1
|
Subhadra M, Mir DA, Ankita K, Sindunathy M, Kishore HD, Ravichandiran V, Balamurugan K. Exploring diabesity pathophysiology through proteomic analysis using Caenorhabditis elegans. Front Endocrinol (Lausanne) 2024; 15:1383520. [PMID: 39539936 PMCID: PMC11557309 DOI: 10.3389/fendo.2024.1383520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/15/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Diabesity, characterized by obesity-driven Type 2 diabetes mellitus (T2DM), arises from intricate genetic and environmental interplays that induce various metabolic disorders. The systemic lipid and glucose homeostasis is controlled by an intricate cross-talk of internal glucose/insulin and fatty acid molecules to maintain a steady state of internal environment. Methods In this study, Caenorhabditis elegans were maintained to achieve glucose concentrations resembling the hyperglycemic conditions in diabetic patients to delve into the mechanistic foundations of diabesity. Various assays were conducted to measure intracellular triglyceride levels, lifespan, pharyngeal pumping rate, oxidative stress indicators, locomotor behavior, and dopamine signaling. Proteomic analysis was also performed to identify differentially regulated proteins and dysregulated KEGG pathways, and microscopy and immunofluorescence staining were employed to assess collagen production and anatomical integrity. Results Worms raised on diets high in glucose and cholesterol exhibited notably increased intracellular triglyceride levels, a decrease in both mean and maximum lifespan, and reduced pharyngeal pumping. The diabesity condition induced oxidative stress, evident from heightened ROS levels and distinct FT-IR spectroscopy patterns revealing lipid and protein alterations. Furthermore, impaired dopamine signaling and diminished locomotors behavior in diabesity-afflicted worms correlated with reduced motility. Through proteomic analysis, differentially regulated proteins encompassing dysregulated KEGG pathways included insulin signaling, Alzheimer's disease, and nicotinic acetylcholine receptor signaling pathways were observed. Moreover, diabesity led to decreased collagen production, resulting in anatomical disruptions validated through microscopy and immunofluorescence staining. Discussion This underscores the impact of diabesity on cellular components and structural integrity in C. elegans, providing insights into diabesity-associated mechanisms.
Collapse
Affiliation(s)
- Malaimegu Subhadra
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Dilawar Ahmad Mir
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Koley Ankita
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Hambram David Kishore
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | | |
Collapse
|
2
|
Sabotič J, Bayram E, Ezra D, Gaudêncio SP, Haznedaroğlu BZ, Janež N, Ktari L, Luganini A, Mandalakis M, Safarik I, Simes D, Strode E, Toruńska-Sitarz A, Varamogianni-Mamatsi D, Varese GC, Vasquez MI. A guide to the use of bioassays in exploration of natural resources. Biotechnol Adv 2024; 71:108307. [PMID: 38185432 DOI: 10.1016/j.biotechadv.2024.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Bioassays are the main tool to decipher bioactivities from natural resources thus their selection and quality are critical for optimal bioprospecting. They are used both in the early stages of compounds isolation/purification/identification, and in later stages to evaluate their safety and efficacy. In this review, we provide a comprehensive overview of the most common bioassays used in the discovery and development of new bioactive compounds with a focus on marine bioresources. We present a comprehensive list of practical considerations for selecting appropriate bioassays and discuss in detail the bioassays typically used to explore antimicrobial, antibiofilm, cytotoxic, antiviral, antioxidant, and anti-ageing potential. The concept of quality control and bioassay validation are introduced, followed by safety considerations, which are critical to advancing bioactive compounds to a higher stage of development. We conclude by providing an application-oriented view focused on the development of pharmaceuticals, food supplements, and cosmetics, the industrial pipelines where currently known marine natural products hold most potential. We highlight the importance of gaining reliable bioassay results, as these serve as a starting point for application-based development and further testing, as well as for consideration by regulatory authorities.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
| | - Engin Bayram
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - David Ezra
- Department of Plant Pathology and Weed Research, ARO, The Volcani Institute, P.O.Box 15159, Rishon LeZion 7528809, Israel
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Biomolecular Sciences Unit, Department of Chemistry, Blue Biotechnology & Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Berat Z Haznedaroğlu
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Leila Ktari
- B3Aqua Laboratory, National Institute of Marine Sciences and Technologies, Carthage University, Tunis, Tunisia
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Dina Simes
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; 2GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Evita Strode
- Latvian Institute of Aquatic Ecology, Agency of Daugavpils University, Riga LV-1007, Latvia
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, 81-378 Gdynia, Poland
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | | | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 3036 Limassol, Cyprus
| |
Collapse
|
3
|
Parmar S, Gajera G, Thakkar N, Palep HS, Kothari V. Deciphering the molecular mechanisms underlying anti-pathogenic potential of a polyherbal formulation Enteropan® against multidrug-resistant Pseudomonas aeruginosa. Drug Target Insights 2024; 18:54-69. [PMID: 39224464 PMCID: PMC11367655 DOI: 10.33393/dti.2024.3082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Objective Anti-pathogenic potential of a polyherbal formulation Enteropan® was investigated against a multidrug-resistant strain of the bacterium Pseudomonas aeruginosa. Methods Growth, pigment production, antibiotic susceptibility, etc., were assessed through appropriate in vitro assays. Virulence of the test pathogen was assessed employing the nematode worm Caenorhabditis elegans as a model host. Molecular mechanisms underlining the anti-pathogenic activity of the test formulation were elucidated through whole transcriptome analysis of the extract-exposed bacterial culture. Results Enteropan-pre-exposed P. aeruginosa displayed reduced (~70%↓) virulence towards the model host C. elegans. Enteropan affected various traits like biofilm formation, protein synthesis and secretion, quorum-modulated pigment production, antibiotic susceptibility, nitrogen metabolism, etc., in this pathogen. P. aeruginosa could not develop complete resistance to the virulence-attenuating activity of Enteropan even after repeated exposure to this polyherbal formulation. Whole transcriptome analysis showed 17% of P. aeruginosa genome to get differentially expressed under influence of Enteropan. Major mechanisms through which Enteropan exerted its anti-virulence activity were found to be generation of nitrosative stress, oxidative stress, envelop stress, quorum modulation, disturbance of protein homeostasis and metal homeostasis. Network analysis of the differently expressed genes resulted in identification of 10 proteins with high network centrality as potential targets from among the downregulated genes. Differential expression of genes coding for five (rpoA, tig, rpsB, rpsL, and rpsJ) of these targets was validated through real-time polymerase chain reaction too, and they can further be pursued as potential targets by various drug discovery programmes.
Collapse
Affiliation(s)
- Sweety Parmar
- Institute of Science, Nirma University, Ahmedabad - India
| | - Gemini Gajera
- Institute of Science, Nirma University, Ahmedabad - India
| | - Nidhi Thakkar
- Institute of Science, Nirma University, Ahmedabad - India
| | | | - Vijay Kothari
- Institute of Science, Nirma University, Ahmedabad - India
| |
Collapse
|
4
|
Hu C, Yang W. Alternatives to animal models to study bacterial infections. Folia Microbiol (Praha) 2023; 68:703-739. [PMID: 37632640 DOI: 10.1007/s12223-023-01084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023]
Abstract
Animal testing has made a significant and unequalled contribution to important discoveries and advancements in the fields of research, medicine, vaccine development, and drug discovery. Each year, millions of animals are sacrificed for various experiments, and this is an ongoing process. However, the debate on the ethical and sensible usage of animals in in vivo experimentation is equally important. The need to explore and adopt newer alternatives to animals so as to comply with the goal of reduce, refine, and replace needs attention. Besides the ever-increasing debate on ethical issues, animal research has additional drawbacks (need of trained labour, requirement of breeding area, lengthy protocols, high expenses, transport barriers, difficulty to extrapolate data from animals to humans, etc.). With this scenario, the present review has been framed to give a comprehensive insight into the possible alternative options worth exploring in this direction especially targeting replacements for animal models of bacterial infections. There have been some excellent reviews discussing on the alternate methods for replacing and reducing animals in drug research. However, reviews that discuss the replacements in the field of medical bacteriology with emphasis on animal bacterial infection models are purely limited. The present review discusses on the use of (a) non-mammalian models and (b) alternative systems such as microfluidic chip-based models and microdosing aiming to give a detailed insight into the prospects of these alternative platforms to reduce the number of animals being used in infection studies. This would enlighten the scientific community working in this direction to be well acquainted with the available new approaches and alternatives so that the 3R strategy can be successfully implemented in the field of antibacterial drug research and testing.
Collapse
Affiliation(s)
- Chengming Hu
- Queen Mary College, Nanchang University, Nanchang, China
| | - Wenlong Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
5
|
Das S, Vishakha K, Banerjee S, Nag D, Ganguli A. Tetracycline-loaded magnesium oxide nanoparticles with a potential bactericidal action against multidrug-resistant bacteria: In vitro and in vivo evidence. Colloids Surf B Biointerfaces 2022; 217:112688. [PMID: 35841801 DOI: 10.1016/j.colsurfb.2022.112688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/08/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Worldwide, the emergence of diarrhoea-causing multi-drug resistant (MDR) bacteria has become a crucial problem in everyday life. Tetracycline (TC) is a bacteriostatic agent that has a wide spectrum of antibacterial activity. One potential strategy to enhance the penetration and antibacterial activity of antibiotics is the use of nanotechnology. In this context, this study dealt with the synthesis of TC loading in biocompatible magnesium oxide nanoparticles (MgONPs), its characterization, and the potency of killing against diarrhoea-causing MDR bacteria E. coli and S. flexneri. TC loaded- MgONPs (MgONPs-TC) were characterized by DLS, SEM-EDS, UV-vis spectroscopy, and FTIR techniques with adequate physical properties. Antibacterial and antibiofilm studies indicate that this nanoparticle successfully eradicated both planktonic and sessile forms of those bacteria. It also significantly reduced the production of bacterial EPS, different levels of antioxidant enzymes, and induced reactive oxygen species (ROS) in the bacterial cell as a mode of antibacterial action. In particular, MgONPs-TC were efficient in reducing the colonization of MDR E. coli and S. flexneri in the C. elegans model. Therefore, all these data suggest that MgONPs-TC are a highly promising approach to combating diseases associated with diarrhoea-causing MDR bacteria in the medical field with limited health care budgets.
Collapse
Affiliation(s)
- Shatabdi Das
- Department of Microbiology, Techno India University, EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal 700091, India
| | - Kumari Vishakha
- Department of Microbiology, Techno India University, EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal 700091, India
| | - Satarupa Banerjee
- Department of Microbiology, Techno India University, EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal 700091, India
| | - Debasish Nag
- Department of Biotechnology, University of Calcutta, West Bengal, India
| | - Arnab Ganguli
- Department of Microbiology, Techno India University, EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal 700091, India.
| |
Collapse
|
6
|
Hallaj-Nezhadi S, Hamdipour R, Shahrvirani M, Zare Tin R, Chapeland-Leclerc F, Ruprich-Robert G, Esnaashari S, Elyasi Far B, Dilmaghani A. Antimicrobial activity of Bacillus sp. isolated strains of wild honey. BMC Complement Med Ther 2022; 22:78. [PMID: 35305633 PMCID: PMC8933914 DOI: 10.1186/s12906-022-03551-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/07/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Multi-drug resistant bacteria hazards to the health of humans could be an agent in the destruction of human generation. Natural products of Bacillus species are the main source to access progressive antibiotics that can be a good candidate for the discovery of novel antibiotics. Wild honey as a valuable food has been used in medicine with antimicrobial effects. OBJECTIVE Bacillus strains isolated from wild honey were evaluated for the potential antimicrobial activity against human and plant bacterial and fungal pathogens. METHODS Three bacterial isolates were identified as strain Khuz-1 (98.27% similarity with Bacillus safensis subsp. Safensis strain FO-36bT), strain Khuz-2 (99.18% similarity with Bacillus rugosus strain SPB7T), and strain Khuz-3 (99.78% similarity with Bacillus velezensis strain CR-502 T) by 16S rRNA gene sequences. The strains were characterized by their ability to inhibit the growth of human and phytopathogenic fungi. RESULTS The results indicated that B. rugosus strain Khuz-2 inhibited the growth of phytopathogenic and human fungal more effective than other ones. It seems that the strain Khuz-2 has a suitable antimicrobial and antifungal potential as a good candidate for further pharmaceutical research. CONCLUSION Based on the results of GC-MS, Pyrrolo [1,2-a] pyrazine-1,4-dion, hexahydro-3-(2-methylpropyle) (PPDHM) was the major compound for all strains which have a various pharmacological effect. Isolation and identification of beneficial bacteria from natural sources can play an important role in future pharmaceutical and industrial applications.
Collapse
Affiliation(s)
- Somayeh Hallaj-Nezhadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Drug &Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasoul Hamdipour
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Shahrvirani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Zare Tin
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Florence Chapeland-Leclerc
- Institut Des Energies de Demain (IED), UMR 8236, Univ Paris Descartes, Sorbonne Paris Cité, F-75205, Paris, France
| | - Gwenael Ruprich-Robert
- Institut Des Energies de Demain (IED), UMR 8236, Univ Paris Descartes, Sorbonne Paris Cité, F-75205, Paris, France
| | - Solmaz Esnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Elyasi Far
- Department of Physiology and Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Azita Dilmaghani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Kanekar S, Devasya RP. Growth-phase specific regulation of cviI/R based quorum sensing associated virulence factors in Chromobacterium violaceum by linalool, a monoterpenoid. World J Microbiol Biotechnol 2022; 38:23. [PMID: 34989882 DOI: 10.1007/s11274-021-03208-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022]
Abstract
Quorum sensing (QS)-dependent gene regulation in bacteria performs a vital role in synchronization of cell-density-dependent functions. In Chromobacterium violaceum QS-dependent cviI/R regulatory genes are activated during the mid- or late-exponential phase of growth. However, sufficient evidence is lacking on the role of QS inhibitors on gene regulation at different phases of growth. Hence, we report the role of linalool, a natural monoterpenoid on QS mediated gene regulation at different stages of growth in C. violaceum by performing biosensor, growth kinetic and gene expression studies. In vitro and in vivo studies were performed for establishing role of linalool in reducing the virulence and infection by using HEK-293 T cell lines and Caenorhabditis elegans models respectively. C. violaceum CV026 with C6-HSL was used as control. The results showed linalool to be a QS inhibitor with an estimated IC50 of 63 µg/mL for violacein inhibition. At this concentration the cell density difference (delta OD600) of 0.14 from the compound was observed indicating the quorum concentration. The expression of cviI/R was initiated at mid-log phase (~ 18 h) and reached the maximum at 36 h in control whereas in treatment it remained significantly downregulated at all time points. The expression of violacein biosynthetic genes vioA, vioC, vioD and vioE was also downregulated by linalool. Infection studies with linalool showed higher survival rates in HEK-293T cell lines and C. elegans compared to the infection control. Taken together, this study proves linalool to be a QS inhibitor capable of attenuation of QS by controlling the cell density through cviI/R downregulation at the early phase of growth and hence offering scope for its application for controlling infections.
Collapse
Affiliation(s)
- Saptami Kanekar
- Microbiology and Biotechnology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Rekha Punchappady Devasya
- Microbiology and Biotechnology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
8
|
Das S, Vishakha K, Banerjee S, Nag D, Ganguli A. Exploring the antibacterial, antibiofilm, and antivirulence activities of tea tree oil-containing nanoemulsion against carbapenem-resistant Serratia marcescens associated infections. BIOFOULING 2022; 38:100-117. [PMID: 35012385 DOI: 10.1080/08927014.2021.2022125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Carbapenem-resistant Serratia marcescens (CRE-S. marcescens) has recently emerged as an opportunistic human pathogen that causes various nosocomial and respiratory tract infections. The prognosis for CRE-S. marcescens-related infections is very poor and these infections are difficult to treat. This study investigated the synthesis of tea tree oil nanoemulsion (TTO-NE) and its impact on CRE-S. marcescens both in vitro and in vivo. TTO-NE was characterized by dynamic light scattering (DLS) and effectively eradicated bacterial planktonic and sessile forms, reduced bacterial virulence factors, and generated reactive oxygen species (ROS) in the bacterial cell. Notably, TTO-NE was efficient in reducing the colonization of CRE-S. marcescens in a C. elegans in vivo model. The data suggest that TTO-NE might be an excellent tool to combat infections associated with CRE-S. marcescens.
Collapse
Affiliation(s)
- Shatabdi Das
- Department of Microbiology, Techno India University, Kolkata, West Bengal, India
| | - Kumari Vishakha
- Department of Microbiology, Techno India University, Kolkata, West Bengal, India
| | - Satarupa Banerjee
- Department of Microbiology, Techno India University, Kolkata, West Bengal, India
| | - Debasish Nag
- Department of Biotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Arnab Ganguli
- Department of Microbiology, Techno India University, Kolkata, West Bengal, India
| |
Collapse
|
9
|
Valença CAS, Barbosa AAT, Souto EB, Caramão EB, Jain S. Volatile Nitrogenous Compounds from Bacteria: Source of Novel Bioactive Compounds. Chem Biodivers 2021; 18:e2100549. [PMID: 34643327 DOI: 10.1002/cbdv.202100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022]
Abstract
Bacteria can produce nitrogenous compounds via both primary and secondary metabolic processes. Many bacterial volatile nitrogenous compounds produced during the secondary metabolism have been identified and reported for their antioxidant, antibacterial, antifungal, algicidal and antitumor activities. The production of these nitrogenous compounds depends on several factors, including the composition of culture media, growth conditions, and even the organic solvent used for their extraction, thus requiring their identification in specific conditions. In this review, we describe the volatile nitrogenous compounds produced by bacteria especially focusing on their antimicrobial activity. We concentrate on azo-compounds mainly pyrazines and pyrrolo-pyridines reported for their activity against several microorganisms. Whenever significant, extraction and identification methods of these compounds are also mentioned and discussed. To the best of our knowledge, this is first review describing volatile nitrogenous compounds from bacteria focusing on their biological activity.
Collapse
Affiliation(s)
- Camilla A S Valença
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju, Sergipe, Brazil
| | - Ana A T Barbosa
- Department of Morphology, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Eliana B Souto
- CEB - Center of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Elina B Caramão
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju, Sergipe, Brazil.,Instituto Nacional de Ciência e Tecnologia - Energia e Ambiente, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Sona Jain
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju, Sergipe, Brazil
| |
Collapse
|
10
|
Kannan S, Solomon A, Krishnamoorthy G, Marudhamuthu M. Liposome encapsulated surfactant abetted copper nanoparticles alleviates biofilm mediated virulence in pathogenic Pseudomonas aeruginosa and MRSA. Sci Rep 2021; 11:1102. [PMID: 33441765 PMCID: PMC7806599 DOI: 10.1038/s41598-020-79976-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023] Open
Abstract
In the present study lipopeptide biosurfactant with high emulsification capacity produced by human skin bacterium Paenibacillus thiaminolyticus was purified and subjected to FTIR and NMR spectral analysis which gave evidence of the active characteristics of the surfactant. To augment the antivirulent potential further, the mixer of copper and copper oxide nanoparticles (CuNPs) was synthesized, and characterized by UV–Visible spectroscopy, SEM-EDAX, TEM, and Zeta analysis. Here, we attempted to enhance the antimicrobial and antibiofilm activity with the assistance of encapsulated preparation of lipopeptide and CuNPs in multilamellar liposomes. The proposed mechanism of action of lipopeptide and CuNPs liposomal preparation negatively influences the cell metabolism, secreted virulence such as staphyloxanthin, pyocyanin, and extracellular polysaccharides. The significant decline in the growth of MRSA and P. aeruginosa in both planktonic form and biofilm by lipopeptide and CuNPs treatment were visualized using scanning electron microscopy and High content screening imaging system. In vivo studies revealed that treatment with lipopeptide and CuNPs in multilamellar liposomes extended the lifespan of infected Caenorhabditis elegans by about 75%. Therefore, this study typifies lipopeptide and CuNPs could credibly be a substantial substitute over conventional antibiotics in averting the biofilm associated pathogenesis of MRSA and P. aeruginosa.
Collapse
Affiliation(s)
- Suganya Kannan
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Anitta Solomon
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Govindan Krishnamoorthy
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India.
| |
Collapse
|
11
|
Isolation and Molecular Characterization of Antibiotic Producing Bacillus licheniformis Strains Isolated from Soil. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.4.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Currently, there is an increase prevalence of antibiotic-resistant bacteria worldwide. Therefore, the need for characterization of naturally occuring antibiotics with less antibiotic resistance is required. Soil resources contains valuable antibiotic producing microorganisms that increasingly being utilized for the production of suitable antibiotics. Therefore, this study aimed at identifying an antibiotic bacteria with ability of producing antibiotic that is isolated from soil samples collected from Al Zarqa provenance, an arid area in Jordan. Morphological and biochemical characterization of the isolates were carried out and found that all of the isolates belong to Bacillus genus. Further confirmation of the characterization of the bacteria was done by ribosomal RNA and PCR. The results reveal that the isolates represent Basilluslicheniformis. These bacilli were further investigated for antimicrobial activities against 6 ATCC human pathogens viz., S. aureus, S. pneumonia, Salmonella typhi., E. coli, P. mirabels and E. cloacae. Additionally, the results of Gas Chromatography Mass Spectrometry (GCMS) of ethyl acetate extracts for B. licheniformis secondary metabolites showed that they contain two main antimicrobial compounds namely Pyrrolo [1, 2-a] pyrazine-1, 4-dione,hexahydro and Trans-13-octadecenoic acid. The present work maybe suggests that soil isolates from the studied arid area include antibiotic producing strains that can be utilized commercially.
Collapse
|
12
|
Zwirchmayr J, Kirchweger B, Lehner T, Tahir A, Pretsch D, Rollinger JM. A robust and miniaturized screening platform to study natural products affecting metabolism and survival in Caenorhabditis elegans. Sci Rep 2020; 10:12323. [PMID: 32704017 PMCID: PMC7378205 DOI: 10.1038/s41598-020-69186-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
In this study a robust, whole organism screening based on Caenorhabditis elegans is presented for the discovery of natural products (NP) with beneficial effects against obesity and age-related diseases. Several parameters of the elaborated workflow were optimized to be adapted for probing multicomponent mixtures combining knowledge from traditional medicine and NP chemistry by generating optimized small-scale extracts considering scarcity of the natural source, solubility issues, and potential assay interferences. The established miniaturized assay protocol allows for in vivo probing of small amounts of even complex samples (~ 1 mg) to test their ability to increase the nematodes' survival time and the suppression of fat accumulation assessed by Nile red staining as hall marks of "healthy aging". The workflow was applied on 24 herbal and fungal materials traditionally used against symptoms of the metabolic syndrome and revealed promising results for the extracts of Gardenia jasminoides fruits and the sclerotia from Inonotus obliquus. Tested at 100 µg/mL they were able to significantly reduce the Nile red fluorescence and extend the 50% survival rate (DT50) compared to the control groups. This phenotype-directed in vivo approach opens up new horizons for the selection of natural starting materials and the investigation of their active principles as fast drug discovery tool with predictive value for human diseases.
Collapse
Affiliation(s)
- Julia Zwirchmayr
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Benjamin Kirchweger
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Theresa Lehner
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Ammar Tahir
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Dagmar Pretsch
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Judith M Rollinger
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Liang X, Luo D, Luesch H. Advances in exploring the therapeutic potential of marine natural products. Pharmacol Res 2019; 147:104373. [PMID: 31351913 PMCID: PMC6839689 DOI: 10.1016/j.phrs.2019.104373] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022]
Abstract
Marine natural products represent novel and diverse chemotypes that serve as templates for the discovery and development of therapeutic agents with distinct mechanisms of action. These genetically encoded compounds produced by an evolutionary optimized biosynthetic machinery are usually quite complex and can be difficult to recreate in the laboratory. The isolation from the source organism results in limited amount of material; however, the development of advanced NMR technologies and dereplication strategies has enabled the structure elucidation on small scale. In order to rigorously explore the therapeutic potential of marine natural products and advance them further, the biological characterization has to keep pace with the chemical characterization. The limited marine natural product supply has been a serious challenge for thorough investigation of the biological targets. Several marine drugs have reached the markets or are in clinical trials, where those challenges have been overcome, including through the development of scalable syntheses. However, the identification of mechanisms of action of marine natural products early in the discovery process is potentially game changing, since effectively linking marine natural products to potential therapeutic applications in turn triggers motivation to tackle challenging syntheses and solve the supply problem. An increasing number of sensitive technologies and methods have been developed in recent years, some of which have been successfully applied to marine natural products, increasing the value of these compounds with respect to their biomedical utility. In this review, we discuss advances in overcoming the bottlenecks in marine natural product research, emphasizing on the development and advances of diverse target identification technologies applicable for marine natural product research.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States
| | - Danmeng Luo
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States.
| |
Collapse
|
14
|
Ganesh Kumar A, Balamurugan K, Vijaya Raghavan R, Dharani G, Kirubagaran R. Studies on the antifungal and serotonin receptor agonist activities of the secondary metabolites from piezotolerant deep-sea fungus Ascotricha sp. Mycology 2019; 10:92-108. [PMID: 31069123 PMCID: PMC6493281 DOI: 10.1080/21501203.2018.1541934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/23/2018] [Indexed: 12/29/2022] Open
Abstract
The potent antifungal agent sesquiterpenes and serotonin 5-HT2C agonist ascotricin were produced by a newly isolated deep-sea fungus Ascotricha sp. This fungus was isolated from deep-sea sediment collected at a depth of 1235 m and characterized. Piezotolerance was successfully tested under high pressure-low temperature (100 bar pressure and 20ºC) microbial cultivation system. Production of secondary metabolites was enhanced at optimized culture conditions. The in-vivo antifungal activity of sesquiterpenes was studied using the Caenorhabditis elegans – Candida albicans model system. The sesquiterpenes affected the virulence of C. albicans and prolonged the life of the host C. elegans. These findings suggest that sesquiterpenes are attractive antifungal drug candidates. The 5-HT2C receptor agonist is a potential target for the development of drugs for a range of central nervous system disorders. The interaction of 5-HT2C agonist ascotricin with the receptor was studied through bioinformatic analysis. The in silico molecular docking and molecular dynamic simulation studies demonstrated that they fit into the serotonin 5-HT2C active site and the crucial amino acid residues involved in the interactions were identified. To our knowledge, this is first report of in vivo antifungal analysis of sesquiterpenes and in silico studies of serotonin 5-HT2C receptor-ascotricin complex.
Collapse
Affiliation(s)
- A Ganesh Kumar
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, Tamilnadu, India
| | - K Balamurugan
- Department of Biotechnology, Alagappa University, Karaikudi, Tamilnadu, India
| | - R Vijaya Raghavan
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, Tamilnadu, India
| | - G Dharani
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, Tamilnadu, India
| | - R Kirubagaran
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, Tamilnadu, India
| |
Collapse
|
15
|
Zhao J, Li X, Hou X, Quan C, Chen M. Widespread Existence of Quorum Sensing Inhibitors in Marine Bacteria: Potential Drugs to Combat Pathogens with Novel Strategies. Mar Drugs 2019; 17:md17050275. [PMID: 31072008 PMCID: PMC6562741 DOI: 10.3390/md17050275] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Quorum sensing (QS) is a phenomenon of intercellular communication discovered mainly in bacteria. A QS system consisting of QS signal molecules and regulatory protein components could control physiological behaviors and virulence gene expression of bacterial pathogens. Therefore, QS inhibition could be a novel strategy to combat pathogens and related diseases. QS inhibitors (QSIs), mainly categorized into small chemical molecules and quorum quenching enzymes, could be extracted from diverse sources in marine environment and terrestrial environment. With the focus on the exploitation of marine resources in recent years, more and more QSIs from the marine environment have been investigated. In this article, we present a comprehensive review of QSIs from marine bacteria. Firstly, screening work of marine bacteria with potential QSIs was concluded and these marine bacteria were classified. Afterwards, two categories of marine bacteria-derived QSIs were summarized from the aspects of sources, structures, QS inhibition mechanisms, environmental tolerance, effects/applications, etc. Next, structural modification of natural small molecule QSIs for future drug development was discussed. Finally, potential applications of QSIs from marine bacteria in human healthcare, aquaculture, crop cultivation, etc. were elucidated, indicating promising and extensive application perspectives of QS disruption as a novel antimicrobial strategy.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Xinyun Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Xiyan Hou
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian 116600, China.
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116600, China.
| |
Collapse
|
16
|
Probiotic mediated colonization resistance against E.coli infection in experimentally challenged Caenorhabditis elegans. Microb Pathog 2019; 127:39-47. [DOI: 10.1016/j.micpath.2018.11.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/05/2023]
|
17
|
Vanillic acid from Actinidia deliciosa impedes virulence in Serratia marcescens by affecting S-layer, flagellin and fatty acid biosynthesis proteins. Sci Rep 2017; 7:16328. [PMID: 29180790 PMCID: PMC5703977 DOI: 10.1038/s41598-017-16507-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/08/2017] [Indexed: 11/27/2022] Open
Abstract
Serratia marcescens is one of the important nosocomial pathogens which rely on quorum sensing (QS) to regulate the production of biofilm and several virulence factors. Hence, blocking of QS has become a promising approach to quench the virulence of S. marcescens. For the first time, QS inhibitory (QSI) and antibiofilm potential of Actinidia deliciosa have been explored against S. marcescens clinical isolate (CI). A. deliciosa pulp extract significantly inhibited the virulence and biofilm production without any deleterious effect on the growth. Vanillic acid was identified as an active lead responsible for the QSI activity. Addition of vanillic acid to the growth medium significantly affected the QS regulated production of biofilm and virulence factors in a concentration dependent mode in S. marcescens CI, ATCC 14756 and MG1. Furthermore vanillic acid increased the survival of Caenorhabditis elegans upon S. marcescens infection. Proteomic analysis and mass spectrometric identification of differentially expressed proteins revealed the ability of vanillic acid to modulate the expression of proteins involved in S-layers, histidine, flagellin and fatty acid production. QSI potential of the vanillic acid observed in the current study paves the way for exploring it as a potential therapeutic candidate to treat S. marcescens infections.
Collapse
|
18
|
Fatin SN, Boon-Khai T, Shu-Chien AC, Khairuddean M, Al-Ashraf Abdullah A. A Marine Actinomycete Rescues Caenorhabditis elegans from Pseudomonas aeruginosa Infection through Restitution of Lysozyme 7. Front Microbiol 2017; 8:2267. [PMID: 29201023 PMCID: PMC5696594 DOI: 10.3389/fmicb.2017.02267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
The resistance of Pseudomonas aeruginosa to conventional antimicrobial treatment is a major scourge in healthcare. Therefore, it is crucial that novel potent anti-infectives are discovered. The aim of the present study is to screen marine actinomycetes for chemical entities capable of overcoming P. aeruginosa infection through mechanisms involving anti-virulence or host immunity activities. A total of 18 actinomycetes isolates were sampled from marine sediment of Songsong Island, Kedah, Malaysia. Upon confirming that the methanolic crude extract of these isolates do not display direct bactericidal activities, they were tested for capacity to rescue Caenorhabditis elegans infected with P. aeruginosa strain PA14. A hexane partition of the extract from one isolate, designated as Streptomyces sp. CCB-PSK207, could promote the survival of PA14 infected worms by more than 60%. Partial 16S sequence analysis on this isolate showed identity of 99.79% with Streptomyces sundarbansensis. This partition did not impair feeding behavior of C. elegans worms. Tested on PA14, the partition also did not affect bacterial growth or its ability to colonize host gut. The production of biofilm, protease, and pyocyanin in PA14 were uninterrupted, although there was an increase in elastase production. In lys-7::GFP worms, this partition was shown to induce the expression of lysozyme 7, an important innate immunity defense molecule that was repressed during PA14 infection. GC-MS analysis of the bioactive fraction of Streptomyces sp. CCB-PSK207 revealed the presence of methyl esters of branched saturated fatty acids. In conclusion, this is the first report of a marine actinomycete producing metabolites capable of rescuing C. elegans from PA14 through a lys-7 mediated activity.
Collapse
Affiliation(s)
- Siti N. Fatin
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Malaysia
| | - Tan Boon-Khai
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Malaysia
| | - Alexander Chong Shu-Chien
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPHARM), National Institute of Biotechnology Malaysia, Ministry of Science, Technology and Innovation, Bukit Gambir, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Melati Khairuddean
- School of Chemical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Amirul Al-Ashraf Abdullah
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPHARM), National Institute of Biotechnology Malaysia, Ministry of Science, Technology and Innovation, Bukit Gambir, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Malaysia
| |
Collapse
|
19
|
Szabo M, Svensson Akusjärvi S, Saxena A, Liu J, Chandrasekar G, Kitambi SS. Cell and small animal models for phenotypic drug discovery. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1957-1967. [PMID: 28721015 PMCID: PMC5500539 DOI: 10.2147/dddt.s129447] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The phenotype-based drug discovery (PDD) approach is re-emerging as an alternative platform for drug discovery. This review provides an overview of the various model systems and technical advances in imaging and image analyses that strengthen the PDD platform. In PDD screens, compounds of therapeutic value are identified based on the phenotypic perturbations produced irrespective of target(s) or mechanism of action. In this article, examples of phenotypic changes that can be detected and quantified with relative ease in a cell-based setup are discussed. In addition, a higher order of PDD screening setup using small animal models is also explored. As PDD screens integrate physiology and multiple signaling mechanisms during the screening process, the identified hits have higher biomedical applicability. Taken together, this review highlights the advantages gained by adopting a PDD approach in drug discovery. Such a PDD platform can complement target-based systems that are currently in practice to accelerate drug discovery.
Collapse
Affiliation(s)
- Mihaly Szabo
- Department of Microbiology Tumor, and Cell Biology
| | | | - Ankur Saxena
- Department of Microbiology Tumor, and Cell Biology
| | - Jianping Liu
- Department of Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | | | | |
Collapse
|
20
|
Sasikala D, Jeyakanthan J, Srinivasan P. Structure-based virtual screening and biological evaluation of LuxT inhibitors for targeting quorum sensing through an in vitro biofilm formation. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.07.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Kong C, Eng SA, Lim MP, Nathan S. Beyond Traditional Antimicrobials: A Caenorhabditis elegans Model for Discovery of Novel Anti-infectives. Front Microbiol 2016; 7:1956. [PMID: 27994583 PMCID: PMC5133244 DOI: 10.3389/fmicb.2016.01956] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/22/2016] [Indexed: 11/13/2022] Open
Abstract
The spread of antibiotic resistance amongst bacterial pathogens has led to an urgent need for new antimicrobial compounds with novel modes of action that minimize the potential for drug resistance. To date, the development of new antimicrobial drugs is still lagging far behind the rising demand, partly owing to the absence of an effective screening platform. Over the last decade, the nematode Caenorhabditis elegans has been incorporated as a whole animal screening platform for antimicrobials. This development is taking advantage of the vast knowledge on worm physiology and how it interacts with bacterial and fungal pathogens. In addition to allowing for in vivo selection of compounds with promising anti-microbial properties, the whole animal C. elegans screening system has also permitted the discovery of novel compounds targeting infection processes that only manifest during the course of pathogen infection of the host. Another advantage of using C. elegans in the search for new antimicrobials is that the worm itself is a source of potential antimicrobial effectors which constitute part of its immune defense response to thwart infections. This has led to the evaluation of effector molecules, particularly antimicrobial proteins and peptides (APPs), as candidates for further development as therapeutic agents. In this review, we provide an overview on use of the C. elegans model for identification of novel anti-infectives. We highlight some highly potential lead compounds obtained from C. elegans-based screens, particularly those that target bacterial virulence or host defense to eradicate infections, a mechanism distinct from the action of conventional antibiotics. We also review the prospect of using C. elegans APPs as an antimicrobial strategy to treat infections.
Collapse
Affiliation(s)
- Cin Kong
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi, Malaysia
| | - Su-Anne Eng
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi, Malaysia
| | - Mei-Perng Lim
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi, Malaysia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi, Malaysia
| |
Collapse
|
22
|
Viszwapriya D, Subramenium GA, Prithika U, Balamurugan K, Pandian SK. Betulin inhibits virulence and biofilm ofStreptococcus pyogenesby suppressingropBcore regulon,sagAanddltA. Pathog Dis 2016; 74:ftw088. [DOI: 10.1093/femspd/ftw088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 12/21/2022] Open
|
23
|
Kamaladevi A, Ganguli A, Balamurugan K. Lactobacillus casei stimulates phase-II detoxification system and rescues malathion-induced physiological impairments in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2016; 179:19-28. [PMID: 26297616 DOI: 10.1016/j.cbpc.2015.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/05/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022]
Abstract
Malathion, an organophosphorus insecticide, is renowned for its inhibitory action on acetylcholinesterase (AChE) enzyme that eventually leads to widespread disturbance in the normal physiological and behavioral activities of any organism. Lactic acid bacteria (LAB) are still an underexploited and inexhaustible source of significant pharmaceutical thrust. In the present study, Caenorhabditis elegans was employed to identify and characterize the indigenous LAB isolated from different traditional food against malathion-induced toxicity. The results demonstrated that malathion at its LD50 concentration decreased various C. elegans physiological parameters such as survival, feeding, and locomotion. Among the screened isolates, L. casei exhibited an excellent protective efficacy against malathion-induced toxicity by increasing the level of AChE and thereby rescued all physiological parameters of C. elegans. In addition, short-term exposure and food choice assay divulged that L. casei could serve as a better food to protect C. elegans from noxious environment. The expression analysis unveiled that L. casei gavage upregulated the phase-II detoxification enzymes coding genes metallothioneins (mtl-1 and mtl-2) and glutathione-S-transferase (gst-8) and thereby eliminated malathion from the host system. Furthermore, the upregulation of ace-3 along with down-regulation of cyp35a in the nematodes supplemented with L. casei could be attributed to attenuate the malathion-induced physiological defects in C. elegans. Thus, the present study reports that an indigenous LAB-L. casei could serve as a promising protective agent against the harmful effects of pesticide.
Collapse
Affiliation(s)
- Arumugam Kamaladevi
- Department of Biotechnology, Alagappa University, Science campus, Karaikudi, Tamil Nadu, India
| | - Abhijit Ganguli
- Department of Biotechnology and Environmental Sciences, Thapar University, Patiala, Panjab, India
| | | |
Collapse
|
24
|
Selenite enhances immune response against Pseudomonas aeruginosa PA14 via SKN-1 in Caenorhabditis elegans. PLoS One 2014; 9:e105810. [PMID: 25147937 PMCID: PMC4141825 DOI: 10.1371/journal.pone.0105810] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/23/2014] [Indexed: 12/02/2022] Open
Abstract
Background Selenium (Se) is an important nutrient that carries out many biological processes including maintaining optimal immune function. Here, inorganic selenite (Se(IV)) was evaluated for its pathogen resistance and potential-associated factors in Caenorhabditis elegans. The immune effects of Se(IV) were investigated by examining the responses of C. elegans to Pseudomonas aerugonisa PA14 strain. Principal Findings Se(IV)-treated C. elegans showed increased survival under PA14 infection compared with untreated controls. The significant pathogen resistance of Se(IV) on C. elegans might not be attributed to the effects of Se(IV) on PA14 as Se(IV) showed no effect on bacterial quorum-sensing and virulence factors of PA14. This study showed that Se(IV) enhanced the expression of a gene pivotal for the innate immunity in C. elegans. The study found that the pathogen-resistant phenotypes contributed by Se(IV) was absent from the skn-1 mutant worms. Moreover, Se(IV) influenced the subcellular distribution of SKN-1/Nrf in C. elegans upon PA14 infection. Furthermore, Se(IV) increased mRNA levels of SKN-1 target genes (gst-4 and gcs-1). Conclusions This study found evidence of Se(IV) protecting C. elegans against P. aeruginosa PA14 infection by exerting effects on the innate immunity of C. elegans that is likely mediated via regulation of a SKN-1-dependent signaling pathway.
Collapse
|