1
|
Sinani G, Sessevmez M, Şenel S. Applications of Chitosan in Prevention and Treatment Strategies of Infectious Diseases. Pharmaceutics 2024; 16:1201. [PMID: 39339237 PMCID: PMC11434819 DOI: 10.3390/pharmaceutics16091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Chitosan is the most commonly investigated functional cationic biopolymer in a wide range of medical applications due to its promising properties such as biocompatibility, biodegradability, and bioadhesivity, as well as its numerous bioactive properties. Within the last three decades, chitosan and its derivatives have been investigated as biomaterials for drug and vaccine delivery systems, besides for their bioactive properties. Due to the functional groups in its structure, it is possible to tailor the delivery systems with desired properties. There has been a great interest in the application of chitosan-based systems also for the prevention and treatment of infectious diseases, specifically due to their antimicrobial, antiviral, and immunostimulatory effects. In this review, recent applications of chitosan in the prevention and treatment of infectious diseases are reviewed, and possibilities and limitations with regards to technical and regulatory aspects are discussed. Finally, the future perspectives on utilization of chitosan as a biomaterial are discussed.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Altinbas University, 34147 Istanbul, Türkiye;
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Türkiye;
| | - Sevda Şenel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe Univesity, 06100 Ankara, Türkiye
| |
Collapse
|
2
|
Mishra A, Omoyeni T, Singh PK, Anandakumar S, Tiwari A. Trends in sustainable chitosan-based hydrogel technology for circular biomedical engineering: A review. Int J Biol Macromol 2024; 276:133823. [PMID: 39002912 DOI: 10.1016/j.ijbiomac.2024.133823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Eco-friendly materials have emerged in biomedical engineering, driving major advances in chitosan-based hydrogels. These hydrogels offer a promising green alternative to conventional polymers due to their non-toxicity, biodegradability, biocompatibility, environmental friendliness, affordability, and easy accessibility. Known for their remarkable properties such as drug encapsulation, delivery capabilities, biosensing, functional scaffolding, and antimicrobial behavior, chitosan hydrogels are at the forefront of biomedical research. This paper explores the fabrication and modification methods of chitosan hydrogels for diverse applications, highlighting their role in advancing climate-neutral healthcare technologies. It reviews significant scientific advancements and trends chitosan hydrogels focusing on cancer diagnosis, drug delivery, and wound care. Additionally, it addresses current challenges and green synthesis practices that support a circular economy, enhancing biomedical sustainability. By providing an in-depth analysis of the latest evidence on climate-neutral management, this review aims to facilitate informed decision-making and foster the development of sustainable strategies leveraging chitosan hydrogel technology. The insights from this comprehensive examination are pivotal for steering future research and applications in sustainable biomedical solutions.
Collapse
Affiliation(s)
- Anshuman Mishra
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Temitayo Omoyeni
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden; Cyprus International University Faculty of Engineering, Nicosia 99258, TRNC, Cyprus
| | - Pravin Kumar Singh
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - S Anandakumar
- Department of Chemistry, Anna University, Chennai 600025, India
| | - Ashutosh Tiwari
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden.
| |
Collapse
|
3
|
Mohammed AE, Korany SM, Sonbol H, Alhomaidi EA, Alwakeel SS, Elbaz RM. Myco-fabricated silver nanoparticle by novel soil fungi from Saudi Arabian desert and antimicrobial mechanism. Sci Rep 2024; 14:15211. [PMID: 38956076 PMCID: PMC11220002 DOI: 10.1038/s41598-024-63117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
Biological agents are getting a noticeable concern as efficient eco-friendly method for nanoparticle fabrication, from which fungi considered promising agents in this field. In the current study, two fungal species (Embellisia spp. and Gymnoascus spp.) were isolated from the desert soil in Saudi Arabia and identified using 18S rRNA gene sequencing then used as bio-mediator for the fabrication of silver nanoparticles (AgNPs). Myco-synthesized AgNPs were characterized using UV-visible spectrometry, transmission electron microscopy, Fourier transform infrared spectroscopy and dynamic light scattering techniques. Their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae were investigated. In atrial to detect their possible antibacterial mechanism, Sodium dodecyl sulfate (SDS-PAGE) and TEM analysis were performed for Klebsiella pneumoniae treated by the myco-synthesized AgNPs. Detected properties of the fabricated materials indicated the ability of both tested fungal strains in successful fabrication of AgNPs having same range of mean size diameters and varied PDI. The efficiency of Embellisia spp. in providing AgNPs with higher antibacterial activity compared to Gymnoascus spp. was reported however, both indicated antibacterial efficacy. Variations in the protein profile of K. pneumoniae after treatments and ultrastructural changes were observed. Current outcomes suggested applying of fungi as direct, simple and sustainable approach in providing efficient AgNPs.
Collapse
Affiliation(s)
- Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
- Microbiology and Immunology Unit, Natural and Health Sciences Research Center, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Shereen M Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Hana Sonbol
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
| | - Eman A Alhomaidi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Suaad S Alwakeel
- Microbiology and Immunology Unit, Natural and Health Sciences Research Center, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Reham M Elbaz
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 12612, Egypt
- Department of Biology, College of Science, University of Bisha, P.O. Box 551, 61922, Bisha, Saudi Arabia
| |
Collapse
|
4
|
Sahoo R, Jadhav S, Nema V. Journey of technological advancements in the detection of antimicrobial resistance. J Formos Med Assoc 2024; 123:430-441. [PMID: 37598038 DOI: 10.1016/j.jfma.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023] Open
Abstract
Increased uses rather an extensive misuse of antibiotics due to easy availability and easy access have resulted in antibiotic resistance as a global crisis. The speed of discovery of new antibiotics has slowed down recently. Therefore, there is a need to reduce the rate of increase in resistance against the presently available antibiotics, or else many infections may be left untreatable or difficult to be treated due to the high prevalence of resistance. The judicious use of broad-spectrum antibiotics can control the increase in resistance profile. Various techniques are presently being used for the detection of antibiotic resistance. Conventional phenotypic methods are preferred that are highly reliable but are much more time-consuming. The patients cannot spare more time as the infection keeps increasing. The results with genotypic methods are obtained within 24 h as compared to phenotypic methods. Hence, recent molecular methods like qPCR can be used for detection. In this review, we present an overview of various methods useful for the detection of antibiotic resistance, with emphasis on their advantages and limitations. The review also emphasizes qPCR to be the most preferred method out of all because of various advantageous factors.
Collapse
Affiliation(s)
- Rituparna Sahoo
- ICMR-National AIDS Research Institute, 73 G MIDC Bhosari, Pune, 411 026, India
| | - Sushama Jadhav
- ICMR-National AIDS Research Institute, 73 G MIDC Bhosari, Pune, 411 026, India
| | - Vijay Nema
- ICMR-National AIDS Research Institute, 73 G MIDC Bhosari, Pune, 411 026, India.
| |
Collapse
|
5
|
Machado SSN, Silva JBAD, Nascimento RQ, Lemos PVF, Assis DDJ, Marcelino HR, Ferreira EDS, Cardoso LG, Pereira JD, Santana JS, Silva MLAD, Souza COD. Insect residues as an alternative and promising source for the extraction of chitin and chitosan. Int J Biol Macromol 2024; 254:127773. [PMID: 37923048 DOI: 10.1016/j.ijbiomac.2023.127773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
This work aimed to obtain and characterize chitin and chitosan extracted from the rearing residues of Tenebrio molitor, Zophobas morio, and Blaptica dubia insects in different growth stages in the same rearing cycles chitin and chitosan yielded 11.21 %-20.89 % and 6.26 %-7.07 %, respectively. The deacetylation degrees of chitosan ranged from 75.75 %-89.21 %, and the solubilities from 69.88 %-94.39 %. Infrared spectroscopy corroborated the acquisition of chitin and chitosan and can be used as a semi-quantitative technique for determining the degree of chitosan deacetylation. The X-ray diffraction profiles revealed the presence of α-chitin, and the relative crystalline indices ranged from 65.9 %-89.2 %. Typical TG profiles with two thermal events are observed for chitin and chitosan samples with different residue contents from the extraction procedure. The chitosan solutions exhibited pseudoplastic behavior, with apparent viscosities ranging from 195.96 to 249.86 mPa.s. The characterization results of the biopolymers extracted from insect residues were similar to those obtained from conventional sources. The growth stage influenced the chitin yield and crystallinity index. The results of this study reinforce the feasibility of using alternative sources of chitin and chitosan, providing the use of waste from insect farms and contributing to sustainability and a circular economy.
Collapse
Affiliation(s)
- Sinara Silva Neves Machado
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Jania Betânia Alves da Silva
- Center for Exact and Technological Sciences, Faculty of Mechanical Engineering, Federal University of Recôncavo da Bahia, Cruz das Almas, BA, Brazil; Graduate Program in Chemical Engineering, Polytechnic School, Federal University of Bahia, Salvador, BA, Brazil
| | - Renata Quartieri Nascimento
- Doctoral Program in Biotechnology - Northeast Biotechnology Network (RENORBIO), Federal University of Bahia, Salvador, BA, Brazil
| | - Paulo Vitor França Lemos
- Doctoral Program in Biotechnology - Northeast Biotechnology Network (RENORBIO), Federal University of Bahia, Salvador, BA, Brazil
| | - Denílson de Jesus Assis
- Center for Exact and Technological Sciences, Faculty of Mechanical Engineering, Federal University of Recôncavo da Bahia, Cruz das Almas, BA, Brazil; School of Exact and Technological Sciences, Salvador University, Salvador, BA, Brazil
| | | | - Ederlan de Souza Ferreira
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil; College of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Lucas Guimarães Cardoso
- Graduate Program in Chemical Engineering, Polytechnic School, Federal University of Bahia, Salvador, BA, Brazil; School of Exact and Technological Sciences, Salvador University, Salvador, BA, Brazil
| | - Juraci Duarte Pereira
- Graduate Program in Chemical Engineering, Polytechnic School, Federal University of Bahia, Salvador, BA, Brazil
| | | | | | - Carolina Oliveira de Souza
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil; Doctoral Program in Biotechnology - Northeast Biotechnology Network (RENORBIO), Federal University of Bahia, Salvador, BA, Brazil; College of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
6
|
Mania S, Banach-Kopeć A, Staszczyk K, Kulesza J, Augustin E, Tylingo R. An influence of molecular weight, deacetylation degree of chitosan xerogels on their antimicrobial activity and cytotoxicity. Comparison of chitosan materials obtained using lactic acid and CO 2 saturation. Carbohydr Res 2023; 534:108973. [PMID: 37866003 DOI: 10.1016/j.carres.2023.108973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
This paper presents a comparison of the antimicrobial activity and cytotoxicity against L929 cells of chitosan xerogels prepared by dissolving the polymer in a solution of lactic acid (LA) or carbonic acid (CO2) and then freeze-drying. There was no simple relationship between the antimicrobial activity and cytotoxicity of the samples obtained using both techniques (LA and CO2). Chitosan materials obtained by the LA method in a 1:1 dilution were characterized by the highest cytotoxicity against L929 cells (∼20%). For the same diluted samples prepared using the CO2 saturation method, the viability of L929 cells was approximately 2.5 times greater. Some of the tested chitosan materials obtained by the innovative method were characterized by significantly lower antimicrobial activity, for example, reduction of E. coli bacteria for MMW-LA and MMW-CO2 samples by 6.00 and 0.75 logarithmic order, respectively. This clearly indicates that in many applications, the presence of the acid necessary to dissolve chitosan is responsible for the antimicrobial activity of the polymer solution and its products.
Collapse
Affiliation(s)
- Szymon Mania
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland.
| | - Adrianna Banach-Kopeć
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland.
| | - Karol Staszczyk
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland.
| | - Jolanta Kulesza
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland.
| | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland.
| | - Robert Tylingo
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland.
| |
Collapse
|
7
|
Sikorski D, Rosiak P, Janczewski Ł, Potrzebowski MJ, Kregiel D, Kaźmierski S, Neubauer D, Kolesińska B, Frączyk J, Adamczyk A, Draczyński Z. Synthesis and Characterization of Antibacterial Chitosan Films with Ciprofloxacin in Acidic Conditions. Int J Mol Sci 2023; 24:15163. [PMID: 37894841 PMCID: PMC10606985 DOI: 10.3390/ijms242015163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
This work presents the results of research on obtaining chitosan (CS) films containing on their surface ciprofloxacin (CIP). A unique structure was obtained that not only gives new properties to the films, but also changes the way of coverage and structure of the surface. The spectroscopic test showed that in the process of application of CIP on the surface of CS film, CIP was converted from its crystalline form to an amorphic one, hence improving its bioavailability. This improved its scope of microbiological effect. The research was carried out on the reduction of CIP concentration during the process of CIP adhesion to the surface of chitosan films. The antibacterial activity of the CS films with and without the drug was evaluated in relation to Escherichia coli and Staphylococcus aureus, as well as Candida albicans and Penicillium expansum. Changes in the morphology and roughness of membrane surfaces after the antibacterial molecule adhesion process were tested with atomic force microscopy (AFM) and scanning electron microscopy (SEM). Structural analysis of CS and its modifications were confirmed with Fourier-transform spectroscopy in the infrared by an attenuated total reflectance of IR radiation (FTIR-ATR) and solid-state nuclear magnetic resonance (NMR).
Collapse
Affiliation(s)
- Dominik Sikorski
- Institute of Textile Materials and Polymer Composites, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Piotr Rosiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (Ł.J.); (J.F.)
| | - Łukasz Janczewski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (Ł.J.); (J.F.)
| | - Marek J. Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.J.P.); (S.K.)
| | - Dorota Kregiel
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Lodz, Poland;
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.J.P.); (S.K.)
| | - Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-210 Gdansk, Poland;
| | - Beata Kolesińska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (Ł.J.); (J.F.)
| | - Justyna Frączyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (Ł.J.); (J.F.)
| | - Anna Adamczyk
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza 30 Av., 30-059 Krakow, Poland;
| | - Zbigniew Draczyński
- Institute of Textile Materials and Polymer Composites, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| |
Collapse
|
8
|
Abd El-Hamid HK, El-Kheshen AA, Abdou AM, Elwan RL. Incorporation of strontium borosilicate bioactive glass in calcium aluminate biocement: Physicomechanical, bioactivity and antimicrobial properties. J Mech Behav Biomed Mater 2023; 144:105976. [PMID: 37356210 DOI: 10.1016/j.jmbbm.2023.105976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Strontium borosilicate bioactive glass (SrBG) and calcium aluminate cement (CA) composites have been synthesized. The primary goal of this work is to evaluate how SrBG affects the bioactivity and physico-mechanical characteristics of CA. To fulfill this aim, SrBG was prepared by melt-quenching method and utilized as a substitute for CA by 5, 10, 15, and 20 wt%. To estimate the biological behavior of the prepared specimens, hydrᴏxyapatite layer (HA) establishment on the surface of cement paste was followed; after their immersion in a solution resembles human blood plasma (simulated body fluid solution (SBF)) at a temperature of about37 ± 0.5 °C for 4 weeks. The variations of pH, Ca and P ions concentrations in the SBF solution after soaking were determined. Compressive strength, apparent porosity, and bulk density were also measured. Via Fourier transform IR spectroscopy and X-ray diffraction analyses, the main components had been analyzed. Using scanning electron microscope (SEM) attached to energy dispersive spectroscopy, morphology of the samples was investigated. Additionally, the antimicrobial property was also assessed. The results proved that the hydrᴏxyapatite layer (HA) was developed on the surface of the prepared samples after soaking in the biological solution (SBF). It was also found that increasing SrBG percent in synthesized samples promotes the physico-mechanical characteristics and also the bioactivity performance of CA cement. Finally, these materials also showed good inhibition behavior towards bacterial biᴏfilms, against S. aureus and E. coli. after 48h. This makes these materials excellent candidates for preventing growth of bacteria after their implantation in teeth or bone.
Collapse
Affiliation(s)
- H K Abd El-Hamid
- Refractories, Ceramics and Building Materials Department, National Research Centre (NRC), El-Buhouth St., Dokki, Cairo, 12622, Egypt.
| | - Amany A El-Kheshen
- Glass Research Department, National Research Centre (NRC), El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre (NRC), El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - R L Elwan
- Glass Research Department, National Research Centre (NRC), El-Buhouth St., Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
9
|
Chitosan-Coated Polymeric Silver and Gold Nanoparticles: Biosynthesis, Characterization and Potential Antibacterial Applications: A Review. Polymers (Basel) 2022; 14:polym14235302. [PMID: 36501695 PMCID: PMC9738229 DOI: 10.3390/polym14235302] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Biosynthesized metal nanoparticles, especially silver and gold nanoparticles, and their conjugates with biopolymers have immense potential in various fields of science due to their enormous applications, including biomedical applications. Polymeric nanoparticles are particles of small sizes from 1 nm to 1000 nm. Among different polymeric nanoparticles, chitosan-coated silver and gold nanoparticles have gained significant interest from researchers due to their various biomedical applications, such as anti-cancer, antibacterial, antiviral, antifungal, anti-inflammatory technologies, as well as targeted drug delivery, etc. Multidrug-resistant pathogenic bacteria have become a serious threat to public health day by day. Novel, effective, and safe antibacterial agents are required to control these multidrug-resistant pathogenic microorganisms. Chitosan-coated silver and gold nanoparticles could be effective and safe agents for controlling these pathogens. It is proven that both chitosan and silver or gold nanoparticles have strong antibacterial activity. By the conjugation of biopolymer chitosan with silver or gold nanoparticles, the stability and antibacterial efficacy against multidrug-resistant pathogenic bacteria will be increased significantly, as well as their toxicity in humans being decreased. In recent years, chitosan-coated silver and gold nanoparticles have been increasingly investigated due to their potential applications in nanomedicine. This review discusses the biologically facile, rapid, and ecofriendly synthesis of chitosan-coated silver and gold nanoparticles; their characterization; and potential antibacterial applications against multidrug-resistant pathogenic bacteria.
Collapse
|
10
|
Ashry NM, El Bahgy HEK, Mohamed A, Alsubhi NH, Alrefaei GI, Binothman N, Alharbi M, Selim S, Almuhayawi MS, Alharbi MT, Nagshabandi MK, Saad AM, El-Saadony MT, Sitohy B. Evaluation of graphene oxide, chitosan and their complex as antibacterial agents and anticancer apoptotic effect on HeLa cell line. Front Microbiol 2022; 13:922324. [PMID: 36267179 PMCID: PMC9577200 DOI: 10.3389/fmicb.2022.922324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer and bacterial infection are the most serious problems threatening people's lives worldwide. However, the overuse of antibiotics as antibacterial and anticancer treatments can cause side effects and lead to drug-resistant bacteria. Therefore, developing natural materials with excellent antibacterial and anticancer activity is of great importance. In this study, different concentrations of chitosan (CS), graphene oxide (GO), and graphene oxide-chitosan composite (GO-CS) were tested to inhibit the bacterial growth of gram-positive (Bacillus cereus MG257494.1) and gram-negative (Pseudomonas aeruginosa PAO1). Moreover, we used the most efficient natural antibacterial material as an anticancer treatment. The zeta potential is a vital factor for antibacterial and anticancer mechanism, at pH 3–7, the zeta potential of chitosan was positive while at pH 7–12 were negative, however, the zeta potential for GO was negative at all pH values, which (p < 0.05) increased in the GO-CS composite. Chitosan concentrations (0.2 and 1.5%) exhibited antibacterial activity against BC with inhibition zone diameters of 4 and 12 mm, respectively, and against PAO1 with 2 and 10 mm, respectively. Treating BC and PAO1 with GO:CS (1:2) and GO:CS (1:1) gave a larger (p < 0.05) inhibition zone diameter. The viability and proliferation of HeLa cells treated with chitosan were significantly decreased (p < 0.05) from 95.3% at 0% to 12.93%, 10.33%, and 5.93% at 0.2%, 0.4%, and 0.60% concentrations of chitosan, respectively. Furthermore, CS treatment increased the activity of the P53 protein, which serves as a tumor suppressor. This study suggests that chitosan is effective as an antibacterial and may be useful for cancer treatment.
Collapse
Affiliation(s)
- Noha M. Ashry
- Department of Agriculture Microbiology, Faculty of Agriculture, Benha University, Qalubia, Egypt
| | - Halla E. K. El Bahgy
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Abdelkader Mohamed
- Department of Soil and Water Research, Nuclear Research Center, Egyptian Atomic Energy Authority, Abou Zaabl, Egypt
| | - Nouf H. Alsubhi
- Department of Biological Sciences, College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mona Alharbi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Samy Selim
| | - Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohanned T. Alharbi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammed K. Nagshabandi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture Zagazig University, Zagazig, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- *Correspondence: Mohamed T. El-Saadony
| | - Basel Sitohy
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
- Basel Sitohy
| |
Collapse
|
11
|
Ahmad S, Ruby T, Shahzad MI, Rivera G, Carriola DVN, Khan AA. Antimicrobial, antioxidant, antiviral activity, and gas chromatographic analysis of Varanus griseus oil extracts. Arch Microbiol 2022; 204:531. [PMID: 35904606 DOI: 10.1007/s00203-022-03138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/25/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
There is an urgent need to develop natural antimicrobials for the control of rapidly mutating drug-resistant bacteria and poultry viruses. Five extracts were prepared using diethyl ether, ethyl acetate, methanol, 1-butanol and n-hexane from abdominal fats of Varanus griseus locally known as Indian desert monitor. Antibacterial, antioxidant and antiviral activities from oil extracts were done through disc diffusion method, stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay and in ovo antiviral assay, respectively. The gas chromatography mass spectrometry (GC-MS) analyses were used to determine principal active compounds and chemical profile of each oil extract. n-Hexane extract showed clear zones of inhibition (ZOI) against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae (12 ± 0.5 mm, 9 ± 0.5 mm, and 9 ± 0.5 mm) while diethyl ether extract exhibited significant antibacterial activity (11 ± 0.5 mm) against Proteus vulgaris only. In case of drug-resistant strains, methanol extract was active (6 ± 0.5 mm) against Staphylococcus aureus, whereas n-hexane extract has shown ZOI 11 ± 0.5 mm against P. aeruginosa. Range of percentage scavenging activity of V. griseus oil extracts from DPPH free radical assay was 34.9-70.7%. For antiviral potential, growth of new castle disease virus (NDV) was effectively inhibited by all five extracts (HA titer = 0-4). The highest antiviral activity against avian influenza virus (H9N2) was observed from methanol, diethyl ether and 1-Butanol oil extracts with HA titers of 2, 2 and 0, respectively. Methanol, diethyl ether, 1-butanol and n-hexane oil extracts produced best hemagglutination assay (HA) titer values (0, 0, 4 and 0) against infectious bronchitis virus (IBV). Ethyl acetate and 1-Butanol extract exhibited good antiviral potential against infectious bursal disease virus (IBDV) with indirect hemagglutination assay (IHA) titers of 8 and 4, respectively. Main classes of identified compounds through gas chromatography were aldehydes, fatty acids, phenols and esters. GC-MS identified 11 bioactive compounds in V. griseus oil extracts. It is summarized that V. griseus oil has strong antioxidant activity and good antimicrobial potential because of its bioactive compounds.
Collapse
Affiliation(s)
- Shakeel Ahmad
- Zoology Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Tahira Ruby
- Zoology Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Mirza Imran Shahzad
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico
| | | | - Aleem Ahmed Khan
- Zoology Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
12
|
Effects of Ethyl Lauroyl Arginate (LAE) on Biofilm Detachment: Shear Rate, Concentration, and Dosing Time. WATER 2022. [DOI: 10.3390/w14142158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biofilm formation is one of the main obstacles in membrane treatment. The non-oxidizing biocide ethyl lauroyl arginate (LAE) is promising for mitigating biofilm development on membrane surfaces. However, the operating conditions of LAE and their impact on biofilm detachment are not comprehensively understood. In this study, a real-time in vitro flow cell system was utilized to observe biofilm dispersal caused by the shear rate, concentration, and treatment time of LAE. This confirmed that the biofilm was significantly reduced to 68.2% at a shear rate of 3.42 s−1 due to the increased physical lifting force. LAE exhibited two different mechanisms for bacterial inactivation and biofilm dispersal. Biofilms treated with LAE at sub-growth inhibitory concentrations for a longer time could effectively detach the biofilm formed on the surface of the glass slides, which can be attributed to the increased motility of microorganisms. However, a high concentration (i.e., bactericidal concentration) of LAE should be seriously considered because of the inactivated sessile bacteria and their residual debris remaining on the surface. This study sheds light on the effect of LAE on biofilm detachment and provides insights into biofouling mitigation during the membrane process.
Collapse
|
13
|
Bio_Fabricated Levan Polymer from Bacillus subtilis MZ292983.1 with Antibacterial, Antibiofilm, and Burn Healing Properties. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The biopolymer levan has sparked a lot of interest in commercial production and various industrial applications. In this study, a bacterial isolate with promising levan-producing ability was isolated from a soil sample obtained from Princess Nourah bint Abdulrahman University in Saudi Arabia. The isolate has been identified and submitted to GenBank as Bacillus subtilis MZ292983.1. The bacterial levan polymer was extracted using ethyl alcohol (75%) and CaCl2 (1%) and then characterized using several approaches, such as Fourier transform infrared spectrometry and nuclear magnetic resonance. The IR spectrum of the levan polymer showed characteristic peaks confirming characteristics of polysaccharides, including a broad stretching peak of OH around 3417 cm−1 and aliphatic CH stretching was observed as two peaks at 2943, and 2885 cm−1. In addition, the FTIR spectrum featured an absorption at 2121 cm−1, indicating the fingerprint of the β-glycosidic bond. Based on 1H and 13C NMR spectroscopy analysis, six unexchanged proton signals related to fructose as a forming monomer of levan were observed. Evaluation of levan’s antibacterial effect against two pathogenic bacteria, S. aureus (ATCC 33592) and E. coli (ATCC 25922), showed inhibition zones of 1 cm and 0.8 cm in diameter, respectively, with MICs of more than 256 μg mL−1 for both strains. Moreover, the antibiofilm property of the levan polymer was assessed and the results showed that the inhibition rate was positively proportional to the levan concentration, as the inhibition percentages were 50%, 29.4%, 29.4%, 26.5%, and 14.7% at concentrations of 2, 1, 0.5, 0.25, and 0.125 mg mL−1, respectively. Levan showed a significant role in burn healing properties since it accelerated the process of healing burn-induced areas in rats when compared with those either treated with normal saline or treated with the cream base only.
Collapse
|
14
|
Ismail MMF, Khalifa MM, El-Sehrawi HMA, Sabour R. Design, Synthesis and Antimicrobial Evaluation of New Arylazopyrazole and Arylazopyrazolo[1,5- a]pyrimidine Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1830811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Magda M. F. Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Maha M. Khalifa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hend M. A. El-Sehrawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab Sabour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
15
|
Arshad M, Ruby T, Shahzad MI, Alvi Q, Aziz M, Sahar S, Amjad R, Waheed A, Muhammad SG, Shaheen A, Ahmed S. An antimicrobial activity of oil extracted from Saara hardwickii. BRAZ J BIOL 2022; 84:e253508. [PMID: 35195177 DOI: 10.1590/1519-6984.253508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022] Open
Abstract
Present research work represents antiviral and antibacterial value of body fat of Saara hardwickii commonly called as spiny tailed lizard. Oil was extracted from body fats located in the ventral region of this animal using hydrocarbons e.g., n-hexane, methanol, butanol and ethyl acetate as a solvent. The antibacterial activity of lizard oil was tested against standard as well as multi-resistant lines ofEscherichia coli, Styphalococcus aureus, Pseudomonas aeruginosa and Proteus vulgaris alone and with antibiotic ampicillin. For antibacterial potential, Ethyl acetate and Butanol solvent extract showed best zone of inhibition (7mm) with P. aeruginosa and S. aureus respectively. For antiviral potential, Butanol and Methanol extract showed best HA (Hemagglutination) titer of 04 with NDV and IBV viral strain respectively. It is concluded that lizard oil has antimicrobial potential against different pathogens strains (virus, bacteria).
Collapse
Affiliation(s)
- M Arshad
- Government College University Fasialabad Sahiwal campus, Sahiwal, Pakistan
| | - T Ruby
- The Islamia University of Bahawalpur, Department of Zoology, Bahawalpur, Pakistan
| | - M I Shahzad
- The Islamia University of Bahawalpur,Department of Biochemistry,Institute of Biochemistry, Biotechnology and Bioinformatics, Bahawalpur, Pakistan
| | - Q Alvi
- Taylor's University, Faculty of Health and Medical Sciences, School of Biosciences, Kualalampur, Selangor, Malaysia
| | - M Aziz
- Bahauddin Zakariya University, Department of Microbiology and Genetics, Multan, Pakistan
| | - S Sahar
- The Islamia University of Bahawalpur, Department of Zoology, Bahawalpur, Pakistan
| | - R Amjad
- The Islamia University of Bahawalpur, Department of Zoology, Bahawalpur, Pakistan
| | - A Waheed
- The Islamia University of Bahawalpur, Department of Zoology, Bahawalpur, Pakistan
| | - S G Muhammad
- The Islamia University of Bahawalpur, Department of Zoology, Bahawalpur, Pakistan
| | - A Shaheen
- The Islamia University of Bahawalpur, Department of Zoology, Bahawalpur, Pakistan
| | - S Ahmed
- Bahauddin Zakariya University, Institute of Pure and Applied Biology, Zoology Division, Multan, Pakistan
| |
Collapse
|
16
|
Targeting Staphylococcus aureus and its biofilms with novel antibacterial compounds produced by Lactiplantibacillus plantarum SJ33. Arch Microbiol 2021; 204:20. [DOI: 10.1007/s00203-021-02630-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/26/2022]
|
17
|
Bezrodnykh EA, Berezin BB, Kulikov SN, Zelenikhin PV, Vyshivannaya OV, Blagodatskikh IV, Tikhonov VE. Unusual Compatibility of N‐Reacetylated Oligochitosan with Sodium Dodecyl Sulfate in Aqueous Solution with a Wide Range of the Solution pH. STARCH-STARKE 2021. [DOI: 10.1002/star.202000234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Evgeniya A. Bezrodnykh
- Polymer Department A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Russia, Vavilova st. 28 Moscow 119991 Russia
| | - Boris B. Berezin
- Polymer Department A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Russia, Vavilova st. 28 Moscow 119991 Russia
| | - Sergey N. Kulikov
- Department of Immunology Kazan Scientific Research Institute of Epidemiology and Microbiology Bolshaya Krasnaya st. 67 Kazan 420015 Russia
- Department of Microbiology Kazan Federal University Kremlyovskaya st. 18 Kazan 420008 Russia
| | - Pavel V. Zelenikhin
- Department of Microbiology Kazan Federal University Kremlyovskaya st. 18 Kazan 420008 Russia
| | - Oxana V. Vyshivannaya
- Polymer Department A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Russia, Vavilova st. 28 Moscow 119991 Russia
| | - Inesa V. Blagodatskikh
- Polymer Department A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Russia, Vavilova st. 28 Moscow 119991 Russia
| | - Vladimir E. Tikhonov
- Polymer Department A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Russia, Vavilova st. 28 Moscow 119991 Russia
| |
Collapse
|
18
|
Bezrodnykh EA, Antonov YA, Berezin BB, Kulikov SN, Tikhonov VE. Molecular features of the interaction and antimicrobial activity of chitosan in a solution containing sodium dodecyl sulfate. Carbohydr Polym 2021; 270:118352. [PMID: 34364599 DOI: 10.1016/j.carbpol.2021.118352] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/21/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Molecular interaction of chitosan with sodium dodecyl sulfate (SDS) is a more complicated process than it has been imagined so far. For the first time it has been shown that the shorter chitosan chains are, the more preferably they interact with the SDS and the larger-in-size microparticles they form. The influence of ionic strength, urea and temperature on microparticles formation allows interpreting the mechanism of microparticles formation as a cooperative electrostatic interaction between SDS and chitosan with simultaneous decrease in the surface charge of the complexes initiating the aggregation of microparticles. It is shown that hydrogen bonding is mainly responsible for the aggregation while hydrophobic interaction has a lesser effect. Chitosan demonstrates a high bacteriostatic activity in the presence of SDS in solution and can be promising for preparation of microbiologically stable pharmaceutical hydrocolloids, cosmetic products and chitosan-based Pickering emulsions containing strong anionic surfactants.
Collapse
Affiliation(s)
- Evgeniya A Bezrodnykh
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Yury A Antonov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin Str. 4, 119334 Moscow, Russia
| | - Boris B Berezin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Sergey N Kulikov
- Kazan Scientific Research Institute of Epidemiology and Microbiology, Kazan, Russia; Kazan Federal University, Kazan, Russia
| | - Vladimir E Tikhonov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
19
|
The Inhibitory Concentration of Natural Food Preservatives May Be Biased by the Determination Methods. Foods 2021; 10:foods10051009. [PMID: 34066353 PMCID: PMC8148156 DOI: 10.3390/foods10051009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 11/25/2022] Open
Abstract
The demand for natural antimicrobials as food preservatives has increased due to the growing interest of the population for a healthy lifestyle. The application of screening methods to identify the antimicrobial activity of natural compounds is of great importance. The in vitro determination of antimicrobial activity requires determining their minimum inhibitory concentrations to assess microbial susceptibility. This study aimed to evaluate the minimum inhibitory concentrations of three natural antimicrobial compounds—chitosan, ethanolic propolis extract, and nisin—against 37 microorganisms (different pathogens and spoilage microorganisms) by the methods of agar dilution and drop diffusion on agar. Culture media at different pH values were used for both methods to simulate different food products. Most of the microorganisms were inhibited by chitosan (0.5% w/v) and propolis (10 mg/mL), and most of the Gram-positive bacteria by nisin (25 μg/mL). Different pH values and the in vitro method used influenced the inhibition of each compound. Generally, lower minimum inhibitory concentrations were observed at lower pH values and for the agar dilution method. Furthermore, some microorganisms inhibited by the compounds on the agar dilution method were not inhibited by the same compounds and at the same concentrations on the drop diffusion technique. This study reinforces the need for using defined standard methods for the in vitro determination of minimum inhibitory concentrations. Natural compounds with potential antimicrobial action are a bet on food preservation. The use of standard techniques such as those used for antimicrobials of clinical applications are crucial to compare results obtained in different studies and different matrices.
Collapse
|
20
|
Synthesis of novel thiophene fused pyrazoline-thiocyanatoethanone derivative: Spectral, DFT, pharmacological, docking and in vitro antibacterial studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Ke CL, Deng FS, Chuang CY, Lin CH. Antimicrobial Actions and Applications of Chitosan. Polymers (Basel) 2021; 13:904. [PMID: 33804268 PMCID: PMC7998239 DOI: 10.3390/polym13060904] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Chitosan is a naturally originating product that can be applied in many areas due to its biocompatibility, biodegradability, and nontoxic properties. The broad-spectrum antimicrobial activity of chitosan offers great commercial potential for this product. Nevertheless, the antimicrobial activity of chitosan varies, because this activity is associated with its physicochemical characteristics and depends on the type of microorganism. In this review article, the fundamental properties, modes of antimicrobial action, and antimicrobial effects-related factors of chitosan are discussed. We further summarize how microorganisms genetically respond to chitosan. Finally, applications of chitosan-based biomaterials, such as nanoparticles and films, in combination with current clinical antibiotics or antifungal drugs, are also addressed.
Collapse
Affiliation(s)
| | | | | | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (C.-L.K.); (F.-S.D.); (C.-Y.C.)
| |
Collapse
|
22
|
Mesgari M, Aalami AH, Sahebkar A. Antimicrobial activities of chitosan/titanium dioxide composites as a biological nanolayer for food preservation: A review. Int J Biol Macromol 2021; 176:530-539. [PMID: 33607131 DOI: 10.1016/j.ijbiomac.2021.02.099] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/03/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
Abstract
Packaging is an integral part of food industry that preserves the properties of food during storage. Food spoilage caused by foodborne microorganisms is a public health problem that imposes a significant burden on the healthcare systems. Moreover, packaging based on artificial and chemical materials such as plastic is destructive to the environment. Chitosan can be categorized as an active food packaging material because of its inherent antimicrobial properties and capacity to carry various active components. Combining chitosan and metallic nanoparticles can be used as a practical approach in antimicrobial packaging systems. This strategy has advantages of thermal stability, barrier properties, antioxidant and antimicrobial packaging. Titanium dioxide is one of these nanoparticles that plays a photocatalytic role by releasing reactive oxygen species, thereby leading to the destruction of microorganisms' cell wall and extension of food shelf life. This review elaborates on the antimicrobial applications of chitosan/titanium dioxide nanoparticles films in food packaging systems.
Collapse
Affiliation(s)
- Mohammad Mesgari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Piegat A, Żywicka A, Niemczyk A, Goszczyńska A. Antibacterial Activity of N, O-Acylated Chitosan Derivative. Polymers (Basel) 2020; 13:polym13010107. [PMID: 33383839 PMCID: PMC7794783 DOI: 10.3390/polym13010107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/17/2023] Open
Abstract
The antibacterial activity of N,O-acylated chitosan derivative with linoleic acid (CH_LA) was tested by disc and well diffusion, agar impregnation and microdilution methods against Staphylococcus aureus, Escherichia coli and Helicobacter pylori strains. Hydrophobically modified chitosan (HMC) was expected to exhibit enhanced antibacterial activity and specific mucin interactions. Although diffusion tests have not indicated the antibacterial potential of chitosan (CH) or CH_LA, the results of the microdilution method demonstrated that tested polymers significantly reduced the amount of living bacteria cells in different concentrations depending on the microorganism. Additionally, CH_LA was characterized by enhanced antibacterial activity compared to CH, which may suggest a different mechanism of interaction with S. aureus and H. pylori. Furthermore, the UV-VIS analysis revealed that the amphiphilic character of derivative led to strong CH_LA–mucin interactions. The study proved the high potential of CH_LA in antibacterial applications, especially for the gastrointestinal tract.
Collapse
Affiliation(s)
- Agnieszka Piegat
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, 45 Piastow Ave, 70-311 Szczecin, Poland;
- Correspondence:
| | - Anna Żywicka
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, 45 Piastow Ave, 70-311 Szczecin, Poland;
| | - Agata Niemczyk
- Department of Materials Technology, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, 19 Piastow Ave, 70-310 Szczecin, Poland;
| | - Agata Goszczyńska
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, 45 Piastow Ave, 70-311 Szczecin, Poland;
| |
Collapse
|
24
|
Yadav N, Monisha M, Niranjan R, Dubey A, Patil S, Priyadarshini R, Lochab B. Antibacterial performance of fully biobased chitosan-grafted-polybenzoxazine films: Elaboration and properties of released material. Carbohydr Polym 2020; 254:117296. [PMID: 33357864 DOI: 10.1016/j.carbpol.2020.117296] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 01/06/2023]
Abstract
A fully biobased benzoxazine monomer, V-fa (using vanillin and furfurylamine) was grafted onto chitosan (CS) at different weight ratios (CXVY) using "grafting to" benign Schiff base chemistry. Incorporation of V-fa onto CS increased the tensile strength and improved chemical resistance of the CS-graft-V-fa films. Reversible labile linkages, expansion of CS galleries and leaching out of phenolic species from biobased polymer films led to an improved antibacterial activity against Staphylococcus aureus, which is ∼125 times higher than the bare CS film, V-fa and oligomeric V-fa. The leached out species from films were analyzed extensively by NMR, FTIR, GPC, ABTS and HRMS analysis. Oxidative-stress seems to be responsible for antibacterial activity. Current work illustrates an attractive synthetic approach and the improved antibacterial performance of biobased CS-graft-poly(V-fa) films which may hold as a potential alternative for wound-healing and implant applications in future.
Collapse
Affiliation(s)
- Nisha Yadav
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India; Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden.
| | - Monisha Monisha
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| | - Rashmi Niranjan
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| | - Amrita Dubey
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| | - Sachin Patil
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| | - Bimlesh Lochab
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
25
|
El-Shershaby MH, El-Gamal KM, Bayoumi AH, El-Adl K, Ahmed HEA, Abulkhair HS. Synthesis, antimicrobial evaluation, DNA gyrase inhibition, and in silico pharmacokinetic studies of novel quinoline derivatives. Arch Pharm (Weinheim) 2020; 354:e2000277. [PMID: 33078877 DOI: 10.1002/ardp.202000277] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022]
Abstract
Herein, we report the synthesis and in vitro antimicrobial evaluation of novel quinoline derivatives as DNA gyrase inhibitors. The preliminary antimicrobial activity was assessed against a panel of pathogenic microbes including Gram-positive bacteria (Streptococcus pneumoniae and Bacillus subtilis), Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), and fungal strains (Aspergillus fumigatus, Syncephalastrum racemosum, Geotrichum candidum, and Candida albicans). Compounds that revealed the best activity were subjected to further biological studies to determine their minimum inhibitory concentrations (MICs) against the selected pathogens as well as their in vitro activity against the E. coli DNA gyrase, to realize whether their antimicrobial action is mediated via inhibition of this enzyme. Four of the new derivatives (14, 17, 20, and 23) demonstrated a relatively potent antimicrobial activity with MIC values in the range of 0.66-5.29 μg/ml. Among them, compound 14 exhibited a particularly potent broad-spectrum antimicrobial activity against most of the tested strains of bacteria and fungi, with MIC values in the range of 0.66-3.98 μg/ml. A subsequent in vitro investigation against the bacterial DNA gyrase target enzyme revealed a significant potent inhibitory activity of quinoline derivative 14, which can be observed from its IC50 value (3.39 μM). Also, a molecular docking study of the most active compounds was carried out to explore the binding affinity of the new ligands toward the active site of DNA gyrase enzyme as a proposed target of their activity. Furthermore, the ADMET profiles of the most highly effective derivatives were analyzed to evaluate their potentials to be developed as good drug candidates.
Collapse
Affiliation(s)
- Mohamed H El-Shershaby
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Kamal M El-Gamal
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Pharmacognosy and Pharmaceutical Chemistry Department, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
26
|
Deposition of Copper on Poly(Lactide) Non-Woven Fabrics by Magnetron Sputtering-Fabrication of New Multi-Functional, Antimicrobial Composite Materials. MATERIALS 2020; 13:ma13183971. [PMID: 32911707 PMCID: PMC7558068 DOI: 10.3390/ma13183971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
The paper presents the method of synthesis; physico-technical and biological characterization of a new composite material (PLA–Cu0) obtained by sputter deposition of copper on melt-blown poly(lactide) (PLA) non-woven fabrics. The analysis of these biofunctionalized non-woven fabrics included: ultraviolet/visible (UV/VIS) transmittance; scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS); attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy; ability to block UV radiation; filtration parameters (air permeability); and tensile testing. The functionalized non-woven composite materials were subjected to antimicrobial tests against colonies of Gram-negative (Escherichia coli), Gram-positive (Staphylococcus aureus) bacteria and antifungal tests against the Chaetomium globosum fungal mould species. The antibacterial and antifungal activity of PLA–Cu0 suggests potential applications as an antimicrobial material.
Collapse
|
27
|
Biofunctionalization of Textile Materials. 3. Fabrication of Poly(lactide)-Potassium Iodide Composites with Antifungal Properties. COATINGS 2020. [DOI: 10.3390/coatings10060593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The paper presents a method of obtaining poly(lactide) (PLA) nonwoven fabrics with antifungal properties using potassium iodide as a nonwoven modifying agent. PLA nonwoven fabrics were obtained by the melt-blown technique and subsequently surface modified (PLA→PLA-SM-KI) by the dip-coating method. The analysis of these PLA-SM-KI (0.1%–2%) composites included Scanning Electron Microscopy (SEM), UV/VIS transmittance, FTIR spectrometry and air permeability. The nonwovens were subjected to microbial activity tests against Aspergillus niger fungal mold species, exhibiting substantial antifungal activity. The studies showed that PLA-KI hybrids containing 2% KI have appropriate mechanical properties, morphology and demanded antimicrobial properties to be further developed as a potential antimicrobial, biodegradable material.
Collapse
|
28
|
Li D, Karslı B, Rubio N, Janes M, Luo Y, Prinyawiwatkul W, Xu W. Enhanced microbial safety of channel catfish (
Ictalurus punctatus
) fillet using recently invented medium molecular weight water‐soluble chitosan coating. Lett Appl Microbiol 2020; 70:380-387. [DOI: 10.1111/lam.13284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/23/2020] [Accepted: 02/10/2020] [Indexed: 01/07/2023]
Affiliation(s)
- D. Li
- College of Food Science and Nutritional Engineering China Agricultural University Beijing PR China
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA USA
| | - B. Karslı
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA USA
- Faculty of Fisheries Recep Tayyip Erdogan University Rize Turkey
| | - N.K. Rubio
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA USA
| | - M. Janes
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA USA
| | - Y. Luo
- College of Food Science and Nutritional Engineering China Agricultural University Beijing PR China
| | - W. Prinyawiwatkul
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA USA
| | - W. Xu
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA USA
| |
Collapse
|
29
|
Biofunctionalization of Textile Materials. 2. Antimicrobial Modification of Poly(lactide) (PLA) Nonwoven Fabricsby Fosfomycin. Polymers (Basel) 2020; 12:polym12040768. [PMID: 32244602 PMCID: PMC7240420 DOI: 10.3390/polym12040768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 01/19/2023] Open
Abstract
This research is focused on obtaining antimicrobial hybrid materials consisting of poly(lactide) nonwoven fabrics and using phosphoro-organic compound—fosfomycin—as a coating and modifying agent. Polylactide (PLA) presents biodegradable polymer with multifunctional application, widely engaged in medical related areas. Fosfomycin as functionalized phosphonates presents antibiotic properties expressed by broad spectrum of antimicrobial properties. The analysis of these biofunctionalized nonwoven fabrics processed by the melt-blown technique, included: scanning electron microscopy (SEM), UV/VIS transmittance, FTIR spectrometry, air permeability. The functionalized nonwovens were tested on microbial activity tests against colonies of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria.
Collapse
|
30
|
STANOJEVIĆ-NIKOLIĆ S, DIMIĆ G, MOJOVIĆ L, PEJIN J, RADOSAVLJEVIĆ M, ĐUKIĆ-VUKOVIĆ A, MLADENOVIĆ D, KOCIĆ-TANACKOV S. Reduction of sterigmatocystin biosynthesis and growth of food-borne fungi by lactic acid. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2020; 39:83-88. [PMID: 32775125 PMCID: PMC7392911 DOI: 10.12938/bmfh.2019-029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 11/05/2022]
Abstract
Food contamination by fungi and mycotoxins presents a problem for food safety even today. Since lactic acid (LA) has Generally Recognized As Safe (GRAS) status, the aim of this research was to determine its potential in protection of food against mycological and mycotoxicological contamination. In this study, LA showed an inhibitory effect on the growth of food-borne fungi (Penicillium aurantiogriseum K51, Aspergillus parasiticus KB31, Aspergillus versicolor S72, and Aspergillus niger K95) and on biosynthesis of sterigmatocystin (STE). For the antifungal effect of LA on the growth of food-borne fungi, the disc diffusion and microdilution methods were performed. The effect of LA on the STE biosynthesis by A. versicolor was determined using an LC-MS/MS technique. The largest inhibition zone was observed for A. versicolor (inhibition zone of 24 ± 0.35 mm), while there were no inhibition zones for A. niger and A. parasiticus at all tested LA concentrations. The minimal inhibitory concentration (MIC) of LA on fungi ranged from 25.0 mg/mL to 50.0 mg/mL, while the minimum fungicidal concentrations (MFCs) ranged from 50.0 mg/mL to 100.0 mg/mL. Complete inhibition of STE biosynthesis by A. versicolor was observed at an LA concentration of 50.0 mg/mL. The obtained results showed that LA could be efficient for protection of food against mycological and STE contamination.
Collapse
Affiliation(s)
| | - Gordana DIMIĆ
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21 000 Novi Sad, Serbia
| | | | - Jelena PEJIN
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21 000 Novi Sad, Serbia
| | - Miloš RADOSAVLJEVIĆ
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21 000 Novi Sad, Serbia
| | | | | | - Sunčica KOCIĆ-TANACKOV
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21 000 Novi Sad, Serbia
| |
Collapse
|
31
|
Synthesis and molecular docking study of some 3,4-dihydrothieno[2,3-d]pyrimidine derivatives as potential antimicrobial agents. Bioorg Chem 2019; 88:102934. [DOI: 10.1016/j.bioorg.2019.102934] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/11/2019] [Accepted: 03/30/2019] [Indexed: 01/21/2023]
|
32
|
Biofunctionalization of Textile Materials.1. Biofunctionalization of Poly(Propylene) (PP) Nonwovens Fabrics by Alafosfalin. COATINGS 2019. [DOI: 10.3390/coatings9070412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper presents the method of obtaining poly(propylene) (PP) nonwoven fabrics with antimicrobial properties, using Alafosfalin as the nonwoven modifying agent. Alafosfalin, namely L-alanyl-L-1-aminoethylphosphonic acid, presents representative P-terminal phosphonodipeptide, which possesses a strong, broad spectrum of antimicrobial properties. The analysis of these biofunctionalized nonwoven fabrics processed by the melt-blown technique, included: scanning electron microscopy (SEM), UV/Vis transmittance, FTIR spectrometry, and air permeability. The nonwovens were subjected to microbial activity tests against colonies of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Results indicate that the described nonwovens can be successfully used as an antibacterial material.
Collapse
|
33
|
Hossain MA, Biva IJ, Kidd SE, Whittle JD, Griesser HJ, Coad BR. Antifungal Activity in Compounds from the Australian Desert Plant Eremophila alternifolia with Potency Against Cryptococcus spp. Antibiotics (Basel) 2019; 8:antibiotics8020034. [PMID: 30935155 PMCID: PMC6628298 DOI: 10.3390/antibiotics8020034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
Plant metabolites that have shown activity against bacteria and/or environmental fungi represent valuable leads for the identification and development of novel drugs against clinically important human pathogenic fungi. Plants from the genus Eremophila were highly valued in traditional Australian Aboriginal medicinal practices, and E. alternifolia was the most prized among them. As antibacterial activity of extracts from E. alternifolia has been documented, this study addresses the question whether there is also activity against infectious fungal human pathogens. Compounds from leaf-extracts were purified and identified by 1- and 2-D NMR. These were then tested by disk diffusion and broth microdilution assays against ten clinically and environmentally relevant yeast and mould species. The most potent activity was observed with the diterpene compound, 8,19-dihydroxyserrulat-14-ene against Cryptococcus gattii and Cryptococcus neoformans, with minimum inhibition concentrations (MIC) comparable to those of Amphotericin B. This compound also exhibited activity against six Candida species. Combined with previous studies showing an antibacterial effect, this finding could explain a broad antimicrobial effect from Eremophila extracts in their traditional medicinal usage. The discovery of potent antifungal compounds from Eremophila extracts is a promising development in the search for desperately needed antifungal compounds particularly for Cryptococcus infections.
Collapse
Affiliation(s)
- Mohammed A Hossain
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
| | - Israt J Biva
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
| | - Sarah E Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, South Australia 5000, Australia.
| | - Jason D Whittle
- School of Engineering, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
| | - Hans J Griesser
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
| | - Bryan R Coad
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia.
| |
Collapse
|
34
|
Shin CS, Kim DY, Shin WS. Characterization of chitosan extracted from Mealworm Beetle (Tenebrio molitor, Zophobas morio) and Rhinoceros Beetle (Allomyrina dichotoma) and their antibacterial activities. Int J Biol Macromol 2018; 125:72-77. [PMID: 30500507 DOI: 10.1016/j.ijbiomac.2018.11.242] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 11/25/2022]
Abstract
Chitin was isolated from the larvae, adult, and superworm of Mealworm Beetle and the larvae, pupa, and adult of Rhinoceros Beetle by deproteinization and demineralization. Chitin yields were 4.60, 8.40, and 3.90% in the larvae, adult, and superworm of Mealworm Beetle and 10.53, 12.70, and 14.20% in the larvae, pupa, and adult of Rhinoceros Beetle, respectively. Subsequently, chitosan was obtained by deacetylation of chitin extractions from all stages of both beetle species, and its yields from chitin were 80.00, 78.33, and 83.33% in the larvae, adult, and superworm of Mealworm Beetle, and 83.37, 83.37, and 75.00% in larvae, pupa, and adult of Rhinoceros Beetle, respectively. The Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis of the chitosan from the two insect species showed the similar structural characteristics as those of commercial chitosan. Chitosan from the Mealworm Beetle showed about 1 mm inhibition zones against Bacillus cereus, Listeria monocytogenes, and Escherischia coli, and a 2 mm inhibition zone against Staphylococcus aureus in antimicrobial activity test.
Collapse
Affiliation(s)
- Chae-Shim Shin
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Do-Yeong Kim
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Weon-Sun Shin
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
35
|
Synthesis of pyrazolo-1,2,4-triazolo[4,3-a]quinoxalines as antimicrobial agents with potential inhibition of DHPS enzyme. Future Med Chem 2018; 10:2155-2175. [PMID: 30088415 DOI: 10.4155/fmc-2018-0082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIM The development of a new class of antimicrobial agents is the optimal lifeline to scrap the escalating jeopardy of drug resistance. EXPERIMENTAL This study aims to design and synthesize a series of pyrazolo-1,2,4-triazolo[4,3-a]quinoxalines, to develop agents having antimicrobial activity through potential inhibition of dihyropteroate synthase enzyme. The target compounds have been evaluated for their in-vitro antimicrobial activity. RESULTS & DISCUSSION Compounds 5b, 5c were equipotent (minimal inhibitory concentration = 12.5 μg/ml) to ampicillin. The docking patterns of 5b and 5c demonstrated that both fit into Bacillus Anthracis dihydropteroate synthase pterin and p-amino benzoic acid-binding pockets. Moreover, their physicochemical properties and pharmacokinetic profiles recommend that they can be considered drug-like candidates. The results highlight some significant information for the future design of lead compounds as antimicrobial agents.
Collapse
|
36
|
Karsli B, Caglak E, Li D, Rubio NK, Janes M, Prinyawiwatkul W. Inhibition of selected pathogens inoculated on the surface of catfish fillets by high molecular weight chitosan coating. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13897] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Baris Karsli
- Faculty of Fisheries Department of Seafood Processing Technology Recep Tayyip Erdogan University 53100 Rize Turkey
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge 70803‐4200 LA USA
| | - Emre Caglak
- Faculty of Fisheries Department of Seafood Processing Technology Recep Tayyip Erdogan University 53100 Rize Turkey
| | - Dapeng Li
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge 70803‐4200 LA USA
- College of Food Science and Nutritional Engineering China Agricultural University 100083 Beijing China
| | - Nancy K. Rubio
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge 70803‐4200 LA USA
| | - Marlene Janes
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge 70803‐4200 LA USA
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge 70803‐4200 LA USA
| |
Collapse
|
37
|
Rubio NK, Quintero R, Fuentes J, Brandao J, Janes M, Prinyawiwatkul W. Antimicrobial activities of high molecular weight water-soluble chitosans against selected gram-negative and gram-positive foodborne pathogens. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nancy Katherine Rubio
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA 70803-4200 USA
| | - Rita Quintero
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA 70803-4200 USA
| | - Jose Fuentes
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA 70803-4200 USA
| | - Jose Brandao
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA 70803-4200 USA
| | - Marlene Janes
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA 70803-4200 USA
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA 70803-4200 USA
| |
Collapse
|
38
|
Liu S, Zhong C, Wang W, Jia Y, Wang L, Ren L. α-Cyclodextrins Polyrotaxane Loading Silver Sulfadiazine. Polymers (Basel) 2018; 10:E190. [PMID: 30966226 PMCID: PMC6415174 DOI: 10.3390/polym10020190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 11/16/2022] Open
Abstract
As a drug carrier, polyrotaxane (PR) has been used for targeted delivery and sustained release of drugs, whereas silver sulfadiazine (SD-Ag) is an emerging antibiotic agent. PR was synthesized by the use of α-cyclodextrin (CD) and poly(ethylene glycol) (PEG), and a specific antibacterial material (PR-(SD-Ag)) was then prepared by loading SD-Ag onto PR with different mass ratios. The loading capacity and the encapsulation efficiency were 90% at a mass ratio of 1:1 of PR and SD-Ag. SD-Ag was released stably and slowly within 6 d in vitro, and its cumulative release reached more than 85%. The mechanism of PR loading SD-Ag might be that SD-Ag attached to the edge of α-CD through hydrogen bonding. PR-(SD-Ag) showed a higher light stability than SD-Ag and held excellent antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus).
Collapse
Affiliation(s)
- Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Chunting Zhong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Weiwei Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Yongguang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| |
Collapse
|
39
|
Abstract
Abstract
The chitin and chitosan market worldwide has shown tremendous growth, propelled by the expansion in the application domain. The market volume is projected to be more than 155 thousand metric tons by the year 2022. The global market for chitin and chitosan derivatives is expected to reach $4.2 billion by 2021 up from $2.0 billion in 2016 at a compound annual growth rate (CAGR) of 15.4%, from 2016 to 2021. Among chitin derivatives, chitosan is projected to offer the highest growth potential. The demand for a reliable source of high quality chitosan is rapidly increasing as new value added products enter the market. At the same time the growth of value added chitosan based products are limited by the availability of a sustainable supply chain. Antimicrobial properties are of special interest in the packaging, cosmetic, food and biomedical sector. Most of the latter applications warrants high-volume and low cost materials. However, the process chemistry for bulk chitosan manufacturing is currently not very environmentally friendly. Green technologies for chitosan modification have increased in recent years and now face the challenge of economic viability. In this review the status of antimicrobial chitosan derivatives will be reported with a critical review of the chemical technologies that would mitigate the commercialisation of these biopolymers in the antimicrobial biopolymer market sector. The amount of publications per annum has increased exponentially and the lack of global standardised antimicrobial test protocols make it rather challenging to properly evaluate the relative efficacy of these polymers.
Collapse
Affiliation(s)
- Anwar Jardine
- Department of Chemistry , University of Cape Town , Rondebosch 7701, Western Cape , South Africa
| | - Shakeela Sayed
- Department of Chemistry , University of Cape Town , Rondebosch 7701, Western Cape , South Africa
| |
Collapse
|
40
|
Xu J, Zhang Y, Gutha Y, Zhang W. Antibacterial property and biocompatibility of Chitosan/Poly(vinyl alcohol)/ZnO (CS/PVA/ZnO) beads as an efficient adsorbent for Cu(II) removal from aqueous solution. Colloids Surf B Biointerfaces 2017; 156:340-348. [DOI: 10.1016/j.colsurfb.2017.05.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 12/07/2022]
|
41
|
Gutha Y, Pathak JL, Zhang W, Zhang Y, Jiao X. Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int J Biol Macromol 2017; 103:234-241. [PMID: 28499948 DOI: 10.1016/j.ijbiomac.2017.05.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/17/2017] [Accepted: 05/05/2017] [Indexed: 12/07/2022]
Abstract
Treatment against bacterial infection is crucial for wound healing. Development of cost-effective antibacterial agent with wound healing properties is still in high demand. In this study we aimed to design chitosan/poly(vinyl alcohol)/zinc oxide (CS/PVA/ZnO) beads as novel antibacterial agent with wound healing properties. CS/PVA/ZnO beads were synthesized, and characterized by using XRD, FTIR, SEM, and TEM analysis. Pure chitosan exhibits two peaks at 2θ=10 and 20 and the CS/PVA polymer matrix exhibit the peaks at 2θ=19.7° and another of low intensity at 2θ=11.5°. Pure ZnO shows the characteristic peaks at (100), (002), (101), (102), (110), (103), (200), and (112) that were in good agreement with wurtzite ore having hexagonal lattice structure. The antibacterial activity of CS/PVA/ZnO against Escherichia coli, and Staphylococcus aureus were evaluated with the zone of inhibition method. Antibacterial activity of CS/PVA/ZnO was higher than that of chitosan (CS) and poly(vinyl alcohol (PVA). Hemocompatibility and biocompatibility of CS/PVA/ZnO were tested in in vitro. Wound healing properties of CS/PVA/ZnO were tested in mice skin wound. CS/PVA/ZnO showed strong antimicrobial, wound healing effect, hemocompatibility and biocompatibility. Hence the results strongly support the possibility of using this novel CS/PVA/ZnO material for the anti bacterial and wound healing application.
Collapse
Affiliation(s)
- Yuvaraja Gutha
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Janak L Pathak
- School of pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Weijiang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yaping Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xu Jiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
42
|
Zhang QZ, Zhao KQ, Wu Y, Li XH, Yang C, Guo LM, Liu CH, Qu D, Zheng CQ. 5-aminolevulinic acid-mediated photodynamic therapy and its strain-dependent combined effect with antibiotics on Staphylococcus aureus biofilm. PLoS One 2017; 12:e0174627. [PMID: 28358851 PMCID: PMC5373590 DOI: 10.1371/journal.pone.0174627] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/13/2017] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is hard to be eradicated, not only due to the emergence of antibiotic resistant strains but also because of its ability to form biofilm. Antibiotics are the major approach to treating biofilm infections, but their effects are unsatisfactory. One of the potential alternative treatments for controlling biofilm infections is photodynamic therapy (PDT), which requires the administration of photosensitizer, followed by light activation. 5-aminolevulinic acid (ALA), a natural photosensitizer prodrug, presents favorable characteristics, such as easy penetration and rapid clearance. These advantages enable ALA-based PDT (ALA-PDT) to be well-tolerated by patients and it can be repeatedly applied without cumulative toxicity or serious side effects. ALA-PDT has been proven to be an effective treatment for multidrug resistant pathogens; however, the study of its effect on S. aureus biofilm is limited. Here, we established our PDT system based on the utilization of ALA and a light-emitting diode, and we tested the effect of ALA-PDT on S. aureus biofilm as well as the combined effect of ALA-PDT and antibiotics on S. aureus biofilm. Our results showed that ALA-PDT has a strong antibacterial effect on S. aureus biofilm, which was confirmed by the confocal laser scanning microscope. We also found that lethal photosensitization occurred predominantly in the upper layer of the biofilm, while the residual live bacteria were located in the lower layer of the biofilm. In addition, the improved bactericidal effect was observed in the combined treatment group but in a strain-dependent manner. Our results suggest that ALA-PDT is a potential alternative approach for future clinical use to treat S. aureus biofilm-associated infections, and some patients may benefit from the combined treatment of ALA-PDT and antibiotics, but drug sensitivity testing should be performed in advance.
Collapse
Affiliation(s)
- Qing-Zhao Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Eye & ENT Hospital, School of Shanghai Medicine, Fudan University, Shanghai, PR China
| | - Ke-Qing Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Eye & ENT Hospital, School of Shanghai Medicine, Fudan University, Shanghai, PR China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xian-Hui Li
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chen Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Eye & ENT Hospital, School of Shanghai Medicine, Fudan University, Shanghai, PR China
- Department of Otolaryngology, Ruijin Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Min Guo
- Department of Otorhinolaryngology-Head and Neck Surgery, Eye & ENT Hospital, School of Shanghai Medicine, Fudan University, Shanghai, PR China
| | - Chun-Hong Liu
- Department of Clinical Laboratory, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- * E-mail: (CQZ); (DQ)
| | - Chun-Quan Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Eye & ENT Hospital, School of Shanghai Medicine, Fudan University, Shanghai, PR China
- * E-mail: (CQZ); (DQ)
| |
Collapse
|
43
|
Long M, Lai H, Deng W, Zhou K, Li B, Liu S, Fan L, Wang H, Zou L. Disinfectant susceptibility of differentSalmonellaserotypes isolated from chicken and egg production chains. J Appl Microbiol 2016; 121:672-81. [DOI: 10.1111/jam.13184] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/18/2016] [Accepted: 05/16/2016] [Indexed: 11/28/2022]
Affiliation(s)
- M. Long
- College of Resources; Sichuan Agricultural University; Chengdu China
- The Laboratory of Microbiology; Dujiangyan Campus of Sichuan Agricultural University; Dujiangyan Sichuan China
| | - H. Lai
- College of Food Science; Sichuan Agricultural University; Ya'an China
| | - W. Deng
- The Laboratory of Microbiology; Dujiangyan Campus of Sichuan Agricultural University; Dujiangyan Sichuan China
| | - K. Zhou
- College of Food Science; Sichuan Agricultural University; Ya'an China
| | - B. Li
- The Laboratory of Microbiology; Dujiangyan Campus of Sichuan Agricultural University; Dujiangyan Sichuan China
| | - S. Liu
- College of Food Science; Sichuan Agricultural University; Ya'an China
| | - L. Fan
- The Laboratory of Microbiology; Dujiangyan Campus of Sichuan Agricultural University; Dujiangyan Sichuan China
| | - H. Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province; School of Life Science; Sichuan University; Chengdu China
| | - L. Zou
- College of Resources; Sichuan Agricultural University; Chengdu China
- The Laboratory of Microbiology; Dujiangyan Campus of Sichuan Agricultural University; Dujiangyan Sichuan China
| |
Collapse
|
44
|
Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.04.049] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Wu G, Yang Q, Long M, Guo L, Li B, Meng Y, Zhang A, Wang H, Liu S, Zou L. Evaluation of agar dilution and broth microdilution methods to determine the disinfectant susceptibility. J Antibiot (Tokyo) 2015; 68:661-5. [DOI: 10.1038/ja.2015.51] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 03/10/2015] [Accepted: 04/09/2015] [Indexed: 11/09/2022]
|
46
|
Pedro HSDS, Francinalva DDM, Martina GDOP, Julio CQ, Rayanne IMDS, Patricia MB, Daniela PDM, Pollianna MA, Ana CDDM. Antimicrobial potential of chitosan. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajmr2014.7235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
47
|
Liu H, Zhao Y, Zhao D, Gong T, Wu Y, Han H, Xu T, Peschel A, Han S, Qu D. Antibacterial and anti-biofilm activities of thiazolidione derivatives against clinical staphylococcus strains. Emerg Microbes Infect 2015; 4:e1. [PMID: 26038759 PMCID: PMC4317670 DOI: 10.1038/emi.2015.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/26/2014] [Accepted: 11/24/2014] [Indexed: 01/16/2023]
Abstract
Both Staphylococcus aureus and Staphylococcus epidermidis can form biofilms on natural surfaces or abiotic surfaces, such as medical implants, resulting in biofilm-associated diseases that are refractory to antibiotic treatment. We previously reported a promising antibacterial compound (Compound 2) and its derivatives with bactericidal and anti-biofilm activities against both S. epidermidis and S. aureus. We have further evaluated the antibacterial activities of four Compound 2 derivatives (H2-38, H2-39, H2-74 and H2-81) against 163 clinical strains of S. epidermidis and S. aureus, including methicillin-susceptible and methicillin-resistant strains, as well as biofilm-forming and non-biofilm-forming strains. The four derivatives inhibited the planktonic growth of all of the clinical staphylococcal isolates, including methicillin-resistant S. aureus and methicillin-resistant S. epidermidis and displayed bactericidal activities against both immature (6 h) and mature (24 h) biofilms formed by the strong biofilm-forming strains. The derivatives, which all target YycG, will help us to develop new antimicrobial agents against multidrug-resistant staphylococci infections and biofilm-associated diseases.
Collapse
Affiliation(s)
- Huayong Liu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University , Shanghai 200032, China
| | - Yanfeng Zhao
- Department of Laboratory Medicine, Affiliated Gulou Hospital, Medical College of Nanjing University , Nanjing 210008, Jiangsu, China
| | - Dan Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology , Nanjing 210009, Jiangsu, China
| | - Ting Gong
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University , Shanghai 200032, China
| | - Youcong Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University , Shanghai 200032, China
| | - Haiyan Han
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University , Shanghai 200032, China
| | - Tao Xu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University , Shanghai 200032, China
| | - Andreas Peschel
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen , Tübingen 72076, Germany
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology , Nanjing 210009, Jiangsu, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University , Shanghai 200032, China
| |
Collapse
|
48
|
Coma V, Freire CSR, Silvestre AJD. Recent Advances on the Development of Antibacterial Polysaccharide-Based Materials. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
49
|
Hamilton MF, Otte AD, Gregory RL, Pinal R, Ferreira-Zandoná A, Bottino MC. Physicomechanical and antibacterial properties of experimental resin-based dental sealants modified with nylon-6 and chitosan nanofibers. J Biomed Mater Res B Appl Biomater 2014; 103:1560-8. [PMID: 25532852 DOI: 10.1002/jbm.b.33342] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/07/2014] [Accepted: 12/02/2014] [Indexed: 11/07/2022]
Abstract
This study aimed to develop and evaluate resin-based experimental dental sealants containing electrospun nylon-6 (N6) and chitosan (CH) fibers in an attempt to improve the physicomechanical properties and provide an antibacterial protective effect, respectively. Electrospun N6 and CH mats were immersed into a resin mixture, light-cured, and then cryomilled to obtain micron-sized resin-modified fiber particles. Different levels of the novel cryomilled particles (i.e. 1, 2.5, and 5% relative to the resin mixture, % by weight) were used to prepare the N6- and CH-containing sealants. A commercial sealant and the experimental resin mixture (unfilled) were used as controls. Flexural strength (FS), Vickers microhardness (VH), and agar diffusion tests were performed. The data were analyzed at the 5% significance level. No significant difference in fiber diameter of N6 (503 ± 31 nm) and CH (595 ± 38 nm) was observed. Upon cryomilling, the resin-modified CH and N6 mats led to the formation of irregularly-shaped particles, with an average diameter of 14.24 µm and 15.87 µm, respectively. CH-5% had significantly higher FS (115.3 ± 1.3 MPa) than all the other groups. CH-1% had significantly higher hardness values (38.3 ± 0.3 VHN) than all the other groups. Collectively, the results indicated that CH-containing sealants presented the highest FS and hardness; however, none of the CH-containing sealants displayed antimicrobial properties.
Collapse
Affiliation(s)
- María F Hamilton
- Department of Restorative Dentistry, Graduate Operative and Preventive Dentistry, Indiana University School of Dentistry (IUSD), Indianapolis, Indiana.,Department of Restorative Dentistry, Dental Biomaterials Division, Indiana University School of Dentistry (IUSD), Indianapolis, Indiana
| | - Andrew D Otte
- Department of Industrial and Physical Pharmacy, Purdue University, College of Pharmacy, West Lafayette, Indiana
| | - Richard L Gregory
- Department of Oral Biology, Indiana University School of Dentistry (IUSD), Indianapolis, Indiana
| | - Rodolfo Pinal
- Department of Industrial and Physical Pharmacy, Purdue University, College of Pharmacy, West Lafayette, Indiana
| | - Andrea Ferreira-Zandoná
- Department of Operative Dentistry, University of North Carolina, Chapel Hill, North Carolina
| | - Marco C Bottino
- Department of Restorative Dentistry, Dental Biomaterials Division, Indiana University School of Dentistry (IUSD), Indianapolis, Indiana
| |
Collapse
|
50
|
Recent Advances on the Development of Polysaccharide-Based. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_12-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|