis of endogenous substance-related metabolisms would help to understand the molecular mechanism of chronic pain-induced depression. Curcumin was reported to exert various health benefits, such as anti-depression, antioxidant, antineoplastic, analgesia, and anti-inflammation. Objective The aim of this study was to analyze the biomarkers related to depression in serum and to evaluate the anti-depression properties of curcumin in a chronic pain-induced depression model of rats. Design This is a randomized, controlled experiment. Setting This study was conducted at the Experimental Animal Center, Beijing Friendship Hospital, Capital Medical University. Methods Trigeminal neuralgia (TN) was produced by injecting 4 µL, 10% cobra venom saline solution into the infraorbital nerve (ION). Curcumin was administered by gavage twice a day from post-operation day (POD) 15 to POD 42. Mechanical allodynia was assessed using von Frey filaments. Sucrose preference and forced swimming tests were performed to evaluate depression-like behaviors. The metabolomics analysis was preceded by LCMS-IT-TOF and multivariate statistical methods for sample detection and biomarker screening. Results Cobra venom intra-ION injection led to chronic mechanical allodynia, reduced sucrose preference, and prolonged immobility during forced swimming. Curcumin treatment alleviated chronic mechanical allodynia, regained sucrose preference, and reduced immobility time. Differential analysis identified 30 potential metabolites changed under TN condition. The integrated analyses further revealed two major metabolic changes by comparing the serums from sham operated rats, TN rats, and TN rats treated with curcumin: 1) ether lipid metabolism; and 2) glycerophospholipid metabolism, and suggested that curcumin may improve chronic pain-induced depression by regulating these two types of lipid metabolisms. Conclusion Ether lipid and glycerophospholipid metabolism might be two of the pathways with the most potential related to chronic pain induced-depression; and curcumin could alleviate chronic pain induced-depression by modulating these two pathways. These results provide further insights into the mechanisms of chronic pain-induced depression and may help to identify potential targets for anti-depression properties of curcumin.
Collapse
Affiliation(s)
- Li Zhang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhe Wu
- Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University, Beijing 100012, People's Republic of China
| | - Mu Jin
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Lixin An
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Fushan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| |
Collapse
|
18
|
Feng Y, Gao X, Meng M, Xue H, Qin X. Multi-omics reveals the mechanisms of antidepressant-like effects of the low polarity fraction of Bupleuri Radix. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112806. [PMID: 32234596 DOI: 10.1016/j.jep.2020.112806] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Bupleuri (Bupleurum chinense DC.) is a traditional Chinese medicine that has the effect of soothing the liver and relieving depression, and widely used in the field of antidepression. AIM OF THE STUDY The low polarity fraction of Bupleuri Radix (PBR) has proved to be effective for the treatment of depression based on the results of our previous study. However, mechanisms of definite antidepressant-like effects remained unclear. The purpose of this study is to reveal mechanisms of antidepressant-like effects of PBR with multi-dimensional omics. MATERIALS AND METHODS LC-MS metabolomics combined with 16S rRNA gene sequencing were used to investigate the effects of PBR on gut microbiota and metabolites in CUMS-induced depression, and Pearson correlation analysis was carried out on gut microbiota and metabolites. RESULTS PBR significantly improved depression-like behaviors in the CUMS model rats. Moreover, PBR significantly increased the levels of BDNF in the hippocampus. Cecum contents metabolomics revealed that 16 biomarkers associated with PBR antidepressant effect were screened, which were involved 3 metabolic pathways including primary bile acid biosynthesis, taurine and hypotaurine metabolism, glyoxylate and dicarboxylate metabolism. Gut microbiota further analysis demonstrated that PBR increased the diversity of gut microbiota, and significantly inhibited the growth of [Prevotella] and Ochrobactrum. Furthermore, Pearson analysis revealed there was a strong correlation between cecum contents of metabolites and gut microbiota. CONCLUSIONS PBR improved depression-like behavior by regulating metabolic profiles and gut microbiota, and contributing to further understand the entailed antidepressant-like mechanisms of PBR.
Collapse
Affiliation(s)
- Yan Feng
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China; College of Chemistry and Chemical Engineering, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, PR China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China.
| | - Meidai Meng
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China; College of Chemistry and Chemical Engineering, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, PR China
| | - Huanhuan Xue
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China; College of Chemistry and Chemical Engineering, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, PR China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China
| |
Collapse
|
19
|
Xiao-Yao-San Formula Improves Cognitive Ability by Protecting the Hippocampal Neurons in Ovariectomized Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4156145. [PMID: 32655660 PMCID: PMC7321526 DOI: 10.1155/2020/4156145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022]
Abstract
Xiao-Yao-San (XYS) decoction is a traditional Chinese medicine formula. This study aimed to investigate the effect of XYS on cognitive abilities and its underlying mechanism in ovariectomized rats. Female Sprague-Dawley rats were ovariectomized and treated with XYS (3 g/kg or 9 g/kg) by gavage, with subcutaneous injection of 17-β estradiol (E2, 2 μg/kg) as a positive drug control and gavage of 1 ml saline (0.9%) as a placebo control. After 6 weeks of treatment, rats were examined using the Morris water maze test. The estradiol level in the serum and hippocampus was measured by ELISA. Golgi staining was performed to observe neuronal morphology in the hippocampus. Apoptosis of hippocampal cells was observed by TUNEL staining. The protein content of N-methyl-D-aspartate receptor (NMDAR) 2A and 2B in the hippocampal CA1 region was determined by Western blot and immunohistochemistry. Expression of estrogen receptor (ER) and PI3K signaling was detected by Western blot. Compared with the sham group, both learning and memory were impaired in ovariectomized rats. Rats treated with E2 or high-dose XYS showed better learning and memory compared with the saline-treated rats. High-dose XYS significantly reduced escape latency in the spatial acquisition trial; meanwhile, the cross times and duration in the probe quadrant were increased in the spatial probe trial. High-dose XYS promoted the de novo synthesis of E2 content in the hippocampus but had no significant effect on the serum E2 level. Golgi staining indicated that high-dose XYS could increase the branch number and density of dendritic spines in the hippocampal CA1 area. TUNEL staining showed that high-dose XYS alleviated ovariectomy-induced neuronal apoptosis. The expression level of NMDAR2A and NMDAR2B in hippocampal CA1 was upregulated by XYS treatment. The beneficial effect of XYS was through activating ERα-PI3K signaling. In conclusion, high-dose XYS treatment can improve the cognitive abilities of ovariectomized rats by protecting the hippocampal neurons and restoring the hippocampal E2 level.
Collapse
|
20
|
Li Y, Wu L, Chen C, Wang L, Guo C, Zhao X, Zhao T, Wang X, Liu A, Yan Z. Serum Metabolic Profiling Reveals the Antidepressive Effects of the Total Iridoids of Valeriana jatamansi Jones on Chronic Unpredictable Mild Stress Mice. Front Pharmacol 2020; 11:338. [PMID: 32265710 PMCID: PMC7099651 DOI: 10.3389/fphar.2020.00338] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
Background Depression is a long-term complex psychiatric disorder, and its etiology remains largely unknown. Valeriana jatamansi Jones ex Roxb (V. jatamansi) is used in the clinic for the treatment of depression, but there are insufficient reports of its antidepressive mechanisms and a poor understanding of its endogenous substance-related metabolism. The objective of this study was to identify biomarkers related to depression in serum samples and evaluate the antidepressive effects of the iridoid-rich fraction of V. jatamansi (IRFV) in a chronic unpredictable mild stress (CUMS) mouse model. Methods Here, CUMS was used to establish a mouse model of depression. Behavioral and biochemical indicators were investigated to evaluate the pharmacodynamic effects. A comprehensive serum metabolomics study by nuclear magnetic resonance (NMR) approach was applied to investigate the pharmacological mechanism of IRFV in CUMS mouse. Subsequently, we used multivariate statistical analysis to identify metabolic markers, such as principal component analysis (PCA) and orthogonal projection to latent structure with discriminant analysis (OPLS-DA), to distinguish between the CUMS mouse and the control group. Results After IRFV treatment, the immobility time, sucrose preference, and monoamine neurotransmitter were improved. PCA scores showed clear differences in metabolism between the CUMS group and control group. The PLS-DA or OPLS-DA model exhibited 26 metabolites as biomarkers to distinguish between the CUMS mice and the control mouse. Moreover, IRFV could significantly return 21 metabolites to normal levels. Conclusion The results confirmed that IRFV exerted an antidepressive effect by regulating multiple metabolic pathways, including the tricarboxylic acid cycle, the synthesis of neurotransmitters, and amino acid metabolism. These findings provide insights into the antidepressive mechanisms of IRFV.
Collapse
Affiliation(s)
- Yongbiao Li
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanlan Wu
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liwen Wang
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China
| | - Cong Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoqin Zhao
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China
| | - Tingting Zhao
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - An Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiyong Yan
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China
| |
Collapse
|
21
|
Gao X, Feng Y, Xue H, Meng M, Qin X. Antidepressant-like effect of triterpenoids extracts from Poria cocos on the CUMS rats by 16S rRNA gene sequencing and LC–MS metabolomics. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1737107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yan Feng
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Huanhuan Xue
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Meidai Meng
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| |
Collapse
|
22
|
Chen C, Yin Q, Tian J, Gao X, Qin X, Du G, Zhou Y. Studies on the potential link between antidepressant effect of Xiaoyao San and its pharmacological activity of hepatoprotection based on multi-platform metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112432. [PMID: 31790818 DOI: 10.1016/j.jep.2019.112432] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine (TCM) theory, depression is considered to be "liver qi stagnation", and relieving "liver qi stagnation" is regarded as an effective method for treating depression. Xiaoyao San (XYS) is a well-known TCM formula for the treatment of depression by relieving "liver qi stagnation". This formula consists of Radix Paeoniae Alba (Paeonia lactiflora Pall.), Radix Bupleuri (Bupleurum chinense DC.), Poria (Poria cocos (Schw.) Wolf), Rhizoma Atractylodis Macrocephalae (Atractylodes macrocephala Koidz.), Radix Angelicae Sinensis (Angelica sinensis (Oliv.) Diels), Radix Glycyrrhizae (Glycyrrhiza uralensis Fisch.), Rhizoma Zingiberis Recens (Zingiber officinale Roscoe) and Herba Menthae Haplocalycis (Mentha haplocalyx Briq.). AIM OF THE STUDY Several studies have suggested that depression is associated with liver injury. XYS was a well-known TCM formula for the treatment of depression and liver stagnancy. However, it was still unknown whether the antidepressant effect of XYS is related to the pharmacological activity of hepatoprotection. The aim of this study was to elucidate the potential link between the antidepressant and hepatoprotective effect of XYS. MATERIALS AND METHODS A depression rat model was established by the CUMS (chronic unpredictable mild stress) procedure. The antidepressant effect of XYS was assessed by the behavioral indicators, and the hepatoprotective effect of XYS was evaluated through biochemical assays. 1H-NMR and LC/MS-based liver metabolomics were performed to discover key metabolic pathways involved in the antidepressant and hepatoprotective effects of XYS. Further, the key pathway was validated using commercial kits. RESULTS The results demonstrated that XYS pretreatment could significantly improve the depressive symptom induced by CUMS. More importantly, the results demonstrated that liver injury was observed in the CUMS model rats, and XYS had a hepatoprotective effect by reducing the activities of AST and ALT in serum, increasing the levels of SOD and GSH-Px and reducing the contents of MDA, IL-6, and IL-1β in the liver. In addition, the NMR and LC/MS-based metabolomics results indicated that XYS improved 23 of the 35 perturbed potential liver biomarkers that were induced by CUMS. Among them, 9 biomarkers were significantly correlated with both depression and liver pathology, according to Pearson correlation analysis. Metabolic pathway analyses of these 9 biomarkers showed that glutamine and glutamate metabolism were the most important metabolic pathways. Furthermore, to verify glutamine and glutamate metabolism, the levels of glutamine and glutamate, and the activity of glutamine synthetase (GS) and glutaminase (GLS) were quantitatively determined in the liver by commercial kits, and these results were consistent with the metabolomics results. CONCLUSIONS XYS could significantly improve the depressive and liver injury symptoms induced by CUMS. The metabolomics results indicate that the regulation of glutamine and glutamate metabolism to maintain the balance of ammonia and promote energy metabolism is a potential junction between the antidepressant and hepatoprotective effects of XYS.
Collapse
Affiliation(s)
- Congcong Chen
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China; College of Chemistry and Chemical Engineering, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, PR China
| | - Qicai Yin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China; College of Chemistry and Chemical Engineering, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, PR China
| | - Junshen Tian
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China.
| |
Collapse
|
23
|
Liu X, Liu C, Tian J, Gao X, Li K, Du G, Qin X. Plasma metabolomics of depressed patients and treatment with Xiaoyaosan based on mass spectrometry technique. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112219. [PMID: 31494201 DOI: 10.1016/j.jep.2019.112219] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoyaosan (XYS), a famous and classic traditional Chinese prescription, has been used for long time in treating depressive disorders. XYS consists of Radix Bupleuri (Bupleurum chinense DC.), Radix Angelicae Sinensis (Angelica sinensis (Oliv.) Diels), Radix PaeoniaeAlba (Paeonia lactiflora Pall.), Rhizoma Atractylodis Macrocepha lae (Atractylodes macrocephala Koidz.), Poria (Poria cocos (Schw.)Wolf), Radix Glycyrrhizae (Glycyrrhiza uralensis Fisch.), Herba Menthae Haplocalycis (Mentha haplocalyx Briq.), and Rhizoma Zin-giberis Recens (Zingiber officinale Rosc.). AIM OF THE STUDY A GC-MS based metabolomics approach was applied to discover the potential biomarkers that were related to metabolic differences between healthy volunteers and depression cohort diagnosed by HAMD and CGI, and to demonstrate the potential utility of these biomarkers in the diagnosis of depression and pharmaceutical efficacy of XYS. MATERIALS AND METHODS A total of 17 depressed patients and the 17 age- and gender-matched healthy subjects were served as the primary cohort. The depressed patients were screened according to the Chinese Classification of Mental Disorder (CCMD-3) and the Hamilton Depression Scale (HAMD). In addition, five other depressed patients were also enrolled as the primary cohort when the final step of sample collection was conducted. Plasma samples were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). Clinical and metabolomics data were analyzed by multivariate statistics analysis, Receiver Operating Characteristic (ROC) curve and MetaboAnalyst. RESULTS We observed significant differences between depression cohort and healthy volunteers, and between patients before and after the treatment of XYS. The method was then clinically validated in an independent validation cohort. Levels of oxalic and stearic acids significantly increased in depressed patients' plasma while valine and urea significantly decreased, as compared with healthy controls. Of note, XYS reversed these metabolite changes in terms of regulating dysfunctions in glyoxylate and dicarboxylate metabolism, fatty acid biosynthesis, valine, leucine and isoleucine biosynthesis, and arginine and proline metabolism. Importantly, the combination of oxalic and stearic acids is in prospect as diagnose biomarkers. CONCLUSIONS This study highlights the clinical application of metabolomics in disease diagnose and therapy evaluation, which will help in improving our understanding of depression and will lay solid foundation for the clinic application of TCMs. In addition, it suggests that the combination of the two potential biomarkers had also achieved a high diagnostic value, which consequently could be used a diagnose biomarkers.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, PR China; Science and Technology Innovation Team of Shanxi Province, Taiyuan, 030006, PR China; Key Laboratory of Effective Substances Research and Utilization in Traditional Chinese Medicine of Shanxi Province, Taiyuan, 030006, PR China
| | - Caichun Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, PR China; Science and Technology Innovation Team of Shanxi Province, Taiyuan, 030006, PR China; Key Laboratory of Effective Substances Research and Utilization in Traditional Chinese Medicine of Shanxi Province, Taiyuan, 030006, PR China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, PR China; Science and Technology Innovation Team of Shanxi Province, Taiyuan, 030006, PR China; Key Laboratory of Effective Substances Research and Utilization in Traditional Chinese Medicine of Shanxi Province, Taiyuan, 030006, PR China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, PR China; Science and Technology Innovation Team of Shanxi Province, Taiyuan, 030006, PR China; Key Laboratory of Effective Substances Research and Utilization in Traditional Chinese Medicine of Shanxi Province, Taiyuan, 030006, PR China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, PR China; Science and Technology Innovation Team of Shanxi Province, Taiyuan, 030006, PR China; Key Laboratory of Effective Substances Research and Utilization in Traditional Chinese Medicine of Shanxi Province, Taiyuan, 030006, PR China
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, PR China; Science and Technology Innovation Team of Shanxi Province, Taiyuan, 030006, PR China; Key Laboratory of Effective Substances Research and Utilization in Traditional Chinese Medicine of Shanxi Province, Taiyuan, 030006, PR China.
| |
Collapse
|
24
|
Song M, Zhang J, Li X, Liu Y, Wang T, Yan Z, Chen J. Effects of Xiaoyaosan on Depressive-Like Behaviors in Rats With Chronic Unpredictable Mild Stress Through HPA Axis Induced Astrocytic Activities. Front Psychiatry 2020; 11:545823. [PMID: 33192662 PMCID: PMC7606759 DOI: 10.3389/fpsyt.2020.545823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT Astrocytes in the hippocampus are immediately relevant to depressive-like behavior. By regulating their activities, Xiaoyaosan (XYS), a traditional Chinese medicine compound, works in the treatment of depression. OBJECTIVE Chronic unpredictable mild stress (CUMS) rat model was established to observe the regulation of XYS. We investigated the behavioral changes of CUMS, the expression of corticosterone (CORT) of the hypothalamo-pituitary-adrenal (HPA) axis, the expression of Glu-NMDA receptor and astrocytes glial fibrillary acidic protein (GFAP) in the hippocampus. We also investigated whether these changes were linked to XYS. METHODS 80 adult SD rats were randomly divided into four groups, control group, CUMS group, XYS group, and fluoxetine group. The rats in the control group and the CUMS group received 0.5 ml of deionized water once a day by intragastrically administration. Rats in the two treatment groups received XYS (2.224g/kg/d) and fluoxetine (2.0mg/kg/d) once a day, respectively. Rat hippocampus GFAP and Glu-NMDA receptor were respectively detected by real-time fluorescent quantitative PCR and western blot. The CORT of HPA axis was detected by Elisa. Body weight, food intake, and behavioral tests, such as open field tests, the sucrose preference test, and exhaustive swimming test, were used to assess depressive-like behavior in rats. RESULTS In this work, significant behavioral changes and differences in expression of the CORT of HPA axis and hippocampal GFAP and Glu-NMDA receptor were presented in CUMS-exposed rats. Like fluoxetine, XYS improved CUMS-induced rat's body weight, food intake, and depressive-like behavior. The study also proved that XYS could reverse the CUMS-induced changes of the CORT of HPA axis and affect the astrocytic activities and down-regulate the NR2B subunit of NMDA receptor (NR2B) level in the hippocampus. CONCLUSION Changes in the hippocampus GFAP and Glu-NMDA receptor may be an essential mechanism of depression. Besides, XYS may be critical to the treatment of depression by intervention the HPA axis, GFAP and Glu-NMDA receptor.
Collapse
Affiliation(s)
- Ming Song
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojuan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yueyun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tingye Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiyi Yan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
25
|
Xiong X, Wang P, Duan L, Liu W, Chu F, Li S, Li X, Su K, You H, Xing Y. Efficacy and safety of Chinese herbal medicine Xiao Yao San in hypertension: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152849. [PMID: 31035044 DOI: 10.1016/j.phymed.2019.152849] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/15/2019] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Xiao Yao San (XYS) is thought to be beneficial for the treatment of hypertension in China. PURPOSE A systematic review and meta-analysis was performed to evaluate the efficacy and safety of XYS in hypertension. STUDY DESIGN A comprehensive literature search was conducted in 7 electronic databases for randomized controlled trials from their inception until January 7, 2019. METHODS Methodological quality was assessed independently using the Cochrane Handbook for Systematic Reviews of Interventions. RESULTS A total of 17 trials including 1460 hypertensive patients met the selection criteria. Pooled analysis favored XYS plus antihypertensive drugs on blood pressure (BP), Hamilton anxiety scale, self-rating anxiety scale, self-rating depression scale, 9-item patient health questionnaire scale, total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, homocysteine, and C-reactive protein. No significant difference between XYS plus antihypertensive drugs and antihypertensive drugs on major cardiovascular and cerebrovascular events was identified. XYS was well tolerated in the treatment of hypertension. CONCLUSION XYS adjuvant to antihypertensive drugs maybe beneficial for hypertensive patients in lowering BP, improving depression, regulating blood lipids, and inhibiting inflammation. However, the efficacy and safety of XYS are still uncertain due to methodological shortcomings. More long-term, randomized, double-blinded clinical trials are needed in future studies.
Collapse
Affiliation(s)
- Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lian Duan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Liu
- Department of Cardiology, Traditional Chinese Medicine Hospital of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Fuyong Chu
- Department of Cardiology, Traditional Chinese Medicine Hospital of Beijing, Beijing University of Chinese Medicine, Beijing, China
| | - Shengjie Li
- Department of Biological Science and Technology, School of Life Sciences, Tsinghua University, Beijing, China; Department of Molecular Biology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoke Li
- Bio-organic and Natural Products Laboratory, McLean Hospital, Harvard Medical School, Belmont, USA
| | - Kelei Su
- Department of Respiration, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hu You
- Department of Chinese Medicine, Nanjing Benq Hospital, Nanjing Medical University, Nanjing, China; College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yanwei Xing
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
26
|
Liu X, Zheng X, Du G, Li Z, Qin X. Brain metabonomics study of the antidepressant-like effect of Xiaoyaosan on the CUMS-depression rats by 1H NMR analysis. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:141-154. [PMID: 30708033 DOI: 10.1016/j.jep.2019.01.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoyaosan (XYS), a famous TCM prescription with a long history of clinical use for relieving a wide variety of depression symptoms, consists of Radix Bupleuri (Bupleurum chinense DC.), Radix Angelicae Sinensis (Angelica sinensis (Oliv.) Diels), Radix PaeoniaeAlba (Paeonia lactiflora Pall.), Rhizoma Atractylodis Macrocepha lae (Atractylodes macrocephala Koidz.), Poria (Poria cocos (Schw.)Wolf), Radix Glycyrrhizae (Glycyrrhiza uralensis Fisch.), Herba Menthae Haplocalycis (Mentha haplocalyx Briq.), and Rhizoma Zin-giberis Recens (Zingiber officinale Rosc.). AIM OF THE STUDY We aimed to characterize the diversity and variation of two kinds metabolites of brain, i.e. aqueous and lipophilic metabolites, gaining comprehensive insights into the metabolic processes of depression-like behavior, and to reveal the mechanisms of antidepressant-like effects of XYS. MATERIALS AND METHODS We first established a CUMS (Chronic Unpredictable Mild Stress)-induced depression-like behavior model. We then extracted both aqueous and lipophilic metabolites of rat brains by a two-phase extraction method, which were subsequently characterized by two differential sequences of 1H nuclear magnetic resonance (NMR). Multivariate analysis including Principal Components Analysis (PCA) and Orthogonal Partial Least Squares-Discriminate Analysis (OPLS-DA) was applied. RESULTS Metabolic profiling by PCA indicated that XYS significantly reversed the metabolic perturbation caused by CUMS. OPLS-DA showed a total of 15 metabolites including 6 lipophilic and 9 aqueous metabolites was screened as potential biomarkers involved in CUMS-induced depression-like behavior. On top of this, five pathways including (1)D-glutamine and D-glutamate metabolism, (2) valine, leucine and isoleucine biosynthesis, (3) alanine, aspartate and glutamate metabolism, (4) taurine and hypotaurine metabolism and (5) arginine and proline metabolism were recognized as the most influenced pathways associated with the process of CUMS-induced depression-like behavior. Notably, XYS significantly reversed abnormality of 5 aqueous and 4 lipophilic metabolites to normal, suggesting that XYS synergistically mediated abnormalities of multiple pathways (1), (3), (4) and (5). CONCLUSIONS It is the first report to investigate the antidepressant-like effects and underlying mechanisms of XYS from the perspective of brain metabolites. In a broad sense, this study brings novel and valuable insights to evaluate the efficacy of traditional Chinese medicine (TCM), to interpret mechanisms, and to provide the theoretical basis for further research on therapeutic mechanisms in clinical practice.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan 030006, Shanxi, China.
| | - Xingyu Zheng
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan 030006, Shanxi, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan 030006, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, Shanxi, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
27
|
Antidepressant effect of helicid in chronic unpredictable mild stress model in rats. Int Immunopharmacol 2019; 67:13-21. [DOI: 10.1016/j.intimp.2018.11.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/29/2023]
|
28
|
Liu XJ, Zhang CE, Yu XH, Liu RX, Qin XM, Jia JD, Ma ZJ. Serum metabonomics characterization of liver fibrosis induced by bile duct-ligated in rats and the intervention effects of herb compound 861. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1574815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xiao-Jie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P. R. China
| | - Cong-En Zhang
- Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Xiao-Hong Yu
- Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Rui-Xia Liu
- Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P. R. China
| | - Ji-Dong Jia
- Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis
| | - Zhi-Jie Ma
- Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis
| |
Collapse
|
29
|
Jiao H, Yan Z, Ma Q, Li X, Jiang Y, Liu Y, Chen J. Influence of Xiaoyaosan on depressive-like behaviors in chronic stress-depressed rats through regulating tryptophan metabolism in hippocampus. Neuropsychiatr Dis Treat 2019; 15:21-31. [PMID: 30587994 PMCID: PMC6302818 DOI: 10.2147/ndt.s185295] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Tryptophan metabolism has always been considered to play a vital role in mental disorder diseases, and how traditional Chinese formula Xiaoyaosan regulates the tryptophan metabolism is a complement to the pathogenesis of depression. This study established a depression rat model by the chronic immobilization stress (CIS) method and observed the change in tryptophan metabolism in hippocampus and the effects of Xiaoyaosan. METHODS Forty-eight male Sprague Dawley (SD) rats were randomly divided into the following four groups: control group, CIS group, Xiaoyaosan group, and fluoxetine group. The depression model was established by the 21-day CIS. The food intake and body weight were recorded, and the sucrose preference test (SPT), novelty suppressed feeding (NSF) test and open field test (OFT) were also used to evaluate the model. Then, the contents of tryptophan and 5-hydroxytryptamine (5-HT) in hippocampus were detected by the ELISA method, and the expression levels of tryptophan hydrogenase 2 (TPH2) and indoleamine 2,3-dioxygenase 1 (IDO1) in hippocampus were determined by quantitative reverse transcriptase polymerase chain reaction reaction (qRT-PCR) and Western blot methods. RESULTS The behavioral data showed a significant difference between the model group and the normal group. The 5-HT content in the hippocampi of CIS rats was significantly reduced, whereas the tryptophan content in the hippocampi of model rats was significantly increased. The TPH2 level in hippocampus of the model group was significantly decreased, and the IDO1 level was significantly increased. Xiaoyaosan and fluoxetine could significantly reverse these changes and had obvious curative effects. CONCLUSION The abnormal tryptophan metabolism existed in the hippocampi of chronic stress-depressed rats, which was closely related to the pathogenesis of depression. Xiaoyaosan could improve the tryptophan metabolism by regulating the expression levels of TPH2 and IDO1, thus exerting an antidepressant-like effect.
Collapse
Affiliation(s)
- Haiyan Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China,
| | - Zhiyi Yan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China,
| | - Qingyu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong, China,
| | - Xiaojuan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong, China,
| | - Youming Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China,
| | - Yueyun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China,
| | - Jiaxu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China, .,Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong, China,
| |
Collapse
|
30
|
Xin X, Lin H, Ren L. Metabonomics research of functional dysplasia of hepatic stagnation and spleen deficiency type. Shijie Huaren Xiaohua Zazhi 2017; 25:2591-2596. [DOI: 10.11569/wcjd.v25.i29.2591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Functional dyspepsia (FD) is a common digestive disease that is associated with many psychological factors. Modern medicine considers that the pathogenesis of FD is closely related to the effects of the brain-gut axis on the digestive system, but there is still a lack of objective biomarkers for the diagnosis and evaluation of this disease. In recent years, the application of metabonomics to study the pathological changes of metabolites has become a hot spot. Traditional Chinese medicine considered that hepatic stagnation and spleen deficiency is largely responsible for the pathogenesis of FD. The metabonomics study of FD coincides with the concept of holisms and the principle of treatment based on syndrome differentiation in TCM. Nowadays, great progress has been made in the intervention of metabolites changes by acupuncture, Chinese herbal medicine and other methods. This paper will review the recent progress in the metabonomics research of functional dysplasia of hepatic stagnation and spleen deficiency type.
Collapse
Affiliation(s)
- Xin Xin
- Liaoning Traditional Chinese Medicine University, Shenyang 110847, Liaoning Province, China,Shenyang Mental Health Center, Shenyang 110168, Liaoning Province, China
| | - Hui Lin
- Liaoning Traditional Chinese Medicine University, Shenyang 110847, Liaoning Province, China
| | - Lu Ren
- Liaoning Traditional Chinese Medicine University, Shenyang 110847, Liaoning Province, China
| |
Collapse
|
31
|
Guo Y, Li Z, Liu X, Su X, Li Y, Zhu J, Song Y, Zhang P, Chen JDZ, Wei R, Yang J, Wei W. 1H NMR-Based Metabonomic Study of Functional Dyspepsia in Stressed Rats Treated with Chinese Medicine Weikangning. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:4039425. [PMID: 29234392 PMCID: PMC5637829 DOI: 10.1155/2017/4039425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/11/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022]
Abstract
1H NMR-based metabolic profiling combined with multivariate data analysis was used to explore the metabolic phenotype of functional dyspepsia (FD) in stressed rats and evaluate the intervention effects of the Chinese medicine Weikangning (WKN). After a 7-day period of model establishment, a 14-day drug administration schedule was conducted in a WKN-treated group of rats, with the model and normal control groups serving as negative controls. Based on 1H NMR spectra of urine and serum from rats, PCA, PLS-DA, and OPLS-DA were performed to identify changing metabolic profiles. According to the key metabolites determined by OPLS-DA, alterations in energy metabolism, stress-related metabolism, and gut microbiota were found in FD model rats after stress stimulation, and these alterations were restored to normal after WKN administration. This study may provide new insights into the relationship between FD and psychological stress and assist in research into the metabolic mechanisms involved in Chinese medicine.
Collapse
Affiliation(s)
- Yu Guo
- Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 10102, China
- Beijing University of Chinese Medicine, 11 North Third Ring Road East Road, Chaoyang District, Beijing 10029, China
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North Road, Haidian District, Beijing 100048, China
| | - Xinfeng Liu
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North Road, Haidian District, Beijing 100048, China
| | - Xiaolan Su
- Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 10102, China
| | - Yijie Li
- Beijing University of Chinese Medicine, 11 North Third Ring Road East Road, Chaoyang District, Beijing 10029, China
| | - Jiajie Zhu
- Beijing University of Chinese Medicine, 11 North Third Ring Road East Road, Chaoyang District, Beijing 10029, China
| | - Yilin Song
- Beijing University of Chinese Medicine, 11 North Third Ring Road East Road, Chaoyang District, Beijing 10029, China
| | - Ping Zhang
- Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 10102, China
| | - Jiande D. Z. Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins Medicine, Baltimore, MD 21224, USA
| | - Ruhan Wei
- Department of Chemistry, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA
| | - Jianqin Yang
- Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 10102, China
| | - Wei Wei
- Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Huajiadi Street, Chaoyang District, Beijing 10102, China
| |
Collapse
|
32
|
Bioassay-guided isolation of saikosaponins with agonistic activity on 5-hydroxytryptamine 2C receptor from Bupleurum chinense and their potential use for the treatment of obesity. Chin J Nat Med 2017. [PMID: 28629538 DOI: 10.1016/s1875-5364(17)30070-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
5-Hydroxytryptamine 2C (5-HT2C) receptor is one of the major targets of anti-obesity agents, due to its role in regulation of appetite. In the present study, the 70% EtOH extract of the roots of Bupleurum chinense was revealed to have agonistic activity on 5-HT2C receptor, and the subsequent bioassay-guided isolation led to identification of several saikosaponins as the active constituents with 5-HT2C receptor agonistic activity in vitro and anti-obesity activity in vivo. The new compound, 22-oxosaikosaponin d (1), was determined by extensive spectroscopic analyses (HR-ESI-MS, IR, and 1D and 2D NMR). The primary structure-activity relationship study suggested that the intramolecular ether bond between C-13 and C-28 and the number of sugars at C-3 position were closely related to the 5-HT2C receptor agonistic activity. Saikosaponin a (3), the main saponin in B. chinense, showed obviously agonistic activity on 5-HT2C receptor with an EC50 value of 21.08 ± 0.33 μmol·L-1in vitro and could reduce food intake by 39.1% and 69.2%, and weight gain by 13.6% and 16.4%, respectively, at 3.0 and 6.0 mg·kg-1in vivo. This investigation provided valuable information for the potential use of B. chinense as anti-obesity agent.
Collapse
|
33
|
Lei T, Wang Y, Li M, Zhang X, Lv C, Jia L, Wang J, Lu J. A comparative study of the main constituents and antidepressant effects of raw and vinegar-baked Bupleuri Radix in rats subjected to chronic unpredictable mild stress. RSC Adv 2017. [DOI: 10.1039/c7ra04724j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bupleuri Radix (BR) is a traditional Chinese medicine (TCM) widely used in Asian nations, which originates fromBupleurum chinenseDC orBupleurum scorzonerifoliumWilld.
Collapse
Affiliation(s)
- Tianli Lei
- Department of Medicinal Plants
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Yadan Wang
- Department of Medicinal Plants
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Mingxiao Li
- Department of Medicinal Plants
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Xin Zhang
- Department of Medicinal Plants
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Chongning Lv
- Department of Medicinal Plants
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Lingyun Jia
- Department of Medicinal Plants
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Jing Wang
- Department of Pharmaceutical Botany
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Jincai Lu
- Department of Medicinal Plants
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| |
Collapse
|
34
|
Investigation on Endogenous Metabolites in Pancreas of Diabetic Rats after Treatment by Genipin through 1H-NMR-based Metabolomic Profiles. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60022-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Jia HM, Li Q, Zhou C, Yu M, Yang Y, Zhang HW, Ding G, Shang H, Zou ZM. Chronic unpredictive mild stress leads to altered hepatic metabolic profile and gene expression. Sci Rep 2016; 6:23441. [PMID: 27006086 PMCID: PMC4804211 DOI: 10.1038/srep23441] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/07/2016] [Indexed: 12/20/2022] Open
Abstract
Depression is a complex disease characterized by a series of pathological changes. Research on depression is mainly focused on the changes in brain, but not on liver. Therefore, we initially explored the metabolic profiles of hepatic extracts from rats treated with chronic unpredictive mild stress (CUMS) by UPLC-Q-TOF/MS. Using multivariate statistical analysis, a total of 26 altered metabolites distinguishing CUMS-induced depression from normal control were identified. Using two-stage receiver operating characteristic (ROC) analysis, 18 metabolites were recognized as potential biomarkers related to CUMS-induced depression via 12 metabolic pathways. Subsequently, we detected the mRNA expressions levels of apoptosis-associated genes such as Bax and Bcl-2 and four key enzymes including Pla2g15, Pnpla6, Baat and Gad1 involved in phospholipid and primary bile acid biosynthesis in liver tissues of CUMS rats by real-time qRT-PCR assay. The expression levels of Bax, Bcl-2, Pla2g15, Pnpla6 and Gad1 mRNA were 1.43,1.68, 1.74, 1.67 and 1.42-fold higher, and those of Baat, Bax/Bcl-2 ratio mRNA were 0.83, 0.85-fold lower in CUMS rats compared with normal control. Results of liver-targeted metabonomics and mRNA expression demonstrated that CUMS-induced depression leads to variations in hepatic metabolic profile and gene expression, and ultimately results in liver injury.
Collapse
Affiliation(s)
- Hong-Mei Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Qi Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Chao Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hong-Wu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Gang Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hai Shang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
36
|
A GC-MS urinary quantitative metabolomics analysis in depressed patients treated with TCM formula of Xiaoyaosan. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1026:227-235. [PMID: 26733091 DOI: 10.1016/j.jchromb.2015.12.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023]
Abstract
Xiaoyaosan, one of the best-known traditional Chinese medicine prescriptions, has been widely used in China for the treatment of mental disorders such as depression. Although both clinical application and animal experiments indicate that Xiaoyaosan has an obvious antidepressant effect, the mechanism still remains unclarified, and there are few studies quantitatively measured the biomarkers of Xiaoyaosan treatment by metabolomics to determination. In this study, 25 depressed patients and 33 healthy volunteers were recruited. A GC-MS based metabolomics approach and the multivariate statistical methods were used for analyzing the urine metabolites of depressed patients before and after treatment compared with healthy controls. Then the biomakers through metabolomics determination were carried out the quantitative analysis. In total, 5 metabolites were identified as the potential diseased and therapeutic biomarkers of depression and Xiaoyaosan. Alanine, citrate and hippurate levels were significantly increased in the urine samples from depressed patients compared with healthy controls, while phenylalanie and tyrosine levels were significantly decreased. However, after Xiaoyaosan treatment for 6 weeks, phenylalanie and tyrosine levels were significantly increased (p<0.05) and alanine, citrate and hippurate levels significantly decreased (p<0.05). Xiaoyaosan has a good priority on the treatment of depression and the ability to adjust the neurotransmitters to obtain the best treated response and also could regulate the metabolism of amino acids and promote to produce energy meet the needs of the body.
Collapse
|
37
|
Tang M, Jiang P, Li H, Liu Y, Cai H, Dang R, Zhu W, Cao L. Fish oil supplementation alleviates depressant-like behaviors and modulates lipid profiles in rats exposed to chronic unpredictable mild stress. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:239. [PMID: 26183327 PMCID: PMC4504181 DOI: 10.1186/s12906-015-0778-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/13/2015] [Indexed: 12/29/2022]
Abstract
Background Patients with major depressive disorder have a higher prevalence and incidence of dyslipidemia. However, clinical studies concerning the association between lipid levels and depression are inconsistent. Adipokines (like leptin and adiponectin) and ghrelin are strongly associated with lipid metabolism. Fish oil, which is reported to possess antidepressant effect, also have beneficial effects on lipid metabolism and the cardiovascular system. In the present study, we investigated lipid metabolism in rats exposed to chronic unpredictable mild stress (CUMS) and the effect of fish oil on lipid profiles, aforementioned adipokines and ghrelin. Methods Sucrose preference test (SPT), open field test (OFT) and forced swimming test (FST) were used to evaluate the antidepressant-like effects of fish oil. After the behavior tests, peripheral blood were collected. Serum parameters, including fasting triglyceride (TG), total cholesterol (TCH), high density lipoprotein-cholesterol (HDL-c), low density lipoprotein-cholesterol (LDL-c), free fatty acid (FFA), glucose (GLU), adipokines (leptin, adiponectin) and ghrelin were assayed. Results After 5 weeks of CUMS procedures, rats were induced to depressive-like state, and exhibited increased serum levels of TCH, HDL-c, FFA and decreased serum levels of leptin and ghrelin, whereas the serum status of adiponectin, GLU, TG and LDL-c remained stable. Fish oil treatment showed robust antidepressant effect and reversed the stress-induced lipid disturbance and decrease in serum concentration of ghrelin. Conclusions Our results suggested that CUMS altered the serum levels of lipid profiles, leptin and ghrelin in rats. Fish oil supplementation not only provided antidepressant-like effects, but also reversed the altered lipid profiles and ghrelin level in serum. Our data indicated that fish oil treatment exerts anti-depressant effect and regulates lipid disturbance simultaneously.
Collapse
|
38
|
Li P, Tang XD, Cai ZX, Qiu JJ, Lin XL, Zhu T, Owusu L, Guo HS. CNP signal pathway up-regulated in rectum of depressed rats and the interventional effect of Xiaoyaosan. World J Gastroenterol 2015; 21:1518-1530. [PMID: 25663771 PMCID: PMC4316094 DOI: 10.3748/wjg.v21.i5.1518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 08/28/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the distribution and expression of C-type natriuretic peptide (CNP)/natriuretic peptide receptor B (NPR-B) in the rectum of a rodent depression model and the interventional effect of Xiaoyaosan (XYS).
METHODS: Male rats (n = 45) of clean grade (200 ± 20 g) were divided into five groups after one week of adaptive feeding: primary control, depression model, low dose XYS, middle dose XYS, and high dose XYS. The animal experiment continued for 3 wk. Primary controls were fed normally ad libitum. The rats of all other groups were raised in solitary and exposed to classic chronic mild unpredictable stimulation each day. XYS groups were perfused intragastrically with low dose, middle dose, and high dose XYS one hour before stimulation. Primary control and depression model groups were perfused intragastrically with normal saline under similar conditions as the XYS groups. Three weeks later, all rats were sacrificed, and the expression levels of CNP and NPR-B in rectum tissues were analyzed by immunohistochemistry, real-time polymerase chain reaction, and Western blotting.
RESULTS: CNP and NPR-B were both expressed in the rectum tissues of all rats. However, the expression levels of CNP and NPR-B at both gene and protein levels in the depression model group were significantly higher when compared to the primary control group (n = 9; P < 0.01). XYS intervention markedly inhibited the expression levels of CNP and NPR-B in depressed rats. The expression levels of CNP and NPR-B in the high dose XYS group did not significantly differ from the expression levels in the primary control group. Additionally, the high and middle dose XYS groups (but not the low dose group) significantly exhibited lower CNP and NPR-B expression levels in the rectum tissues of the respectively treated rats compared to the untreated depression model cohort (n = 9; P < 0.01).
CONCLUSION: The CNP/NPR-B pathway is upregulated in the rectum of depressed rats and may be one mechanism for depression-associated digestive disorders. XYS antagonizes this pathway at least partially.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Behavior, Animal/drug effects
- Depression/drug therapy
- Depression/genetics
- Depression/metabolism
- Depression/psychology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/pharmacology
- Male
- Natriuretic Peptide, C-Type/genetics
- Natriuretic Peptide, C-Type/metabolism
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptors, Atrial Natriuretic Factor/drug effects
- Receptors, Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/metabolism
- Rectum/drug effects
- Rectum/metabolism
- Signal Transduction/drug effects
- Time Factors
- Up-Regulation
Collapse
|
39
|
Peng GJ, Tian JS, Gao XX, Zhou YZ, Qin XM. Research on the Pathological Mechanism and Drug Treatment Mechanism of Depression. Curr Neuropharmacol 2015; 13:514-23. [PMID: 26412071 PMCID: PMC4790409 DOI: 10.2174/1570159x1304150831120428] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/19/2015] [Accepted: 01/25/2015] [Indexed: 11/25/2022] Open
Abstract
Depression is one of the prevalent and persistent psychiatric illnesses. It brings heavy socioeconomic burden such as healthcare expenditures and even higher suicide rates. Despite many hypotheses about its mechanism have been put forward, so far it is still unclear, not to mention the precise and effective diagnostic or therapeutic methods. In this paper, the current conditions of pathological and pharmacological mechanism of depression were reviewed systematically. Firstly, the most recent hypotheses and metabolomics based research including hereditary, neurotransmitter systems, brain derived neurotrophic factor (BDNF), hyperactivity of the hypothalamic pituitary adrenal (HPA) axis and inflammatory as well as metabolomics were summarized. Secondly, the present situation and development on antidepressant drugs at home and abroad were reviewed. Finally, a conclusion and prospect on the pathological and pharmacological mechanism of depression were provided primarily.
Collapse
Affiliation(s)
- Guo-jiang Peng
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
- College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan 030006,
PR China
| | - Jun-sheng Tian
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Xiao-xia Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Yu-zhi Zhou
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Xue-mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| |
Collapse
|
40
|
Tian JS, Peng GJ, Gao XX, Zhou YZ, Xing J, Qin XM, Du GH. Dynamic analysis of the endogenous metabolites in depressed patients treated with TCM formula Xiaoyaosan using urinary (1)H NMR-based metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2014; 158 Pt A:1-10. [PMID: 25448502 DOI: 10.1016/j.jep.2014.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/22/2014] [Accepted: 10/04/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHAMACOLOGICAL RELEVANCE Xiaoyaosan (XYS), one of the best-known traditional Chinese medicine prescriptions with a long history of use, is composed of Bupleurum chinense DC., Paeonia lactiflora Pall., Poria cocos (Schw.) Wolf, Angelica sinensis (Oliv.) Diels, Zingiber officinale Rosc., Atractylodes macrocephala Koidz., Glycyrrhiza uralensis Fisch., and Mentha haplocalyx Briq. For centuries, XYS has been widely used in China for the treatment of mental disorders such as depression. However, the complicated mechanism underlying the antidepressant activity of XYS is not yet well-understood. This understanding is complicated by the sophisticated pathophysiology of depression and by the complexity of XYS, which has multiple constituents acting on different metabolic pathways. The variations of endogenous metabolites in depressed patients after administration of XYS may help elucidate the anti-depressant effect and mechanism of action of XYS. The aim of this study is to establish the metabolic profile of depressive disorder and to investigate the changes of endogenous metabolites in the depressed patients before and after the treatment of Xiaoyaosan using the dynamic analysis of urine metabolomics profiles based on (1)H NMR. MATERIALS AND METHODS Twenty-one depressed patients were recruited from the Traditional Chinese Medicine Department of the First Affiliated Hospital of Shanxi Medical University. Small endogenous metabolites present in urine samples were measured by nuclear magnetic resonance (NMR) and analyzed by multivariate statistical methods. The patients then received XYS treatment for six weeks, after which their Hamilton Depression Scale (HAMD) scores were significantly decreased compared with their baseline scores (p≤0.01). Eight components in urine specimens were identified that enabled discrimination between the pre- and post-XYS-treated samples. RESULTS Urinary of creatinine, taurine, 2-oxoglutarate and xanthurenic acid increased significantly after XYS treatment (p≤0.05), while the urinary levels of citrate, lactate, alanine and dimethylamine decreased significantly (p≤0.05) compared with pre-treatment urine samples. These statistically significant perturbations are involved in energy metabolism, gut microbes, tryptophan metabolism and taurine metabolism. CONCLUSIONS The symptoms of depression had been improved after 6 weeks׳ treatment of XYS according to evaluation of HAMD scores. The dynamic tendency of the 8 metabolites that changed significantly during the treatment of XYS is consistent with the improvement in symptoms of depression. These metabolites may be used as biomarkers for the diagnosis of depressive disorders or the evaluation of the antidepressant as well as the exploration of the mechanism of depression.
Collapse
Affiliation(s)
- Jun-sheng Tian
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Guo-jiang Peng
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China; College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan 030006, PR China
| | - Xiao-xia Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Yu-zhi Zhou
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Jie Xing
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Xue-mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China.
| | - Guan-hua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
41
|
|
42
|
Cao H, Zhang A, Zhang H, Sun H, Wang X. The application of metabolomics in traditional Chinese medicine opens up a dialogue between Chinese and Western medicine. Phytother Res 2014; 29:159-66. [PMID: 25331169 DOI: 10.1002/ptr.5240] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 06/09/2014] [Accepted: 08/04/2014] [Indexed: 12/16/2022]
Abstract
Metabolomics provides an opportunity to develop the systematic analysis of the metabolites and has been applied to discovering biomarkers and perturbed pathways which can clarify the action mechanism of traditional Chinese medicines (TCM). TCM is a comprehensive system of medical practice that has been used to diagnose, treat and prevent illnesses more than 3000 years. Metabolomics represents a powerful approach that provides a dynamic picture of the phenotype of biosystems through the study of endogenous metabolites, and its methods resemble those of TCM. Recently, metabolomics tools have been used for facilitating interactional effects of both Western medicine and TCM. We describe a protocol for investigating how metabolomics can be used to open up 'dialogue' between Chinese and Western medicine, and facilitate lead compound discovery and development from TCM. Metabolomics will bridge the cultural gap between TCM and Western medicine and improve development of integrative medicine, and maximally benefiting the human.
Collapse
Affiliation(s)
- Hongxin Cao
- National TCM Key Laboratory of Serum Pharmacochemistry, Key Laboratory of Metabolomics and Chinmedomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China; China Academy of Chinese Medical Science, Southern Street of Dongzhimen No. 16, Beijing, 100700, China
| | | | | | | | | |
Collapse
|
43
|
Li ZY, He P, Sun HF, Qin XM, Du GH. 1H NMR based metabolomic study of the antifatigue effect of Astragali Radix. ACTA ACUST UNITED AC 2014; 10:3022-30. [DOI: 10.1039/c4mb00370e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Amino acid metabolic dysfunction revealed in the prefrontal cortex of a rat model of depression. Behav Brain Res 2014; 278:286-92. [PMID: 24861712 DOI: 10.1016/j.bbr.2014.05.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 12/30/2022]
Abstract
Major depressive disorder (MDD) is a debilitating mood disorder. However, the molecular mechanism(s) underlying depression remain largely unknown. Here, we applied a GC-MS-based metabonomic approach in the chronic unpredictable mild stress (CUMS) model, a well-established rodent model of depression, to investigate significant metabolic changes in the rat prefrontal cortex (PFC). Multivariate statistical analysis - including principal component analysis, partial least squares-discriminate analysis, and pair-wise orthogonal projections to latent structures discriminant - was applied to identify differential PFC metabolites between CUMS rats and healthy controls. As compared to healthy control rats, CUMS rats were characterized by lower levels of isoleucine and glycerol in combination with higher levels of N-acetylaspartate and β-alanine. These findings should provide insight into the pathophysiological mechanism(s) underlying MDD and preliminary leads relevant to diagnostic biomarker discovery for depression.
Collapse
|
45
|
β-asarone reverses chronic unpredictable mild stress-induced depression-like behavior and promotes hippocampal neurogenesis in rats. Molecules 2014; 19:5634-49. [PMID: 24786848 PMCID: PMC6270931 DOI: 10.3390/molecules19055634] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/08/2014] [Accepted: 04/17/2014] [Indexed: 11/17/2022] Open
Abstract
In this study, we investigated the influence of β-asarone, the major ingredient of Acorus tatarinowii Schott, on depressive-like behavior induced by the chronic unpredictable mild stresses (CUMS) paradigm and to clarify the underlying mechanisms. The results show that β-asarone treatment partially reversed the CUMS-induced depression-like behaviors in both the forced swim and sucrose preference tests. The behavioral effects were associated with increased hippocampal neurogenesis indicated by bromodeoxyuridine (BrdU) immunoreactivity. β-Asarone treatment significantly increased the expression of brain-derived neurotrophic factor (BDNF) at levels of transcription and translation. Moreover, CUMS caused significant reduction in ERK1/2 and CREB phosphorylation, both of which were partially attenuated by β-asarone administration. It is important to note that β-asarone treatment had no effect on total levels or phosphorylation state of any of the proteins examined in ERK1/2-CREB pathway in no stress rats, suggesting that β-asarone acts in a stress-dependent manner to block ERK1/2-CREB signaling. We did not observe a complete reversal of depression-like behaviors to control levels by β-asarone. To our knowledge, the present study is the first to demonstrate that adult neurogenesis is involved in the antidepressant-like behavioral effects of β-asarone, suggesting that β-asarone is a promising candidate for the treatment of depression.
Collapse
|
46
|
Tian JS, Shi BY, Xiang H, Gao S, Qin XM, Du GH. 1H-NMR-based metabonomic studies on the anti-depressant effect of genipin in the chronic unpredictable mild stress rat model. PLoS One 2013; 8:e75721. [PMID: 24058700 PMCID: PMC3776757 DOI: 10.1371/journal.pone.0075721] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/16/2013] [Indexed: 11/23/2022] Open
Abstract
The purpose of this work was to investigate the anti-depressant effect of genipin and its mechanisms using (1)H-NMR spectroscopy and multivariate data analysis on a chronic unpredictable mild stress (CUMS) rat model. Rat serum and urine were analyzed by nuclear magnetic resonance (NMR)-based metabonomics after oral administration of either genipin or saline for 2 weeks. Significant differences in the metabolic profile of the CUMS-treated group and the control group were observed, which were consistent with the results of behavioral tests. Metabolic effects of CUMS included decreases in serum trimetlylamine oxide (TMAO) and β-hydroxybutyric acid (β-HB), and increases in lipid, lactate, alanine and N-acetyl-glycoproteins. In urine, decreases in creatinine and betaine were observed, while citrate, trimethylamine (TMA) and dimethylamine were increased. These changes suggest that depression may be associated with gut microbes, energy metabolism and glycometabolism. Genipin showed the best anti-depressive effects at a dose of 100 mg/kg in rats. These results indicate that metabonomic approaches could be powerful tools for the investigation of the biochemical changes in pathological conditions or drug treatment.
Collapse
Affiliation(s)
- Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, P. R. China
| | - Bi-Yun Shi
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, P. R. China
| | - Huan Xiang
- Physical Education Departments of Shanxi University, Taiyuan, P. R. China
| | - Shan Gao
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, P. R. China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, P. R. China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
47
|
Jia HM, Feng YF, Liu YT, Chang X, Chen L, Zhang HW, Ding G, Zou ZM. Integration of ¹H NMR and UPLC-Q-TOF/MS for a comprehensive urinary metabonomics study on a rat model of depression induced by chronic unpredictable mild stress. PLoS One 2013; 8:e63624. [PMID: 23696839 PMCID: PMC3656962 DOI: 10.1371/journal.pone.0063624] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/04/2013] [Indexed: 12/03/2022] Open
Abstract
Depression is a type of complex psychiatric disorder with long-term, recurrent bouts, and its etiology remains largely unknown. Here, an integrated approach utilizing 1H NMR and UPLC-Q-TOF/MS together was firstly used for a comprehensive urinary metabonomics study on chronic unpredictable mild stress (CUMS) treated rats. More than twenty-nine metabolic pathways were disturbed after CUMS treatment and thirty-six potential biomarkers were identified by using two complementary analytical technologies. Among the identified biomarkers, nineteen (10, 11,16, 17, 21–25, and 27–36) were firstly reported as potential biomarkers of CUMS-induced depression. Obviously, this paper presented a comprehensive map of the metabolic pathways perturbed by CUMS and expanded on the multitude of potential biomarkers that have been previously reported in the CUMS model. Four metabolic pathways, including valine, leucine and isoleucine biosynthesis; phenylalanine, tyrosine and tryptophan biosynthesis; tryptophan metabolism; synthesis and degradation of ketone bodies had the deepest influence in the pathophysiologic process of depression. Fifteen potential biomarkers (1–2, 4–6, 15, 18, 20–23, 27, 32, 35–36) involved in the above four metabolic pathways might become the screening criteria in clinical diagnosis and predict the development of depression. Moreover, the results of Western blot analysis of aromatic L-amino acid decarboxylase (DDC) and indoleamine 2, 3-dioxygenase (IDO) in the hippocampus of CUMS-treated rats indicated that depletion of 5-HT and tryptophan, production of 5-MT and altered expression of DDC and IDO together played a key role in the initiation and progression of depression. In addition, none of the potential biomarkers were detected by NMR and LC-MS simultaneously which indicated the complementary of the two kinds of detection technologies. Therefore, the integration of 1H NMR and UPLC-Q-TOF/MS in metabonomics study provided an approach to identify the comprehensive potential depression-related biomarkers and helpful in further understanding the underlying molecular mechanisms of depression through the disturbance of metabolic pathways.
Collapse
Affiliation(s)
- Hong-mei Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yu-fei Feng
- Department of Pharmacy, Beijing Hospital, Ministry of Public Health, Beijing, PR China
| | - Yue-tao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xing Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Lin Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hong-wu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Gang Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zhong-mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- * E-mail:
| |
Collapse
|
48
|
Zhang F, Wang D, Li X, Li Z, Chao J, Qin X. Metabolomic study of the fever model induced by baker's yeast and the antipyretic effects of aspirin in rats using nuclear magnetic resonance and gas chromatography-mass spectrometry. J Pharm Biomed Anal 2013; 81-82:168-77. [PMID: 23670098 DOI: 10.1016/j.jpba.2013.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/01/2013] [Accepted: 04/06/2013] [Indexed: 11/28/2022]
Abstract
A metabolomic investigation of baker's yeast-induced fever in rats was carried out. Plasma derived from Sprague-Dawley rats treated by subcutaneous administration of 20% (w/v) baker's yeast was analyzed using gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR). Statistical data analysis using t-test and orthogonal partial least-squares discriminant analysis revealed many significant changes in the metabolic data in the plasma of the fever group. Clear separation was achieved between the fever and control groups. Seventeen marked metabolites were found in the fever group. The metabolites, which include amino acids, carbohydrate, organic acids, and fatty acids, mostly contributed to the discrimination of plasma samples from the control and fever groups. These results suggested that fever may involve in the perturbation of amino acid metabolism coupled with energy metabolism, lipid metabolism, and glycometabolism. After determining the antipyretic effects of aspirin on the fever group, four metabolites in the fever rat plasma were found to be signally regulated and recognized as potential biomarkers, including 3-hydroxybutyric acid, gamma-aminobutyric acid, glucose, and linoleic acid. The metabolic relationships that possibly exist between these potential biomarkers were speculated, and the mechanism of baker's yeast-induced fever was illustrated based on the metabolic relationships. This study found that metabolomic approaches such as GC-MS and NMR could be used as potential powerful tools to investigate the biochemical changes and mechanisms in certain pathological states at the metabolism level.
Collapse
Affiliation(s)
- Fusheng Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China
| | | | | | | | | | | |
Collapse
|
49
|
Shi B, Tian J, Xiang H, Guo X, Zhang L, Du G, Qin X. A 1H-NMR plasma metabonomic study of acute and chronic stress models of depression in rats. Behav Brain Res 2013; 241:86-91. [DOI: 10.1016/j.bbr.2012.11.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/20/2012] [Accepted: 11/24/2012] [Indexed: 11/26/2022]
|