1
|
Guo Q, Ji J, Ling Z, Zhang K, Xu R, Leng X, Mao C, Zhou T, Wang H, Liu P, Li X. Bioaugmentation improves the anaerobic co-digestion of cadmium-containing plant residues and cow manure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117885. [PMID: 34388552 DOI: 10.1016/j.envpol.2021.117885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation causes a large quantity of phytoremediation residues rich in heavy metals (HMs). This kind of plant residue can be used as a substrate for anaerobic digestion (AD) to reduce the content of HM-containing biomass, but high concentrations of HMs will inhibit the digestion efficiency and reduce the conversion efficiency of plant residues. Bioaugmentation may be an effective method to improve the degradation efficiency and methane yield of plant residues rich in HMs. In this study, a cellulose-degrading anaerobic bacteria Paracoccus sp. Termed strain LZ-G1 was isolated from cow dung, which can degrade cellulose and simultaneously adsorb Cd2+. The Cd2+ (10 mg/L)-adsorbtion efficiency and cellulose (463.12 g/kg)-degradation rate were 65.1 % and 60.59 %, respectively. In addition, using the strain LZ-G1 bioaugmented Cd2+-containing plant residues and cow manure mixed AD system, the system's biogas and methane production significantly increased (98.97 % and 142.03 %, respectively). During the AD process, the strain LZ-G1 was successfully colonized in the digestion system. Furthermore, the microbial community analysis revealed that LZ-G1 bioaugmentation alleviates the toxicity of free Cd2+ to the microbial community in the AD system, regulates and restores the archaea genus dominant in the methanogenesis stage, and restores the relative abundance of dominant bacteria associated with biomass hydrolysis. The restoration of the microbial community increased the biogas yield and methane production rate. Thus, bioaugmentation provides an easy and a feasible method for the actual on-site treatment of HM-rich phytoremediation residues.
Collapse
Affiliation(s)
- Qian Guo
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Jing Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Zhenmin Ling
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Kai Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Rong Xu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiaoyun Leng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, 730020, PR China
| | - Chunlan Mao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Tuoyu Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Haoyang Wang
- McMaster University, 303-2, 1100 Main Street West, Hamilton, Ontario, Canada
| | - Pu Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiangkai Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, 730020, PR China.
| |
Collapse
|
2
|
Wu Y, Song Q, Wu J, Zhou J, Zhou L, Wu W. Field study on the soil bacterial associations to combined contamination with heavy metals and organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146282. [PMID: 33714815 DOI: 10.1016/j.scitotenv.2021.146282] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The understanding of soil microbial associations to combined contamination would substantially benefit the restoration of damaged ecosystems, which is currently limited at the field scale. In this study, we investigated the soil bacterial associations to combined contamination with metals (Cd, Cu, Hg, Pb, and Zn), polyaromatic hydrocarbons (PAHs), and polybrominated diphenyl ethers (PBDEs). Samples were collected from field sites under five land-use patterns with electronic waste recycling. Results showed that the contents of Cd (0.22-12.86 mg/kg), Cu (17-14,136 mg/kg), Pb (4.6-77,014 mg/kg), Hg (0.28-22 mg/kg), Zn (26-42,495 mg/kg), PAHs (4.6-1753 μg/kg), and PBDEs (1.9-1079 μg/kg) varied significantly across sites. We observed positive correlations between catalase activity and heavy metals, indicative of a resistance response to the oxidative stress induced by metals. Furthermore, the bacterial community diversity was found to be determined primarily by PBDEs, whereas acenaphthylene, available phosphorus, and 2,2',3,3',4,5,6-heptabrominated diphenyl ether (BDE-183) were the three major drivers affecting community composition. The co-occurrence network constructed for bacterial communities exposed to combined contamination was non-random with scale-free, small-world and modularity features. We further proposed functional roles of the modules including stress resistance, hydrocarbon degradation, and nutrient cycling. Overall, the findings of redundancy analysis, variation partition analysis and the co-occurrence network indicated that soil bacterial community under combined contamination cooperated to survive. Members including Rhodoplanes and Nitrospira were capable of degrading PAHs and PBDEs in various pathways, while others, including Acinetobacter, Citrobacter, and Pseudomonas, reduced the metal toxicity to the community. Our findings provide new insights into the responses of soil bacteria, particularly in terms of inter-specific relationships, under combined contamination at the field scale.
Collapse
Affiliation(s)
- Yingxin Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Qingmei Song
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Jiahui Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Jingyan Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Lingli Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China.
| |
Collapse
|
3
|
Shi Z, Qi X, Zeng XA, Lu Y, Zhou J, Cui K, Zhang L. A newly isolated bacterium Comamonas sp. XL8 alleviates the toxicity of cadmium exposure in rice seedlings by accumulating cadmium. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123824. [PMID: 33264916 DOI: 10.1016/j.jhazmat.2020.123824] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a typical heavy-metal highly accumulating in crops and drinking water, thus posing a severe health risk for human health. In this study, we firstly isolated 24 Cd-resistant bacteria from the heavy-metals contaminated soil at Daye Iron Ore, in which Comamonas sp. XL8 exhibited a high resistance and strong accumulation capacity to Cd. After absorption, Comamonas sp. XL8 could biosynthesize intracellular Cd-nanoparticles (CdNPs), which has not been reported in characteristics of Comamonas genus before. We found that the gene expressions of cadA and bmtA related to Cd transportation and binding in strain XL8 were significantly upregulated with Cd exposure, suggesting that genes cadA and bmtA may contribute to the formation of CdNPs. Of particular note, the co-inoculation of Comamonas sp. XL8 and rice seedlings (Oryzae sativa L.) significantly decreased the oxidative stress-induced by Cd accumulation and subsequently alleviated toxicity of Cd exposure. Our results reveal the biochemical process of Cd accumulation in Comamonas sp. XL8 by forming CdNPs, showing that it has great potential for effective bioremediation of environmental Cd exposure.
Collapse
Affiliation(s)
- Zunji Shi
- Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoli Qi
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yujing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Engineering Research Academy of High Value Utilization of Green Plants, Meizhou, 514021, China
| | - Jinlin Zhou
- Engineering Research Academy of High Value Utilization of Green Plants, Meizhou, 514021, China
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Limin Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430079, China.
| |
Collapse
|
4
|
Parsons C, Lee S, Kathariou S. Dissemination and conservation of cadmium and arsenic resistance determinants in Listeria and other Gram-positive bacteria. Mol Microbiol 2020; 113:560-569. [PMID: 31972871 DOI: 10.1111/mmi.14470] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/28/2022]
Abstract
Metal homeostasis in bacteria is a complex and delicate balance. While some metals such as iron and copper are essential for cellular functions, others such as cadmium and arsenic are inherently cytotoxic. While bacteria regularly encounter essential metals, exposure to high levels of toxic metals such as cadmium and arsenic is only experienced in a handful of special habitats. Nonetheless, Listeria and other Gram-positive bacteria have evolved an impressively diverse array of genetic tools for acquiring enhanced tolerance to such metals. Here, we summarize this fascinating collection of resistance determinants in Listeria, with special focus on resistance to cadmium and arsenic, as well as to biocides and antibiotics. We also provide a comparative description of such resistance determinants and adaptations in other Gram-positive bacteria. The complex coselection of heavy metal resistance and other types of resistance seems to be universal across the Gram-positive bacteria, while the type of coselected traits reflects the lifestyle of the specific microbe. The roles of heavy metal resistance genes in environmental adaptation and virulence appear to vary by genus, highlighting the need for further functional studies to explain the mystery behind the array of heavy metal resistance determinants dispersed and maintained among Gram-positive bacteria.
Collapse
Affiliation(s)
- Cameron Parsons
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Sangmi Lee
- Department of Food and Nutrition, Chungbuk National University, Cheongju-si, South Korea
| | - Sophia Kathariou
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Pei Y, Yu Z, Ji J, Khan A, Li X. Microbial Community Structure and Function Indicate the Severity of Chromium Contamination of the Yellow River. Front Microbiol 2018; 9:38. [PMID: 29472897 PMCID: PMC5810299 DOI: 10.3389/fmicb.2018.00038] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/09/2018] [Indexed: 11/30/2022] Open
Abstract
The Yellow River is the most important water resource in northern China. In the recent past, heavy metal contamination has become severe due to industrial processes and other anthropogenic activities. In this study, riparian soil samples with varying levels of chromium (Cr) pollution severity were collected along the Gansu industrial reach of the Yellow River, including samples from uncontaminated sites (XC, XGU), slightly contaminated sites (LJX, XGD), and heavily contaminated sites (CG, XG). The Cr concentrations of these samples varied from 83.83 mg⋅kg-1 (XGU) to 506.58 mg⋅kg-1 (XG). The chromate [Cr (VI)] reducing ability in the soils collected in this study followed the sequence of the heavily contaminated > slightly contaminated > the un-contaminated. Common Cr remediation genes chrA and yieF were detected in the XG and CG samples. qRT-PCR results showed that the expression of chrA was up-regulated four and threefold in XG and CG samples, respectively, whereas the expression of yieF was up-regulated 66- and 7-fold in the same samples after 30 min treatment with Cr (VI). The copy numbers of chrA and yieF didn’t change after 35 days incubation with Cr (VI). The microbial communities in the Cr contaminated sampling sites were different from those in the uncontaminated samples. Especially, the relative abundances of Firmicutes and Bacteroidetes were higher while Actinobacteria was lower in the contaminated group than uncontaminated group. Further, potential indicator species, related to Cr such as Cr-remediation genera (Geobacter, PSB-M-3, Flavobacterium, and Methanosarcina); the Cr-sensitive genera (Skermanella, Iamia, Arthrobacter, and Candidatus Nitrososphaera) were also identified. These data revealed that Cr shifted microbial composition and function. Further, Cr (VI) reducing ability could be related with the expression of Cr remediation genes.
Collapse
Affiliation(s)
- Yaxin Pei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhengsheng Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jing Ji
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Characterization and Sorptivity of the Plesiomonas shigelloides Strain and Its Potential Use to Remove Cd2+ from Wastewater. WATER 2016. [DOI: 10.3390/w8060241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Wu W, Huang H, Ling Z, Yu Z, Jiang Y, Liu P, Li X. Genome sequencing reveals mechanisms for heavy metal resistance and polycyclic aromatic hydrocarbon degradation in Delftia lacustris strain LZ-C. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:234-247. [PMID: 26589947 DOI: 10.1007/s10646-015-1583-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
Strain LZ-C, isolated from a petrochemical wastewater discharge site, was found to be resistant to heavy metals and to degrade various aromatic compounds, including naphenol, naphthalene, 2-methylnaphthalene and toluene. Data obtained from 16S rRNA gene sequencing showed that this strain was closely related to Delftia lacustris. The 5,889,360 bp genome of strain LZ-C was assembled into 239 contigs and 197 scaffolds containing 5855 predicted open reading frames (ORFs). Among these predicted ORFs, 464 were different from the type strain of Delftia. The minimal inhibitory concentrations were 4 mM, 30 µM, 2 mM and 1 mM for Cr(VI), Hg(II), Cd(II) and Pb(II), respectively. Both genome sequencing and quantitative real-time PCR data revealed that genes related to Chr, Czc and Mer family genes play important roles in heavy metal resistance in strain LZ-C. In addition, the Na(+)/H(+) antiporter NhaA is important for adaptation to high salinity resistance (2.5 M NaCl). The complete pathways of benzene and benzoate degradation were identified through KEGG analysis. Interestingly, strain LZ-C also degrades naphthalene but lacks the key naphthalene degradation gene NahA. Thus, we propose that strain LZ-C exhibits a novel protein with a function similar to NahA. This study is the first to reveal the mechanisms of heavy metal resistance and salinity tolerance in D. lacustris and to identify a potential 2-methylnaphthalene degradation protein in this strain. Through whole-genome sequencing analysis, strain LZ-C might be a good candidate for the bioremediation of heavy metals and polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Wenyang Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Haiying Huang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Zhenmin Ling
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Zhengsheng Yu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yiming Jiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Pu Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Xiangkai Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
8
|
Chakraborty J, Das S. Characterization and cadmium-resistant gene expression of biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:14188-14201. [PMID: 25056746 DOI: 10.1007/s11356-014-3308-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
Biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11 was isolated from coastal marine sediment of Paradeep Port, Odisha, East Coast, India, which resisted up to 1,000 ppm of cadmium (Cd) as cadmium chloride in aerobic conditions with a minimal inhibitory concentration of 1,250 ppm. Biomass and extracellular polymeric substances (EPS) secreted by the cells effectively removed 58.760 ± 10.62 and 29.544 ± 8.02 % of Cd, respectively. The integrated density of the biofilm-EPS observed under fluorescence microscope changed significantly (P ≤ 0.05) in the presence of 50, 250, 450, 650 and 850 ppm Cd. ATR-FTIR spectroscopy showed a peak at 2,365.09/cm in the presence of 50, 250, 450 and 650 ppm Cd which depicts the presence of sulphydryl group (-SH) within the EPS, whereas, a peak shift to 2,314.837/cm in the presence of 850 ppm Cd suggested the major role of this functional group in the binding with cadmium. On exposure to Cd at 100, 500 and 1,000 ppm, the expression profiles of cadmium resistance gene (czcABC) in the isolate showed an up-regulation of 3.52-, 17- and 24-fold, respectively. On the other hand, down-regulation was observed with variation in the optimum pH (6) and salinity (20 g l(-1)) level. Thus, the cadmium resistance gene expression increases on Cd stress up to the tolerance level, but an optimum pH and salinity are the crucial factors for proper functioning of cadmium resistance gene.
Collapse
Affiliation(s)
- Jaya Chakraborty
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769 008, India
| | | |
Collapse
|
9
|
Zhang X, Wu W, Virgo N, Zou L, Liu P, Li X. Global transcriptome analysis of hexavalent chromium stress responses in Staphylococcus aureus LZ-01. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1534-1545. [PMID: 25086489 DOI: 10.1007/s10646-014-1294-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 06/03/2023]
Abstract
Staphylococcus aureus strain LZ-01, isolated from the Lanzhou reaches of the Yellow River, is capable of reducing Cr(VI) to Cr(III) aerobically. We employed transcriptome sequencing analysis to identify genes involved in Cr(VI) stress responses in S. aureus LZ-01. Our results showed that 512 of the 2,370 predicted genes displayed up-regulation (>2-fold), and 49 genes were down-regulated (<50 %) after Cr(VI) exposure. Among up-regulated genes, 128 genes were annotated to encode proteins involved in cellular processes; 68 were categorized to transport and binding proteins; 26 were involved in DNA repair and 32 were associated with regulatory functions. To further elucidate the Cr(VI) resistance and reduction mechanism, we carried out physiological tests and quantitative PCR analysis. Both RNA-seq and qRT-PCR data showed genes encoding a thioredoxin reductase and main subunits of cytochrome c oxidase complex were up-regulated upon Cr(VI) treatment. Either cadmium or NaN3 treatment could inhibit Cr(VI) reduction which indicates that thioredoxin and cytochrome are involved in Cr(VI) reduction strain LZ-01. 29 ABC-type metal/multidrug transporters and efflux pumps were up-regulated, suggesting that they are involved in Cr(VI) resistance by pumping chromium ions out of cells. The up-regulation of 26 DNA repair genes demonstrate that Cr(VI) is toxic to DNA and those DNA protection proteins need to be responded for Cr(VI) stress. Based on these results, the mechanism of strain LZ-01 resists and reduces Cr(VI) is revealed.
Collapse
Affiliation(s)
- Xiaowei Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, People's Republic of China
| | | | | | | | | | | |
Collapse
|