1
|
Umapathy P, Arumugam K, Babu RB, Nadig RR, Raman R, Rao GS, Bhende MP, Natarajan V, Km R, Subramaniam Rajesh B. A case-control prospective study to unravel zinc alpha 2 glycoprotein role in the pathophysiology of diabetic retinopathy. Int Ophthalmol 2025; 45:120. [PMID: 40119982 DOI: 10.1007/s10792-025-03482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND AND OBJECTIVES Diabetic retinopathy (DR) is a leading neurovascular complication affecting the working age group worldwide. Zinc alpha-2-glycoprotein (ZAG) is indeed an important adipokine, and it has been found to play a role in various metabolic conditions, including diabetes, metabolic syndrome and responses to lifestyle changes. In this study, we have assessed the levels of ZAG in the aqueous and vitreous humour of DR cases as a marker for the disease. It's a case-control prospective study wherein 65 Proliferative Diabetic Retinopathy (PDR) patients in the age group of 50-60 years with type 2 diabetes mellitus and with no other ocular complications were included. The PDR cases were classified with Tractional Retinal Detachment (TRD) and Fibrovascular Proliferation (FVP). 15 Macular hole (MH) patients in the age group of 60-70 years with no history of diabetes were included as disease control subjects. The groups were evaluated for demographic variables, biochemical parameters, vitreous ZAG levels and biomarkers. Data between the groups were compared statistically. RESULTS A significant increase in ZAG protein levels was observed in both vitreous humour and aqueous humour of PDR cases compared to MH control. A positive correlation was observed between ZAG and various biomarkers like adiponectin, leptin, galectin-3, Vascular endothelial growth factor (VEGF), pentraxin-3 (PTX3) and tumour necrosis factor-alpha (TNF- alpha). Unconditional logistic regression analysis was conducted, and ZAG had 20.167 odds ratio (95% CI 3.927-103.576, P = 0.001). CONCLUSION The present study shows that ZAG is increased in the vitreous and aqueous humour of the PDR cases compared to the macular hole. It was also correlated with the already reported biomarkers. It could be a risk factor for the disease based on the odds ratio.
Collapse
Affiliation(s)
- Prakash Umapathy
- R. S. Mehta Jain Department of Biochemistry and Cell Biology, KNBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, 600006, India
| | - Kishore Arumugam
- R. S. Mehta Jain Department of Biochemistry and Cell Biology, KNBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, 600006, India
| | - Ramya Benita Babu
- R. S. Mehta Jain Department of Biochemistry and Cell Biology, KNBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, 600006, India
| | - Ramya R Nadig
- Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, 600006, India
| | - Rajiv Raman
- Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, 600006, India
| | - Girish Shiva Rao
- Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, 600006, India
| | - Muna P Bhende
- Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, 600006, India
| | - Viswanathan Natarajan
- Biostatistician, Department of Preventive Ophthalmology, Sankara Nethralaya, Chennai, 600006, India
| | - Ramkumar Km
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Bharathidevi Subramaniam Rajesh
- R. S. Mehta Jain Department of Biochemistry and Cell Biology, KNBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, 600006, India.
| |
Collapse
|
2
|
Kałuża A, Trzęsicka K, Drzyzga D, Ferens-Sieczkowska M. Investigation of N-Acetyllactosamine and N, N-Diacetyllactosamine Residues of Seminal Plasma Prolactin-Induced Protein as Ligands Recognized by Galectin-3. Int J Mol Sci 2024; 25:13432. [PMID: 39769197 PMCID: PMC11678142 DOI: 10.3390/ijms252413432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/30/2025] Open
Abstract
Prolactin induced-protein (PIP) has been found to be rich in immunomodulatory epitopes, including N-acetyllactosamine (LacNAc) and N,N-diacetyllactosamine (LacdiNAc) residues, which may constitute ligands for galecin-3 (Gal-3). In the current study, we aimed to investigate the reactivity of galactose- and N-acetylgalactosamine-specific lectins with human seminal plasma PIP. Subsequently, we examined the direct interaction between seminal plasma PIP and galectin-3, and next analyzed whether there are any differences in the interaction associated with impaired semen parameters. The reactivity of terminal galactose-presenting glycans in seminal plasma PIP with Ricinus communis agglutinin I in the asthenozoospermic group was significantly higher compared to the normozoospermic fertile subjects. Investigating the reactivity of Wisteria floribunda lectin with PIP glycans, we found likewise significantly higher relative reactivity in the normozoospermic infertile as well as the oligoasthenozoopermic group compared to the control group. These results are related to the expression of LacdiNAc epitopes in the oligosaccharide chain of PIP. Finally, we observed that PIP reactivity with Wisteria floribunda lectin correlates positively with the interaction between galectin-3 and PIP in the seminal plasma. This can suggest that LacdiNAc residues are engaged in the interaction between PIP and galectin-3.
Collapse
Affiliation(s)
- Anna Kałuża
- Department of Biochemistry and Immunochemistry, Division of Chemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland
| | | | - Damian Drzyzga
- INVICTA, Research and Development Center, Polna 64, 81-740 Sopot, Poland
| | - Mirosława Ferens-Sieczkowska
- Department of Biochemistry and Immunochemistry, Division of Chemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland
| |
Collapse
|
3
|
Surface protein profiling of prostate-derived extracellular vesicles by mass spectrometry and proximity assays. Commun Biol 2022; 5:1402. [PMID: 36550367 PMCID: PMC9780212 DOI: 10.1038/s42003-022-04349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are mediators of intercellular communication and a promising class of biomarkers. Surface proteins of EVs play decisive roles in establishing a connection with recipient cells, and they are putative targets for diagnostic assays. Analysis of the surface proteins can thus both illuminate the biological functions of EVs and help identify potential biomarkers. We developed a strategy combining high-resolution mass spectrometry (HRMS) and proximity ligation assays (PLA) to first identify and then validate surface proteins discovered on EVs. We applied our workflow to investigate surface proteins of small EVs found in seminal fluid (SF-sEV). We identified 1,014 surface proteins and verified the presence of a subset of these on the surface of SF-sEVs. Our work demonstrates a general strategy for deep analysis of EVs' surface proteins across patients and pathological conditions, proceeding from unbiased screening by HRMS to ultra-sensitive targeted analyses via PLA.
Collapse
|
4
|
Szczykutowicz J, Tkaczuk-Włach J, Ferens-Sieczkowska M. Glycoproteins Presenting Galactose and N-Acetylgalactosamine in Human Seminal Plasma as Potential Players Involved in Immune Modulation in the Fertilization Process. Int J Mol Sci 2021; 22:ijms22147331. [PMID: 34298952 PMCID: PMC8303229 DOI: 10.3390/ijms22147331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
In light of recent research, there is increasing evidence showing that extracellular semen components have a significant impact on the immune reaction of the female partner, leading to the tolerogenic response enabling the embryo development and implantation as well as further progress of healthy pregnancy. Seminal plasma glycoproteins are rich in the unique immunomodulatory glycoepitopes that may serve as ligands for endogenous lectins that decorate the surface of immune cells. Such interaction may be involved in modulation of the maternal immune response. Among immunomodulatory glycans, Lewis type antigens have been of interest for at least two decades, while the importance of T/Tn antigens and related structures is still far from understanding. In the current work, we applied two plant lectins capable of distinguishing glycoepitopes with terminal GalNAc and Gal to identify glycoproteins that are their efficient carriers. By means of lectin blotting and lectin affinity chromatography followed by LC-MS, we identified lactotransferrin, prolactin inducible protein as well as fibronectin and semenogelins 1 and 2 as lectin-reactive. Net-O-glycosylation analysis results indicated that the latter three may actually carry T and/or Tn antigens, while in the case of prolactin inducible protein and lactotransferrin LacdiNAc and lactosamine glycoepitopes were more probable. STRING bioinformatics analysis linked the identified glycoproteins in the close network, indicating their involvement in immune (partially innate) processes. Overall, our research revealed potential seminal plasma ligands for endogenous Gal/GalNAc specific lectins with a possible role in modulation of maternal immune response during fertilization.
Collapse
Affiliation(s)
- Justyna Szczykutowicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-369 Wrocław, Poland;
| | - Joanna Tkaczuk-Włach
- Laboratory of Diagnostic Techniques, Medical University of Lublin, 20-081 Lublin, Poland;
- Family Health Centre AB OVO, 20-819 Lublin, Poland
| | - Mirosława Ferens-Sieczkowska
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-369 Wrocław, Poland;
- Correspondence:
| |
Collapse
|
5
|
Proteomic Profiling of Two Distinct Populations of Extracellular Vesicles Isolated from Human Seminal Plasma. Int J Mol Sci 2020; 21:ijms21217957. [PMID: 33114768 PMCID: PMC7663558 DOI: 10.3390/ijms21217957] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Body fluids contain many populations of extracellular vesicles (EV) that differ in size, cellular origin, molecular composition, and biological activities. EV in seminal plasma are in majority originating from prostate epithelial cells, and hence are also referred to as prostasomes. Nevertheless, EV are also contributed by other accessory sex glands, as well as by the testis and epididymis. In a previous study, we isolated EV from seminal plasma of vasectomized men, thereby excluding contributions from the testis and epididymis, and identified two distinct EV populations with diameters of 50 and 100 nm, respectively. In the current study, we comprehensively analyzed the protein composition of these two EV populations using quantitative Liquid Chromatography-Mass Spectrometry (LC-MS/MS). In total 1558 proteins were identified. Of these, ≈45% was found only in the isolated 100 nm EV, 1% only in the isolated 50 nm EV, and 54% in both 100 nm and 50 nm EV. Gene ontology (GO) enrichment analysis suggest that both originate from the prostate, but with distinct biogenesis pathways. Finally, nine proteins, including KLK3, KLK2, MSMB, NEFH, PSCA, PABPC1, TGM4, ALOX15B, and ANO7, with known prostate specific expression and alternate expression levels in prostate cancer tissue were identified. These data have potential for the discovery of EV associated prostate cancer biomarkers in blood.
Collapse
|
6
|
Garcia-Revilla J, Deierborg T, Venero JL, Boza-Serrano A. Hyperinflammation and Fibrosis in Severe COVID-19 Patients: Galectin-3, a Target Molecule to Consider. Front Immunol 2020; 11:2069. [PMID: 32973815 PMCID: PMC7461806 DOI: 10.3389/fimmu.2020.02069] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 disease have become so far the most important sanitary crisis in the XXI century. In light of the events, any clinical resource should be considered to alleviate this crisis. Severe COVID-19 cases present a so-called cytokine storm as the most life-threatening symptom accompanied by lung fibrosis. Galectin-3 has been widely described as regulator of both processes. Hereby, we present compelling evidences on the potential role of galectin-3 in COVID-19 in the regulation of the inflammatory response, fibrosis and infection progression. Moreover, we provide a strong rationale of the utility of measuring plasma galectin-3 as a prognosis biomarker for COVID-19 patients and propose that inhibition of galectin-3 represents a feasible and promising new therapeutical approach.
Collapse
Affiliation(s)
- Juan Garcia-Revilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, BMC, Lund University, Lund, Sweden
| | - Jose Luis Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio Boza-Serrano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Experimental Medical Sciences, Experimental Dementia Research Laboratory, BMC, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Sacca PA, Mazza ON, Scorticati C, Vitagliano G, Casas G, Calvo JC. Human Periprostatic Adipose Tissue: Secretome from Patients With Prostate Cancer or Benign Prostate Hyperplasia. Cancer Genomics Proteomics 2019; 16:29-58. [PMID: 30587498 DOI: 10.21873/cgp.20110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/AIM Periprostatic adipose tissue (PPAT) directs tumour behaviour. Microenvironment secretome provides information related to its biology. This study was performed to identify secreted proteins by PPAT, from both prostate cancer and benign prostate hyperplasia (BPH) patients. PATIENTS AND METHODS Liquid chromatography-mass spectrometry-based proteomic analysis was performed in PPAT-conditioned media (CM) from patients with prostate cancer (CMs-T) (stage T3: CM-T3, stage T2: CM-T2) or benign disease (CM-BPH). RESULTS The highest number and diversity of proteins was identified in CM-T3. Locomotion was the biological process mainly associated to CMs-T and reproduction to CM-T3. Immune responses were enriched in CMs-T. Extracellular matrix and structural proteins were associated to CMs-T. CM-T3 was enriched in proteins with catalytic activity and CM-T2 in proteins with defense/immunity activity. Metabolism and energy pathways were enriched in CM-T3 and those with immune system functions in CMs-T. Transport proteins were enriched in CM-T2 and CM-BPH. CONCLUSION Proteins and pathways reported in this study could be useful to distinguish stages of disease and may become targets for novel therapies.
Collapse
Affiliation(s)
- Paula Alejandra Sacca
- Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Osvaldo Néstor Mazza
- Department of Urology, School of Medicine, University of Buenos Aires, Clínical Hospital "José de San Martín", Buenos Aires, Argentina
| | - Carlos Scorticati
- Department of Urology, School of Medicine, University of Buenos Aires, Clínical Hospital "José de San Martín", Buenos Aires, Argentina
| | | | - Gabriel Casas
- Department of Pathology, Deutsches Hospital, Buenos Aires, Argentina
| | - Juan Carlos Calvo
- Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina.,Department of Biological Chemistry, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Milutinović B, Goč S, Mitić N, Kosanović M, Janković M. Surface glycans contribute to differences between seminal prostasomes from normozoospermic and oligozoospermic men. Ups J Med Sci 2019; 124:111-118. [PMID: 30957617 PMCID: PMC6566730 DOI: 10.1080/03009734.2019.1592266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Extracellular vesicles (EVs), released from the plasma membrane or intracellular compartments, have a specific composition related to their parent cells, but they can, additionally, be modified by the extracellular environment. Although glycans are known to contribute to EV composition and may have biomedical importance as biomarkers and recognition signals, they have not been extensively investigated. In this study, seminal prostasomes, i.e. EVs from seminal plasma (SP) of normo- and oligozoospermic men, were analyzed in order to detect possible changes in their surface glycans under altered physiological conditions. Methods: Prostasomes were isolated from pooled SP by differential centrifugation and gel filtration, followed by glycobiochemical characterization using lectin/immune-transmission microscopy and ion-exchange chromatography. Results: Within the frame of overall similarity in protein composition, surface glycans specifically contributed to the differences between the examined groups of prostasomes in terms of presentation of sialylated and mannosylated moieties. These changes did not affect their anti-oxidative capacity, but implied a possible influence on the accessibility of galectin-3 to its ligands on the prostasomal surface. Conclusions: Subtle differences in the presentation of surface molecules may be helpful for differentiation among vesicles sharing the same physical properties. In addition, this may point to some unexpected regulatory mechanisms of interaction of distinct populations of vesicles with their binding partners.
Collapse
Affiliation(s)
- Bojana Milutinović
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Zemun, Serbia
| | - Sanja Goč
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Zemun, Serbia
| | - Ninoslav Mitić
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Zemun, Serbia
| | - Maja Kosanović
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Zemun, Serbia
| | - Miroslava Janković
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Zemun, Serbia
- CONTACT Miroslava Janković Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Banatska 31b, 11080Zemun, Serbia
| |
Collapse
|
9
|
Wang Y, Park H, Lin H, Kitova EN, Klassen JS. Multipronged ESI–MS Approach for Studying Glycan-Binding Protein Interactions with Glycoproteins. Anal Chem 2019; 91:2140-2147. [DOI: 10.1021/acs.analchem.8b04673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yilin Wang
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Heajin Park
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Hong Lin
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
10
|
Yang C, Guo WB, Zhang WS, Bian J, Yang JK, Zhou QZ, Chen MK, Peng W, Qi T, Wang CY, Liu CD. Comprehensive proteomics analysis of exosomes derived from human seminal plasma. Andrology 2018; 5:1007-1015. [PMID: 28914500 PMCID: PMC5639412 DOI: 10.1111/andr.12412] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 06/18/2017] [Accepted: 07/11/2017] [Indexed: 01/30/2023]
Abstract
Exosomes are membranous nanovesicles of endocytic origin that carry and transfer regulatory bioactive molecules and mediate intercellular communication between cells and tissues. Although seminal exosomes have been identified in human seminal plasma, their exact composition and possible physiologic function remain unknown. The objective of this study was to perform a comprehensive proteomics analysis of exosomes derived from human seminal plasma. Seminal exosomes were isolated and purified from 12 healthy donors using a 30% sucrose cushion‐based exosome‐isolation protocol, followed by characterization by western blot, transmission electron microscopy, and nanoparticle tracking analysis before performing extensive liquid chromatography tandem mass spectrometry proteomics analysis. The identified proteins were analyzed by bioinformatics analysis, and seminal exosomes‐associated proteins were selectively validated by western blot. A total of 1474 proteins were identified in all seminal exosomes samples, with Gene Ontology analysis demonstrating that these identified seminal exosomes‐associated proteins were mostly linked to ‘exosomes,’ ‘cytoplasm,’ and ‘cytosol.’ Bioinformatics analysis indicated that these proteins were mainly involved in biologic processes, including metabolism, energy pathways, protein metabolism, cell growth and maintenance, and transport. Of these identified proteins, PHGDH, LGALS3BP, SEMG1, ACTB, GAPDH, and the exosomal‐marker protein ALIX were validated by western blot. This study provided a more comprehensive description of the seminal exosomes proteome and could also be a resource for further screening of biomarkers and comparative proteomics studies, including those associated with male infertility and prostate cancer.
Collapse
Affiliation(s)
- C Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - W-B Guo
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - W-S Zhang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - J Bian
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - J-K Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Q-Z Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - M-K Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - W Peng
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - T Qi
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - C-Y Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - C-D Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Vlaeminck-Guillem V. Extracellular Vesicles in Prostate Cancer Carcinogenesis, Diagnosis, and Management. Front Oncol 2018; 8:222. [PMID: 29951375 PMCID: PMC6008571 DOI: 10.3389/fonc.2018.00222] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), especially exosomes, are now well recognized as major ways by which cancer cells interact with each other and stromal cells. The meaningful messages transmitted by the EVs are carried by all components of the EVs, i.e., the membrane lipids and the cargo (DNAs, RNAs, microRNAs, long non-coding RNAs, proteins). They are clearly part of the armed arsenal by which cancer cells obtain and share more and more advantages to grow and conquer new spaces. Identification of these messages offers a significant opportunity to better understand how a cancer occurs and then develops both locally and distantly. But it also provides a powerful means by which cancer progression can be detected and monitored. In the last few years, significant research efforts have been made to precisely identify how the EV trafficking is modified in cancer cells as compared to normal cells and how this trafficking is altered during cancer progression. Prostate cancer has not escaped this trend. The aim of this review is to describe the results obtained when assessing the meaningful content of prostate cancer- and stromal-derived EVs in terms of a better comprehension of the cellular and molecular mechanisms underlying prostate cancer occurrence and development. This review also deals with the use of EVs as powerful tools to diagnose non-indolent prostate cancer as early as possible and to accurately define, in a personalized approach, its present and potential aggressiveness, its response to treatment (androgen deprivation, chemotherapy, radiation, surgery), and the overall patients’ prognosis.
Collapse
Affiliation(s)
- Virginie Vlaeminck-Guillem
- Medical Unit of Molecular Oncology and Transfer, Department of Biochemistry and Molecular Biology, Centre Hospitalier Lyon-Sud, Hospices Civils of Lyon, Pierre-Bénite, France.,Cancer Research Centre of Lyon, U1052 INSERM, CNRS 5286, Claude Bernard University Lyon 1, Léon Bérard Centre, Lyon, France
| |
Collapse
|
12
|
Dings RPM, Miller MC, Griffin RJ, Mayo KH. Galectins as Molecular Targets for Therapeutic Intervention. Int J Mol Sci 2018; 19:ijms19030905. [PMID: 29562695 PMCID: PMC5877766 DOI: 10.3390/ijms19030905] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Galectins are a family of small, highly conserved, molecular effectors that mediate various biological processes, including chemotaxis and angiogenesis, and that function by interacting with various cell surface glycoconjugates, usually targeting β-galactoside epitopes. Because of their significant involvement in various biological functions and pathologies, galectins have become a focus of therapeutic discovery for clinical intervention against cancer, among other pathological disorders. In this review, we focus on understanding galectin structure-function relationships, their mechanisms of action on the molecular level, and targeting them for therapeutic intervention against cancer.
Collapse
Affiliation(s)
- Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
13
|
Silva LM, Clements JA. Mass spectrometry based proteomics analyses in kallikrein-related peptidase research: implications for cancer research and therapy. Expert Rev Proteomics 2017; 14:1119-1130. [PMID: 29025353 DOI: 10.1080/14789450.2017.1389637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Kallikrein-related peptidases (KLKs) are a family of serine peptidases that are deregulated in numerous pathological conditions, with a multitude of KLK-mediated functional roles implicated in the progression of cancer. Advances in multidimensional mass spectrometry (MS)-based proteomics have facilitated the quantitative measurement of deregulated KLK expression in cancer, identifying certain KLKs, as well as their substrates, as potential cancer biomarkers. Areas covered: In this review, we discuss how these approaches have been utilized for KLK biomarker discovery and unbiased substrate determination in complex protein pools that mimic the in vivo extracellular microenvironment. Expert commentary: Although a limited number of studies have been performed, the quantity of information generated has greatly improved our understanding of the functional roles of KLKs in cancer progression. In addition, these data suggest additional means through which deregulated KLK expression may be targeted in cancer treatment, highlighting the potential therapeutic value of these state-of-the-art MS-based studies.
Collapse
Affiliation(s)
- Lakmali Munasinghage Silva
- a Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch , National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda , MD , USA
| | - Judith Ann Clements
- b School of Biomedical Sciences , Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Translational Research Institute , Woolloongabba , Australia
| |
Collapse
|
14
|
Hu Y, Yéléhé-Okouma M, Ea HK, Jouzeau JY, Reboul P. Galectin-3: A key player in arthritis. Joint Bone Spine 2016; 84:15-20. [PMID: 27238188 DOI: 10.1016/j.jbspin.2016.02.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/17/2016] [Indexed: 01/15/2023]
Abstract
Arthritis is more and more considered as the leading reason for the disability in the world, particularly regarding its main entities, rheumatoid arthritis and osteoarthritis. The common feature of arthritis is inflammation, which is mainly supported by synovitis (synovial inflammation), although the immune system plays a primary role in rheumatoid arthritis and a secondary one in osteoarthritis. During the inflammatory phase of arthritis, many pro-inflammatory cytokines and mediators are secreted by infiltrating immune and resident joint cells, which are responsible for cartilage degradation and excessive bone remodeling. Amongst them, a β-galactoside-binding lectin, galectin-3, has been reported to be highly expressed and secreted by inflamed synovium of rheumatoid arthritis and osteoarthritis patients. Furthermore, galectin-3 has been demonstrated to induce joint swelling and osteoarthritis-like lesions after intra-articular injection in laboratory animals. However, the mechanisms underlying its pathophysiological role in arthritis have not been fully elucidated. This review deals with the characterization of arthritis features and galectin-3 and summarizes our current knowledge of the contribution of galectin-3 to joint tissue lesions in arthritis.
Collapse
Affiliation(s)
- Yong Hu
- UMR 7365, CNRS, Université de Lorraine, IMoPA, Biopôle de l'Université de Lorraine, Campus Biologie-Santé, Faculté de Médecine, 9, avenue de la Forêt-de-Haye, CS50184, 54505 Vandœuvre-lès-Nancy cedex, France; Department of orthopedics, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Mélissa Yéléhé-Okouma
- UMR 7365, CNRS, Université de Lorraine, IMoPA, Biopôle de l'Université de Lorraine, Campus Biologie-Santé, Faculté de Médecine, 9, avenue de la Forêt-de-Haye, CS50184, 54505 Vandœuvre-lès-Nancy cedex, France; Département de Pharmacologie Clinique et Toxicologie, CHRU de Nancy, 54035 Nancy, France
| | - Hang-Korng Ea
- Service de rhumatologie, Centre Viggo-Petersen, Pôle appareil locomoteur, Hôpital Lariboisière, AP-HP, 75010 Paris, France; Inserm UMR-S 1132 Bioscar, Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Jean-Yves Jouzeau
- UMR 7365, CNRS, Université de Lorraine, IMoPA, Biopôle de l'Université de Lorraine, Campus Biologie-Santé, Faculté de Médecine, 9, avenue de la Forêt-de-Haye, CS50184, 54505 Vandœuvre-lès-Nancy cedex, France; Département de Pharmacologie Clinique et Toxicologie, CHRU de Nancy, 54035 Nancy, France
| | - Pascal Reboul
- UMR 7365, CNRS, Université de Lorraine, IMoPA, Biopôle de l'Université de Lorraine, Campus Biologie-Santé, Faculté de Médecine, 9, avenue de la Forêt-de-Haye, CS50184, 54505 Vandœuvre-lès-Nancy cedex, France.
| |
Collapse
|
15
|
Fini ME, Bauskar A, Jeong S, Wilson MR. Clusterin in the eye: An old dog with new tricks at the ocular surface. Exp Eye Res 2016; 147:57-71. [PMID: 27131907 DOI: 10.1016/j.exer.2016.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 12/30/2022]
Abstract
The multifunctional protein clusterin (CLU) was first described in 1983 as a secreted glycoprotein present in ram rete testis fluid that enhanced aggregation ('clustering') of a variety of cells in vitro. It was also independently discovered in a number of other systems. By the early 1990s, CLU was known under many names and its expression had been demonstrated throughout the body, including in the eye. Its homeostatic activities in proteostasis, cytoprotection, and anti-inflammation have been well documented, however its roles in health and disease are still not well understood. CLU is prominent at fluid-tissue interfaces, and in 1996 it was demonstrated to be the most highly expressed transcript in the human cornea, the protein product being localized to the apical layers of the mucosal epithelia of the cornea and conjunctiva. CLU protein is also present in human tears. Using a preclinical mouse model for desiccating stress that mimics human dry eye disease, the authors recently demonstrated that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration in the tears. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to LGALS3 (galectin-3), a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. CLU depletion from the ocular surface epithelia is seen in a variety of inflammatory conditions in humans and mice that lead to squamous metaplasia and a keratinized epithelium. This suggests that CLU might have a specific role in maintaining mucosal epithelial differentiation, an idea that can now be tested using the mouse model for desiccating stress. Most excitingly, the new findings suggest that CLU could serve as a novel biotherapeutic for dry eye disease.
Collapse
Affiliation(s)
- M Elizabeth Fini
- USC Institute for Genetic Medicine and Departments of Cell & Neurobiology and Ophthalmology, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA 90089-9037, USA.
| | - Aditi Bauskar
- USC Institute for Genetic Medicine and Graduate Program in Medical Biology, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA 90089-9037, USA.
| | - Shinwu Jeong
- USC Institute for Genetic Medicine and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, 2250 Alcatraz St., Suite 240, Los Angeles, CA 90089-9037, USA.
| | - Mark R Wilson
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, New South Wales, 2522 Australia.
| |
Collapse
|
16
|
Ronquist G. Prostasomes: Their Characterisation: Implications for Human Reproduction: Prostasomes and Human Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 868:191-209. [PMID: 26178851 PMCID: PMC7120776 DOI: 10.1007/978-3-319-18881-2_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The prostate is a principal accessory genital gland that is vital for normal fertility. Epithelial cells lining the prostate acini release in a defined fashion (exocytosis) organellar nanosized structures named prostasomes. They are involved in the protection of sperm cells against immune response in the female reproductive tract by modulating the complement system and by inhibiting monocyte and neutrophil phagocytosis and lymphocyte proliferation. The immunomodulatory function most probably involves small non-coding RNAs present in prostasomes. Prostasomes have also been proposed to regulate the timing of sperm cell capacitation and induction of the acrosome reaction, since they are rich in various transferable bioactive molecules (e.g. receptors and enzymes) that promote the fertilising ability of sperm cells. Antigenicity of sperm cells has been well documented and implicated in involuntary immunological infertility of human couples, and antisperm antibodies (ASA) occur in several body fluids. The propensity of sperm cells to carry attached prostasomes suggests that they are a new category of sperm antigens. Circulating human ASA recognise prostasomes, and among 12 identified prostasomal antigens, prolactin- inducible protein (95 %) and clusterin (85 %) were immunodominant at the expense of the other 10 that were sporadically occurring.
Collapse
Affiliation(s)
- Gunnar Ronquist
- Department of Medical Sciences, Clinical Chemistry, The University of Uppsala, 751 85, Uppsala, Sweden,
| |
Collapse
|
17
|
Kovak MR, Saraswati S, Schoen DJ, Diekman AB. Investigation of galectin-3 function in the reproductive tract by identification of binding ligands in human seminal plasma. Am J Reprod Immunol 2014; 72:403-12. [PMID: 24863808 DOI: 10.1111/aji.12273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/29/2014] [Indexed: 12/30/2022] Open
Abstract
PROBLEM Galectin-3 is a β-galactoside binding protein with immunomodulatory properties and exerts its extracellular functions via interactions with glycoconjugate ligands. Therefore, to elucidate the function of galectin-3, binding ligands in human seminal plasma were investigated. METHOD OF STUDY Galectin-3 binding proteins were isolated from seminal plasma by affinity chromatography, and candidate ligands were identified by MS/MS. Biochemical methods were used to characterize the ability of galectin-3 to bind its ligands. RESULTS Identified galectin-3 ligands included CD13, MUC6, PAP, PSA, and ZAG. 1D and 2D electrophoretic analysis of seminal plasma demonstrated that CD13, PAP, PSA, and ZAG immunoreactivity co-migrated with galectin-3-reactive protein bands and spots at expected molecular weights and pIs. Inhibition assays indicated that CD13, PSA, PAP, and ZAG interact with galectin-3 in a protein-carbohydrate manner. CONCLUSION The galectin-3 binding ligands identified in this study indicate multiple roles for galectin-3 in the reproductive and immunological functions of seminal plasma.
Collapse
Affiliation(s)
- Matthew R Kovak
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | |
Collapse
|
18
|
Fuhrman-Luck RA, Silva ML, Dong Y, Irving-Rodgers H, Stoll T, Hastie ML, Loessner D, Gorman JJ, Clements JA. Proteomic and other analyses to determine the functional consequences of deregulated kallikrein-related peptidase (KLK) expression in prostate and ovarian cancer. Proteomics Clin Appl 2014; 8:403-15. [PMID: 24535680 DOI: 10.1002/prca.201300098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/23/2013] [Accepted: 11/30/2013] [Indexed: 02/06/2023]
Abstract
Rapidly developing proteomic tools are improving detection of deregulated kallikrein-related peptidase (KLK) expression, at the protein level, in prostate and ovarian cancer, as well as facilitating the determination of functional consequences downstream. MS-driven proteomics uniquely allows for the detection, identification, and quantification of thousands of proteins in a complex protein pool, and this has served to identify certain KLKs as biomarkers for these diseases. In this review, we describe applications of this technology in KLK biomarker discovery and elucidate MS-based techniques that have been used for unbiased, global screening of KLK substrates within complex protein pools. Although MS-based KLK degradomic studies are limited to date, they helped to discover an array of novel KLK substrates. Substrates identified by MS-based degradomics are reported with improved confidence over those determined by incubating a purified or recombinant substrate and protease of interest, in vitro. We propose that these novel proteomic approaches represent the way forward for KLK research, in order to correlate proteolysis of biological substrates with tissue-related consequences, toward clinical targeting of KLK expression and function for cancer diagnosis, prognosis, and therapies.
Collapse
Affiliation(s)
- Ruth Anna Fuhrman-Luck
- Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|