1
|
Wu Y, Shi L, Jin Z, Chen W, Wang F, Wu H, Li H, Zhang C, Zhu R. A nomogram prediction model for embryo implantation outcomes based on the cervical microbiota of the infertile patients during IVF-FET. Microbiol Spectr 2025; 13:e0146224. [PMID: 40052785 PMCID: PMC11960138 DOI: 10.1128/spectrum.01462-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/07/2025] [Indexed: 04/03/2025] Open
Abstract
The microbiota of the female genital tract is crucial for reproductive health. This study aims to investigate the impact of the lower genital tract microbiota on in vitro fertilization and frozen embryo transfer (IVF-FET) outcomes. This study included 131 women aged 20-35 years who underwent their first or second IVF-FET cycle with no obvious unfavorable factors for implantation. Cervical microbiota samples were collected on the embryo transfer day and analyzed using 16S rDNA full-length sequencing. Clinical outcomes were followed up for analysis. Clinical pregnancy (CP) was achieved in 84 patients, and 47 patients experienced non-pregnancy (NP). The cervical microbiota diversity between NP and CP groups showed no significant differences, but some genera such as Halomonas (P = 0.018), Klebsiella (P = 0.039), Atopobium (P = 0.016), and Ligilactobacillus (P = 0.021) were obviously different between the two groups. Notably, there was no significant difference in the abundance of Lactobacillus between the two groups. A nomogram prediction model was developed using the random forest algorithm and logistic regression, including the classification of Halomonas, Atopobium, and Veillonella, as well as the relative abundance of Lactobacillus, to identify high-risk patients with embryo implantation failure. Both internal (area under the curve [AUC] = 0.718, 95% confidence interval [CI]: 0.628-0.807, P < 0.001) and external validation (AUC = 0.654, 95% CI: 0.553-0.755, P = 0.037) of the model performed well. In conclusion, this study established a correlation between cervical microbiota and embryo implantation failure in infertile women undergoing IVF-FET and developed a prediction model that could help in early identification of patients at high risk of implantation failure.IMPORTANCEThis study investigated the potential role of abnormal cervical microbiota in the pathology of implantation failure after in vitro fertilization and frozen embryo transfer (IVF-FET) treatment. Despite nearly half a century of advancements in assisted reproductive technology (ART), the implantation rate of high-quality embryos still hovered around 50%. Moreover, unexplained recurrent implantation failure (RIF) remains a significant challenge in ART. To our knowledge, we first discovered a prediction model for embryo implantation failure, identifying Halomonas and Veillonella as significantly adverse factors for embryo implantation. Despite some limitations, the internal and external validation of the model could bode well for its clinical application prospect. The insights gained from this study pave the way for intervention in the genital tract microbiota prior to IVF-FET, particularly in patients with RIF and RSA.
Collapse
Affiliation(s)
- Yanan Wu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Lingyun Shi
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Zili Jin
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Wenjun Chen
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Fuxin Wang
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Huihua Wu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hong Li
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Ce Zhang
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Xavier-Santos D, Bedani R, de Almeida Vieira I, Padilha M, Lima CMG, Silva JDR, Ferreira BM, Giraldo PC, Pagnossa JP, Sivieri K, Antunes AEC, Sant'Ana AS. Exploring the Potential Use of Probiotics, Prebiotics, Synbiotics, and Postbiotics as Adjuvants for Modulating the Vaginal Microbiome: a Bibliometric Review. Probiotics Antimicrob Proteins 2025:10.1007/s12602-024-10444-8. [PMID: 39821884 DOI: 10.1007/s12602-024-10444-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Women's health is related to several factors that include physical, mental, and reproductive health. Additionally, the vaginal microbiota modulation performs a fundamental role in the regulation of physiological homeostasis and dysbiosis, which provides us a potential overview of the use of different biotic agents and their implications for female health. The objective of this work was propitiated insights and conception about the influence of probiotics, prebiotics, synbiotics, and postbiotics as adjuvants for prevention/treatment on the main infections that can affect women's health. Therefore, seventy-one studies published in the Web of Science Core Collection database from 1999 to 2024 were evaluated and performed to a bibliometric analysis employing the VOSviewer software for scientific mapping and network analysis. Our results suggest that administration of biotic agents as adjuvants are relevant for the prevention and/or treatment of the main diseases that affect female health, since they contribute to a healthy vaginal microbiota through anti-inflammatory and antimicrobial activities. Most clinical studies have demonstrated the effectiveness of intervention using probiotics to the detriment of other biotic agents in women's health, being bacterial vaginosis, polycystic ovary syndrome, and vulvovaginal candidiasis, the main diseases evaluated. However, preclinical studies have emphasized that the inhibition of pathogens responsible for the process of vaginal dysbiosis may be due to the formation of biofilm and the synthesis of compounds that could prevent the adhesion of these microorganisms. Future perspectives point to the beneficial modulation of the vaginal microbiota by biotic agents as a promising adjuvant approach to improve women's health.
Collapse
Affiliation(s)
- Douglas Xavier-Santos
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
- Fraunhofer Institute for Process Engineering and Packaging (IVV), Freising, Germany
| | - Raquel Bedani
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | | - Marina Padilha
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Clara Mariana Gonçalves Lima
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Juliana Dara Rabêlo Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Beatriz Manfrinato Ferreira
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Paulo César Giraldo
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Jorge Pamplona Pagnossa
- Department of Biological Sciences, Pontifical Catholic University, Poços de Caldas, MG, Brazil
| | - Katia Sivieri
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, Brazil
| | | | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
3
|
Gaspar C, Agonia AS, Felício S, Tomás M, Esteves D, Palmeira-de-Oliveira R, Donders GGG, Martinez-de-Oliveira J, Palmeira-de-Oliveira A. Development and Characterization of Sodium Bicarbonate-Based Gel for Cytolytic Vaginosis. Pharmaceutics 2024; 16:1436. [PMID: 39598558 PMCID: PMC11597264 DOI: 10.3390/pharmaceutics16111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Cytolytic vaginosis or, classically, Doderlein's cytolysis is characterized by significant growth of species of the Lactobacillus genus, which leads to high amounts of lactic acid in the vaginal environment. Lactobacillus crispatus has been proposed as a key pathogen in this clinical condition. The symptomatology of cytolytic vaginosis is commonly confused with that of vulvovaginal candidosis, leading to inadequate and ineffective azole therapies. Nevertheless, historically, the use of sodium bicarbonate intimate baths was an effective way to reduce the symptoms of cytolytic vaginosis. Methods: In this study, four HPMC gel prototypes were developed, containing sodium bicarbonate concentrations ranging from 4% to 7% (w/w). These gels were evaluated for their physicochemical properties, antimicrobial activity, interference with lactobacilli adhering to cells, and cellular and tissue biocompatibility. Results: The gels presented pH values of around 9.0, and osmolality between 706 mOsm/kg (F4) and 1065 mOsm/kg (F7). The viscosity upon heating to physiologic temperature and dilution with simulated vaginal fluid was highly affected by the concentration of sodium bicarbonate. Gels with higher sodium bicarbonate concentrations (F6 and F7) were not shown to be stable in these conditions. All formulations exhibited effective antimicrobial activity against seven L. crispatus strains, with MIC values ranging from 6.25% to 25% (v/v) in terms of dilution. Additionally, the 4% (w/w) gel significantly interfered with the adhesion of L. crispatus to epithelial cells in competition and exclusion assays, reducing adhesion by more than 90% in relation to the control. Cytotoxicity tests on the Hec-1A, HeLa, and VK2/E6E7 cell lines indicated that the F4 and F5 gels demonstrated lower cytotoxicity levels compared to those with higher concentrations. Furthermore, ex vivo assays using porcine vaginal tissue confirmed that the 4% gel was non-toxic at a 25% (v/v) dilution. Conclusions: Based on these results, the 4% (w/w) sodium bicarbonate gel (F4) emerges as a promising therapeutic option for cytolytic vaginosis, offering effective bacterial interference, favourable physicochemical properties, and biocompatibility suitable for vaginal application.
Collapse
Affiliation(s)
- Carlos Gaspar
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-358 Covilhã, Portugal; (C.G.); (A.S.A.); (M.T.); (R.P.-d.-O.); (J.M.-d.-O.)
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-358 Covilhã, Portugal
- Labfit—HPRD Health Products Research and Development, Lda, Edifício UBIMEDICAL Estrada Municipal 506, 6200-284 Covilhã, Portugal; (S.F.); (D.E.)
| | - Ana Sofia Agonia
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-358 Covilhã, Portugal; (C.G.); (A.S.A.); (M.T.); (R.P.-d.-O.); (J.M.-d.-O.)
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-358 Covilhã, Portugal
- Labfit—HPRD Health Products Research and Development, Lda, Edifício UBIMEDICAL Estrada Municipal 506, 6200-284 Covilhã, Portugal; (S.F.); (D.E.)
| | - Sara Felício
- Labfit—HPRD Health Products Research and Development, Lda, Edifício UBIMEDICAL Estrada Municipal 506, 6200-284 Covilhã, Portugal; (S.F.); (D.E.)
| | - Mariana Tomás
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-358 Covilhã, Portugal; (C.G.); (A.S.A.); (M.T.); (R.P.-d.-O.); (J.M.-d.-O.)
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-358 Covilhã, Portugal
| | - Diana Esteves
- Labfit—HPRD Health Products Research and Development, Lda, Edifício UBIMEDICAL Estrada Municipal 506, 6200-284 Covilhã, Portugal; (S.F.); (D.E.)
| | - Rita Palmeira-de-Oliveira
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-358 Covilhã, Portugal; (C.G.); (A.S.A.); (M.T.); (R.P.-d.-O.); (J.M.-d.-O.)
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-358 Covilhã, Portugal
- Labfit—HPRD Health Products Research and Development, Lda, Edifício UBIMEDICAL Estrada Municipal 506, 6200-284 Covilhã, Portugal; (S.F.); (D.E.)
| | - Gilbert G. G. Donders
- Femicare Clinical Research for Women, 3300 Tienen, Belgium;
- Department of Obstetrics and Gynecology, University of Antwerp, 2550 Edegem, Belgium
- Department of Obstetrics and Gynecology, Regional Hospital, 3300 Tienen, Belgium
| | - José Martinez-de-Oliveira
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-358 Covilhã, Portugal; (C.G.); (A.S.A.); (M.T.); (R.P.-d.-O.); (J.M.-d.-O.)
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-358 Covilhã, Portugal
| | - Ana Palmeira-de-Oliveira
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-358 Covilhã, Portugal; (C.G.); (A.S.A.); (M.T.); (R.P.-d.-O.); (J.M.-d.-O.)
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-358 Covilhã, Portugal
- Labfit—HPRD Health Products Research and Development, Lda, Edifício UBIMEDICAL Estrada Municipal 506, 6200-284 Covilhã, Portugal; (S.F.); (D.E.)
| |
Collapse
|
4
|
Rangasamy P, Foo HL, Yusof BNM, Chew SY, Jamil AAM, Than LTL. Probiotic Strain Limosilactobacillus reuteri 29B is Proven Safe and Exhibits Potential Probiotic Traits in a Murine Vaginal Model. Probiotics Antimicrob Proteins 2024; 16:1172-1189. [PMID: 37314695 DOI: 10.1007/s12602-023-10094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/15/2023]
Abstract
Lactobacilli, the most common group of bacteria found in a healthy vaginal microbiota, have been demonstrated to act as a defence against colonisation and overgrowth of vaginal pathogens. These groups of bacteria have sparked interests in incorporating them as probiotics aimed at re-establishing balance within the urogenital ecosystem. In this study, the safety characteristics of Limosilactobacillus reuteri 29B (L29B) strain were evaluated through whole genome sequencing (WGS) and animal study. Cell culture assay and 16S rDNA analysis were done to evaluate the ability of the strain to colonise and adhere to the mouse vaginal tract, and RAST analysis was performed to screen for potential genes associated with probiotic trait. The histological study on the mice organs and blood analysis of the mice showed there was no incidence of inflammation. We also found no evidence of bacterial translocation. The cell culture assay on HeLa cells showed 85% of adhesion, and there was a significant reduction of Candida strain viability in displacement assay. As for the 16S rDNA analysis, there was a significant amount of L29B colonisation of the vaginal microflora. Taken together, the intravaginal administration of L29B significantly reduced the number Enterobacteriaceae and Staphylococcaceae that were present in mouse vaginal tract. It also improved and promoted a balanced vaginal microflora environment without causing any harm or irritation to mice. Limosilactobacillus 29B (L29B) is safe to be administered intravaginally.
Collapse
Affiliation(s)
- Premmala Rangasamy
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Research Laboratory of Probiotics and Cancer Therapeutics, UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Barakatun Nisak Mohd Yusof
- Department of Dietetic, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Shu Yih Chew
- School of Medicine, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Amilia Afzan Mohd Jamil
- Department of Obstetrics and Gynaecology (O&G), Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
5
|
Colletti A, Pellizzato M, Cicero AF. The Possible Role of Probiotic Supplementation in Inflammation: A Narrative Review. Microorganisms 2023; 11:2160. [PMID: 37764004 PMCID: PMC10535592 DOI: 10.3390/microorganisms11092160] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
The fine balance between symbiotic and potentially opportunistic and/or pathogenic microorganisms can undergo quantitative alterations, which, when associated with low intestinal biodiversity, could be responsible for the development of gut inflammation and the so-called "intestinal dysbiosis". This condition is characterized by the disbalance of a fine synergistic mechanism involving the mucosal barrier, the intestinal neuroendocrine system, and the immune system that results in an acute inflammatory response induced by different causes, including viral or bacterial infections of the digestive tract. More frequently, however, dysbiosis is induced slowly and subtly by subliminal causal factors, resulting in a chronic condition related to different diseases affecting the digestive tract and other organs and apparatuses. Studies on animal models, together with studies on humans, highlight the significant role of the gut microbiota and microbiome in the occurrence of inflammatory conditions such as metabolic syndrome and cardiovascular diseases (CVDs); neurodegenerative, urologic, skin, liver, and kidney pathologies; and premature aging. The blood translocation of bacterial fragments has been found to be one of the processes linked to gut dysbiosis and responsible for the possible occurrence of "metabolic endotoxemia" and systemic inflammation, associated with an increased risk of oxidative stress and related diseases. In this context, supplementation with different probiotic strains has been shown to restore gut eubiosis, especially if administered in long-term treatments. The aim of this review is to describe the anti-inflammatory effects of specific probiotic strains observed in clinical trials and the respective indications, highlighting the differences in efficacy depending on strain, formulation, time and duration of treatment, and dosage used.
Collapse
Affiliation(s)
- Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, 10124 Turin, Italy
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
| | - Marzia Pellizzato
- Italian Society of Nutraceutical Formulators (SIFNut), 31033 Treviso, Italy
| | - Arrigo Francesco Cicero
- Medical and Surgical Sciences Department, University of Bologna, 40126 Bologna, Italy;
- IRCCS AOUBO, 40138 Bologna, Italy
| |
Collapse
|
6
|
Bayar E, MacIntyre DA, Sykes L, Mountain K, Parks TP, Lee PP, Bennett PR. Safety, tolerability, and acceptability of Lactobacillus crispatus CTV-05 (LACTIN-V) in pregnant women at high-risk of preterm birth. Benef Microbes 2023; 14:45-56. [PMID: 36815494 DOI: 10.3920/bm2022.0084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The vaginal microbiota is a determinant for the risk of preterm birth (PTB). Dominance of the vaginal niche by Lactobacillus crispatus associates with term delivery. This is the first observational clinical study of live vaginal biotherapeutics (Lactobacillus crispatus CTV-05 (LACTIN-V)) in pregnant women at high-risk of PTB. The primary aim was to explore safety, tolerability and acceptability of LACTIN-V in pregnancy. Women were offered a course of LACTIN-V at 14 weeks gestation for five consecutive days followed by weekly administration for six weeks. Participants were followed up at 15, 18-, 20-, 28- and 36-weeks' gestation and at delivery for assessment of adverse events, compliance and tolerability. Participants completed a questionnaire to gauge experience and acceptability. In total, 73 women were recruited, of whom eight withdrew, leaving a final cohort size of 61. Self-reported compliance to the course was high (56/60, 93%). Solicited adverse events were reported in 13 women (19%) including changes in vaginal discharge, odour, colour or consistency of urine, itching and vaginal bleeding. One unsolicited adverse event was reported as haematuria at 38 weeks gestation, but was judged to be unrelated to LACTIN-V. No serious adverse events occurred. One mild adverse event led to study withdrawal. Thirty-one women completed an experience and acceptability questionnaire. Women found LACTIN-V easy and comfortable to use and the majority (30/31, 97%) would use LACTIN-V in future pregnancies. Eight women (8/31, 26%) found the schedule of use difficult to remember. The rate of PTB <34 weeks in this cohort was 3.3% compared to 7% in a historical cohort of 2,190 women at similar background PTB risk. With satisfactory uptake and good compliance, we demonstrate that LACTIN-V is safe and accepted in pregnancy, with high tolerability. Further studies are needed to assess colonisation of Lactobacillus crispatus CTV-05 and clinical efficacy.
Collapse
Affiliation(s)
- E Bayar
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, United Kingdom
- March of Dimes European Prematurity Research Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, UK, United Kingdom
| | - D A MacIntyre
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, United Kingdom
- March of Dimes European Prematurity Research Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, UK, United Kingdom
- Tommy's National Centre for Miscarriage Research. Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, United Kingdom
| | - L Sykes
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, United Kingdom
- March of Dimes European Prematurity Research Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, UK, United Kingdom
- The Parasol Foundation Centre for Women's Health and Cancer Research, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, W2 1NY
| | - K Mountain
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, United Kingdom
- March of Dimes European Prematurity Research Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, UK, United Kingdom
| | - T P Parks
- Osel Inc., 320 Logue Ave # 114, Mountain View, CA 94043, USA
| | - P P Lee
- Osel Inc., 320 Logue Ave # 114, Mountain View, CA 94043, USA
| | - P R Bennett
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, United Kingdom
- March of Dimes European Prematurity Research Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, UK, United Kingdom
- Tommy's National Centre for Miscarriage Research. Imperial College London, Hammersmith Hospital Campus, Du Cane Road, W120NN London, United Kingdom
| |
Collapse
|
7
|
Poon Y, Hui M. Inhibitory effect of lactobacilli supernatants on biofilm and filamentation of Candida albicans, Candida tropicalis, and Candida parapsilosis. Front Microbiol 2023; 14:1105949. [PMID: 36860488 PMCID: PMC9969145 DOI: 10.3389/fmicb.2023.1105949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
Introduction Probiotic Lactobacillus strains had been investigated for the potential to protect against infection caused by the major fungal pathogen of human, Candida albicans. Besides antifungal activity, lactobacilli demonstrated a promising inhibitory effect on biofilm formation and filamentation of C. albicans. On the other hand, two commonly isolated non-albicans Candida species, C. tropicalis and C. parapsilosis, have similar characteristics in filamentation and biofilm formation with C. albicans. However, there is scant information of the effect of lactobacilli on the two species. Methods In this study, biofilm inhibitory effects of L. rhamnosus ATCC 53103, L. plantarum ATCC 8014, and L. acidophilus ATCC 4356 were tested on the reference strain C. albicans SC5314 and six bloodstream isolated clinical strains, two each of C. albicans, C. tropicalis, and C. parapsilosis. Results and Discussion Cell-free culture supernatants (CFSs) of L. rhamnosus and L. plantarum significantly inhibited in vitro biofilm growth of C. albicans and C. tropicalis. L. acidophilus, conversely, had little effect on C. albicans and C. tropicalis but was more effective on inhibiting C. parapsilosis biofilms. Neutralized L. rhamnosus CFS at pH 7 retained the inhibitory effect, suggesting that exometabolites other than lactic acid produced by the Lactobacillus strain might be accounted for the effect. Furthermore, we evaluated the inhibitory effects of L. rhamnosus and L. plantarum CFSs on the filamentation of C. albicans and C. tropicalis strains. Significantly less Candida filaments were observed after co-incubating with CFSs under hyphae-inducing conditions. Expressions of six biofilm-related genes (ALS1, ALS3, BCR1, EFG1, TEC1, and UME6 in C. albicans and corresponding orthologs in C. tropicalis) in biofilms co-incubated with CFSs were analyzed using quantitative real-time PCR. When compared to untreated control, the expressions of ALS1, ALS3, EFG1, and TEC1 genes were downregulated in C. albicans biofilm. In C. tropicalis biofilms, ALS3 and UME6 were downregulated while TEC1 was upregulated. Taken together, the L. rhamnosus and L. plantarum strains demonstrated an inhibitory effect, which is likely mediated by the metabolites secreted into culture medium, on filamentation and biofilm formation of C. albicans and C. tropicalis. Our finding suggested an alternative to antifungals for controlling Candida biofilm.
Collapse
|
8
|
Evaluation of Antimicrobial, Antiadhesive and Co-Aggregation Activity of a Multi-Strain Probiotic Composition against Different Urogenital Pathogens. Int J Mol Sci 2023; 24:ijms24021323. [PMID: 36674840 PMCID: PMC9867133 DOI: 10.3390/ijms24021323] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The urogenital microbiota is dominated by Lactobacillus that, together with Bifidobacterium, creates a physiological barrier counteracting pathogen infections. The aim of this study was to evaluate the efficacy of a multi-strain probiotic formulation (Lactiplantibacillus plantarum PBS067, Lacticaseibacillus rhamnosus LRH020, and Bifidobacterium animalis subsp. lactis BL050) to inhibit adhesion and growth of urogenital pathogens. The antimicrobial and antiadhesive properties of the probiotic strains and their mixture were evaluated on human vaginal epithelium infected with Candida glabrata, Neisseria gonorrheae, Trichomonas vaginalis, and Escherichia coli-infected human bladder epithelium. The epithelial tissue permeability and integrity were assessed by transepithelial/transendothelial electrical resistance (TEER). Co-aggregation between probiotics and vaginal pathogens was also investigated to elucidate a possible mechanism of action. The multi-strain formulation showed a full inhibition of T. vaginalis, and a reduction in C. glabrata and N. gonorrheae growth. A relevant antimicrobial activity was observed for each single strain against E. coli. TEER results demonstrated that none of the strains have negatively impaired the integrity of the 3D tissues. All the probiotics and their mixture were able to form aggregates with the tested pathogens. The study demonstrated that the three strains and their mixture are effective to prevent urogenital infections.
Collapse
|
9
|
Pino A, Rapisarda AMC, Vaccalluzzo A, Sanfilippo RR, Coman MM, Grimaldi RL, Caggia C, Randazzo CL, Russo N, Panella MM, Cianci A, Verdenelli MC. Oral Intake of the Commercial Probiotic Blend Synbio ® for the Management of Vaginal Dysbiosis. J Clin Med 2022; 12:jcm12010027. [PMID: 36614828 PMCID: PMC9821595 DOI: 10.3390/jcm12010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
A healthy vaginal microbiota is Lactobacillus-dominated. Several factors can interfere with the state of balance leading to dysbiosis, such as vaginal infections caused by bacteria and Candida species. The present single-arm, uncontrolled open-label study aimed to evaluate the ability of the SYNBIO® probiotic combination, taken as an oral formulation, to contribute to vaginal health. Thirty pre-menopausal participants were included in the study. Participants were instructed for daily oral intake of SYNBIO® probiotic capsules for 15 days. Vaginal swabs were collected at baseline (T0), 15 days after the start of the treatment (T1), and 7 days after the end of the treatment (T2). Amsel criteria, Nugent score, and vaginal pH were evaluated at each sampling time. In addition, the participants' quality of life was assessed by the WHOQOL-BREF questionnaire. The administration of SYNBIO® once daily for 15 days resulted in a substantial improvement in the vaginal flora in terms of an increase in lactobacilli and a decrease in enterococci, staphylococci, Gardnerella spp., and Candida spp. According to the results, statistically significant changes in leucorrhoea, itching, and vulvo-vaginal erythema/edema as well as a decrease in all the Amsel criteria were recorded. The oral consumption of SYNBIO® demonstrated enhanced benefits for vaginal health.
Collapse
Affiliation(s)
- Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- ProBioEtna S.r.l., Spin Off of the University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products, University of Catania, A. Doria Street 6, 95125 Catania, Italy
| | - Agnese Maria Chiara Rapisarda
- ProBioEtna S.r.l., Spin Off of the University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Amanda Vaccalluzzo
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
| | - Rosamaria Roberta Sanfilippo
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
| | | | - Raffaela Luisa Grimaldi
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- ProBioEtna S.r.l., Spin Off of the University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products, University of Catania, A. Doria Street 6, 95125 Catania, Italy
| | - Cinzia Lucia Randazzo
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- ProBioEtna S.r.l., Spin Off of the University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products, University of Catania, A. Doria Street 6, 95125 Catania, Italy
- Correspondence:
| | - Nunziatina Russo
- Department of Agricultural, Food and Environment, University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- ProBioEtna S.r.l., Spin Off of the University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
| | - Marco Marzio Panella
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Antonio Cianci
- ProBioEtna S.r.l., Spin Off of the University of Catania, Santa Sofia Street 100, 95123 Catania, Italy
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy
| | | |
Collapse
|
10
|
Ramos LP, Almeida MEDE, Freire HPS, Pessoa WFB, Rezende RP, Romano CC. Antagonistic activity of Lactiplantibacillus plantarum 6.2 extracted from cocoa fermentation and its supernatant on Gardnerella vaginalis. AN ACAD BRAS CIENC 2022; 94:e20210731. [PMID: 35976365 DOI: 10.1590/0001-3765202220210731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/06/2021] [Indexed: 05/14/2025] Open
Abstract
Search for alternative methods for the treatment of bacterial vaginosis has been growing, and probiotics being among them. The most well-known probiotic microorganisms are lactobacilli, which are naturally present in the vaginal microenvironment. Cocoa fermentation is a source of lactic acid bacteria, with lactobacilli being the most prominent. The aim of this study was to evaluate the antagonistic activity of Lactiplantibacillus plantarum 6.2 a strain of lactobacilli isolated from cocoa fermentation, and its cell-free supernatant on Gardnerella vaginalis. It was shown that Lpb. plantarum 6.2 and its supernatant, used at three concentrations, i.e., 40, 20 and 10 mg/mL, have a strong antagonistic activity against G. vaginalis, with a probable action of proteinaceous bacteriocins; the activity was lost after heat treatment. The ability to exclude and displace G. vaginalis from the adhesion site to vaginal HMVII epithelial cells was also demonstrated by the lactobacilli and the supernatant, with the latter showing a bactericidal effect. Thus, the Lpb. plantarum 6.2 strain presents itself as a good probiotic with potential to be used not only as a therapeutic alternative for vaginosis but also as a complement to existing therapies.
Collapse
Affiliation(s)
- Louise P Ramos
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Laboratório de Imunologia, Campus Soane Nazaré de Andrade, Salobrinho, Rodovia Jorge Amado, Km 16, 45662-900 Ilhéus, BA, Brazil
| | - Milena E DE Almeida
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Laboratório de Imunologia, Campus Soane Nazaré de Andrade, Salobrinho, Rodovia Jorge Amado, Km 16, 45662-900 Ilhéus, BA, Brazil
| | - Herbert P S Freire
- Faculdade de Tecnologia e Ciências, UniFTC Itabuna, Praça José Bastos, 55, Osvaldo Cruz, 45600-080 Itabuna, BA, Brazil
| | - Wallace F B Pessoa
- Universidade Federal da Paraíba (UFPB), Centro de Ciências da Saúde, Departamento de Fisiologia e Patologia, Campus I, Via Pau Brasil, s/n, Castelo Branco III, 58051-900 João Pessoa, PB, Brazil
| | - Rachel P Rezende
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Laboratório de Biotecnologia Microbiana, Campus Soane Nazaré de Andrade, Salobrinho, Rodovia Jorge Amado, Km 16, 45662-900 Ilhéus, BA, Brazil
| | - Carla C Romano
- Universidade Estadual de Santa Cruz (UESC), Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Laboratório de Imunologia, Campus Soane Nazaré de Andrade, Salobrinho, Rodovia Jorge Amado, Km 16, 45662-900 Ilhéus, BA, Brazil
| |
Collapse
|
11
|
Jewanraj J, Ngcapu S, Liebenberg LJP. Semen: A modulator of female genital tract inflammation and a vector for HIV-1 transmission. Am J Reprod Immunol 2021; 86:e13478. [PMID: 34077596 PMCID: PMC9286343 DOI: 10.1111/aji.13478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
In order to establish productive infection in women, HIV must transverse the vaginal epithelium and gain access to local target cells. Genital inflammation contributes to the availability of HIV susceptible cells at the female genital mucosa and is associated with higher HIV transmission rates in women. Factors that contribute to genital inflammation may subsequently increase the risk of HIV infection in women. Semen is a highly immunomodulatory fluid containing several bioactive molecules with the potential to influence inflammation and immune activation at the female genital tract. In addition to its role as a vector for HIV transmission, semen induces profound mucosal changes to prime the female reproductive tract for conception. Still, most studies of mucosal immunity are conducted in the absence of semen or without considering its immune impact on the female genital tract. This review discusses the various mechanisms by which semen exposure may influence female genital inflammation and highlights the importance of routine screening for semen biomarkers in vaginal specimens to account for its impact on genital inflammation.
Collapse
Affiliation(s)
- Janine Jewanraj
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
12
|
Carpi FM, Coman MM, Silvi S, Picciolini M, Verdenelli MC, Napolioni V. Comprehensive pan-genome analysis of Lactiplantibacillus plantarum complete genomes. J Appl Microbiol 2021; 132:592-604. [PMID: 34216519 PMCID: PMC9290807 DOI: 10.1111/jam.15199] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
Aims The aim of this work was to refine the taxonomy and the functional characterization of publicly available Lactiplantibacillus plantarum complete genomes through a pan‐genome analysis. Particular attention was paid in depicting the probiotic potential of each strain. Methods and results Complete genome sequence of 127 L. plantarum strains, without detected anomalies, was downloaded from NCBI. Roary analysis of L. plantarum pan‐genome identified 1436 core, 414 soft core, 1858 shell and 13,203 cloud genes, highlighting the ‘open’ nature of L. plantarum pan‐genome. Identification and characterization of plasmid content, mobile genetic elements, adaptative immune system and probiotic marker genes (PMGs) revealed unique features across all the L. plantarum strains included in the present study. Considering our updated list of PMGs, we determined that approximatively 70% of the PMGs belongs to the core/soft‐core genome. Conclusions The comparative genomic analysis conducted in this study provide new insights into the genomic content and variability of L. plantarum. Significance and Impact of the Study This study provides a comprehensive pan‐genome analysis of L. plantarum, including the largest number (N = 127) of complete L. plantarum genomes retrieved from publicly available repositories. Our effort aimed to determine a solid reference panel for the future characterization of newly sequenced L. plantarum strains useful as probiotic supplements.
Collapse
Affiliation(s)
| | | | - Stefania Silvi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | | | - Valerio Napolioni
- Genomic and Molecular Epidemiology (GAME) Lab, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
13
|
Improvement of Bacterial Vaginosis by Oral Lactobacillus Supplement: A Randomized, Double-Blinded Trial. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial vaginosis (BV) is the most common vaginal infection globally, with a high recurrent rate after antibiotic treatment. Probiotics consumption is known to improve BV with different efficacy among species or strains. After in vitro selection of Lactobacillus strains with growth inhibition and preventing adhesion to HeLa cervical epithelial cells, a randomized and double-blinded trial of two Lactobacillus formula, namely, VGA-1 and VGA-2, in BV patients with Nugent scores of 4–10 was conducted. Among 37 subjects who completed the trial, we observed significantly decreased Nugent scores in both VGA-1 (n = 18) and VGA-2 (n = 19) consumption groups. VGA-1 consumption significantly improved vaginal discharge odor/color and itching at both 2-week and 4-week-consumption, but those only observed after a 4-week-consumption in the VGA-2 group. We also observed a tendency to reduce recurrent rates among enrolled participants after VGA-1 or VGA-2 consumption. The improvement effect of VGA-1/VGA-2 was associated with the significant reduction of interleukin-6 expression after 4-week-consumption and the restoration of normal vaginal microflora by quantitative polymerase chain reaction analysis. In conclusion, VGA-1 or VGA-2 displayed beneficial effects in BV patients, but the VGA-1 formula showed a better efficacy, potentially used for BV intervention.
Collapse
|
14
|
Repurposing salicylamide for combating multidrug-resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother 2019:AAC.01225-19. [PMID: 31570391 DOI: 10.1128/aac.01225-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The U.S. Centers for Disease Control and Prevention (CDC) lists Neisseria gonorrhoeae as one of the most urgent antibiotic-resistant threats in the United States. This is due to the emergence of clinical isolates that have developed resistance to nearly every antibiotic used to treat gonorrhea and highlights the critical need to find new therapeutics. The present study discovered salicylamide, an analgesic and antipyretic drug, has antibacterial activity against 40 different antibiotic-resistant strains of N. gonorrhoeae (MIC 8-32 μg/ml) with low frequency of resistance <2.4x10-9 Interestingly, salicylamide did not inhibit growth of bacterial species in the vaginal microflora involved in defense against gonococcal infections, such as Lactobacillus gasseri, L. jensenii, L. johnsonii, and L. crispatus A time-kill assay revealed that salicylamide is a rapidly bactericidal drug as it eradicated a high inoculum of N. gonorrhoeae within 10 hours. Salicylamide was superior to the drug of choice, ceftriaxone, in reducing the burden of intracellular N. gonorrhoeae by 97% in infected endocervical cells. Furthermore, salicylamide outperformed ceftriaxone in reducing expression of the pro-inflammatory cytokine IL-8 from endocervical cells infected with N. gonorrhoeae A checkerboard assay revealed that salicylamide exhibited a synergistic interaction with tetracycline and an additive relationship with azithromycin and ciprofloxacin, and ceftriaxone. A more in-depth investigation of the structure-activity-relationship of derivatives of salicylamide revealed the amide and hydroxyl groups are important for anti-gonorrheal activity. In conclusion, this study identified salicylamide as a promising candidate for further investigation as a novel treatment option for multidrug-resistant gonorrhea.
Collapse
|
15
|
Graf K, Last A, Gratz R, Allert S, Linde S, Westermann M, Gröger M, Mosig AS, Gresnigt MS, Hube B. Keeping Candida commensal: how lactobacilli antagonize pathogenicity of Candida albicans in an in vitro gut model. Dis Model Mech 2019; 12:dmm.039719. [PMID: 31413153 PMCID: PMC6765188 DOI: 10.1242/dmm.039719] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022] Open
Abstract
The intestine is the primary reservoir of Candida albicans that can cause systemic infections in immunocompromised patients. In this reservoir, the fungus exists as a harmless commensal. However, antibiotic treatment can disturb the bacterial microbiota, facilitating fungal overgrowth and favoring pathogenicity. The current in vitro gut models that are used to study the pathogenesis of C. albicans investigate the state in which C. albicans behaves as a pathogen rather than as a commensal. We present a novel in vitro gut model in which the fungal pathogenicity is reduced to a minimum by increasing the biological complexity. In this model, enterocytes represent the epithelial barrier and goblet cells limit C. albicans adhesion and invasion. Significant protection against C. albicans-induced necrotic damage was achieved by the introduction of a microbiota of antagonistic lactobacilli. We demonstrated a time-, dose- and species-dependent protective effect against C. albicans-induced cytotoxicity. This required bacterial growth, which relied on the presence of host cells, but was not dependent on the competition for adhesion sites. Lactobacillus rhamnosus reduced hyphal elongation, a key virulence attribute. Furthermore, bacterial-driven shedding of hyphae from the epithelial surface, associated with apoptotic epithelial cells, was identified as a main and novel mechanism of damage protection. However, host cell apoptosis was not the driving mechanism behind shedding. Collectively, we established an in vitro gut model that can be used to experimentally dissect commensal-like interactions of C. albicans with a bacterial microbiota and the host epithelial barrier. We also discovered fungal shedding as a novel mechanism by which bacteria contribute to the protection of epithelial surfaces.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Katja Graf
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Antonia Last
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Rena Gratz
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Susanne Linde
- Center for Electron Microscopy Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - Martin Westermann
- Center for Electron Microscopy Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - Marko Gröger
- Center for Sepsis Control and Care (CSCC), University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Alexander S Mosig
- Center for Sepsis Control and Care (CSCC), University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany.,Institute of Biochemistry II, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Mark S Gresnigt
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany .,Friedrich Schiller University, Fürstengraben 1, 07743 Jena, Germany
| |
Collapse
|
16
|
De Gregorio PR, Silva JA, Marchesi A, Nader-Macías MEF. Anti-Candida activity of beneficial vaginal lactobacilli in in vitro assays and in a murine experimental model. FEMS Yeast Res 2019; 19:5300136. [PMID: 30689833 DOI: 10.1093/femsyr/foz008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/23/2019] [Indexed: 01/04/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) is one of the most frequent infections affecting women worldwide. Healthy vaginal microbiota is dominated by lactobacilli, which form a strong defense line against pathogens. In this work, in vitro antimicrobial properties of thirty vaginal Lactobacillus strains were evaluated against eleven Candida vaginal clinical isolates, employing three different methods. Also, the effect of intravaginal (i.va.) administrations (preventive, therapeutic and preventive-therapeutic) of L. reuteri CRL1324 or L. rhamnosus CRL1332 strains against the i.va. challenge with Candida albicans C2 (C.a.) was evaluated in a murine experimental model. From the results of agar overlay and liquid medium assays the selected lactobacilli strains have shown to inhibit the growth of at least one Candida strain. The inhibition was mainly due to the effect of organic acids. Anti-Candida activity was not evidenced in the agar plate diffusion method. In the experimental murine model, only preventive-therapeutic administration of both lactobacilli was able to significantly reduce viable C.a. numbers recovered in vaginal washes and the leukocyte influx induced by the fungi. In conclusion, lactobacilli exhibited in vitro and in vivo antimicrobial effects on Candida, suggesting that they could be promising candidates for protection against VVC.
Collapse
Affiliation(s)
- Priscilla Romina De Gregorio
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, 4000. San Miguel de Tucumán, Tucumán, Argentina
| | - Jessica Alejandra Silva
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, 4000. San Miguel de Tucumán, Tucumán, Argentina
| | - Antonella Marchesi
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, 4000. San Miguel de Tucumán, Tucumán, Argentina
| | | |
Collapse
|
17
|
O'Hanlon DE, Come RA, Moench TR. Vaginal pH measured in vivo: lactobacilli determine pH and lactic acid concentration. BMC Microbiol 2019; 19:13. [PMID: 30642259 PMCID: PMC6332693 DOI: 10.1186/s12866-019-1388-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/04/2019] [Indexed: 12/04/2022] Open
Abstract
Background Lactic acid (protonated lactate) has broad antimicrobial activity. Vaginal lactobacilli produce lactic acid, and are known to confer protection against reproductive tract infections when they are predominant in the vaginal microbiota. Using novel ex vivo methods, we showed that cervicovaginal fluid (CVF) from women with a predominantly lactobacilli-morphotype microbiota contains significantly more lactic acid than previously thought, sufficient to inactivate reproductive tract pathogens. Here, we measured vaginal pH in vivo in 20 women with a predominantly lactobacilli-morphotype (low Nugent score) microbiota. We also investigated the in vitro production of protons (as hydrogen ions) and lactate by vaginal lactobacilli. Results The average vaginal pH in these women was 3.80 ± 0.20, and the average lactate concentration was 0.79% ± 0.22% w/v, with pH and lactate concentration tightly correlated for each sample. In vitro, lactobacilli cultured from these CVF samples reached an average pH of 3.92 ± 0.22, but the average lactate concentration was only 0.14% ± 0.06% w/v, approximately five-fold less than in the corresponding CVF samples. When the pH of the cultures was raised, lactate and hydrogen ion production resumed, indicating that production of lactate and hydrogen ions by vaginal lactobacilli is limited primarily by their sensitivity to hydrogen ion concentration (low pH) not lactate concentration. Conclusions Some vaginal lactobacilli cultures have a lower limiting pH than others, and limiting pHs in vitro showed good correlation with pHs measured in vivo. The limiting pH of the lactobacilli predominant in a woman’s vaginal microbiota seems critical in determining the concentration of antimicrobial lactic acid protecting her.
Collapse
Affiliation(s)
- Deirdre Elizabeth O'Hanlon
- Institute for Genomic Sciences, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD, USA.
| | - Richard A Come
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
18
|
Culture Supernatants of Lactobacillus gasseri and L. crispatus Inhibit Candida albicans Biofilm Formation and Adhesion to HeLa Cells. Mycopathologia 2018; 183:691-700. [DOI: 10.1007/s11046-018-0259-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/09/2018] [Indexed: 10/17/2022]
|
19
|
Zheng S, Chang W, Zhang M, Shi H, Lou H. Chiloscyphenol A derived from Chinese liverworts exerts fungicidal action by eliciting both mitochondrial dysfunction and plasma membrane destruction. Sci Rep 2018; 8:326. [PMID: 29321629 PMCID: PMC5762906 DOI: 10.1038/s41598-017-18717-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
This study aimed to characterize the antifungal effects of chiloscyphenol A (CA), a natural small molecule isolated from Chinese liverworts, and investigate its mode of action. CA was effective against five tested Candida species with a minimal inhibitory concentration (MIC) of 8-32 μg/ml and exhibited fungicidal activity against Candida albicans in both the planktonic state and mature biofilms. The in vivo study using Caenorhabditis elegans showed that CA prolonged the survival of C. albicans infected worms. Further investigations revealed that CA resulted in mitochondrial dysfunction as indicated by mtΔψ hyperpolarization, increased ATP production and intracellular ROS accumulation, and aggregated distribution of Tom70. In addition, CA caused perturbation of the cell membrane and increased membrane permeability, as demonstrated by specific staining and confocal microscopic and transmission electron microscopy (TEM) observations and by calcein-leakage measurements. This conclusion was further confirmed by the decreased cell size of CA-treated cells via three-dimensional contour-plot analysis using flow cytometry. Taken together, these results suggest that CA exerts fungicidal activity by eliciting both mitochondrial dysfunction and plasma membrane destruction in C. albicans. The elucidated mechanism supports the potential application of CA against clinical fungal infections.
Collapse
Affiliation(s)
- Sha Zheng
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province, China
| | - Ming Zhang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province, China
| | - Hongzhuo Shi
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province, China.
| |
Collapse
|
20
|
Calonghi N, Parolin C, Sartor G, Verardi L, Giordani B, Frisco G, Marangoni A, Vitali B. Interaction of vaginal Lactobacillus strains with HeLa cells plasma membrane. Benef Microbes 2017; 8:625-633. [PMID: 28618863 DOI: 10.3920/bm2016.0212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vaginal lactobacilli offer protection against recurrent urinary and vaginal infections. The precise mechanisms underlying the interaction between lactobacilli and the host epithelium remain poorly understood at the molecular level. Deciphering such events can provide valuable information on the mode of action of commensal and probiotic bacteria in the vaginal environment. We investigated the effects exerted by five Lactobacillus strains of vaginal origin (Lactobacillus crispatus BC1 and BC2, Lactobacillus gasseri BC9 and BC11 and Lactobacillus vaginalis BC15) on the physical properties of the plasma membrane in a cervical cell line (HeLa). The interaction of the vaginal lactobacilli with the cervical cells determined two kinds of effects on plasma membrane: (1) modification of the membrane polar lipid organisation and the physical properties (L. crispatus BC1 and L. gasseri BC9); (2) modification of α5β1 integrin organisation (L. crispatus BC2, L. gasseri BC11 and L. vaginalis BC15). These two mechanisms can be at the basis of the protective role of lactobacilli against Candida albicans adhesion. Upon stimulation with all Lactobacillus strains, we observed a reduction of the basal oxidative stress in HeLa cells that could be related to modifications in physical properties and organisation of the plasma membrane. These results confirm the strictly strain-specific peculiarities of Lactobacillus and deepen the understanding of the mechanisms underlying the health-promoting role of this genus within the vaginal ecosystem.
Collapse
Affiliation(s)
- N Calonghi
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - C Parolin
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - G Sartor
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - L Verardi
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - B Giordani
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - G Frisco
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| | - A Marangoni
- 2 Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - B Vitali
- 1 Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 15, 40127 Bologna, Italy
| |
Collapse
|
21
|
Mezzasalma V, Manfrini E, Ferri E, Boccarusso M, Di Gennaro P, Schiano I, Michelotti A, Labra M. Orally administered multispecies probiotic formulations to prevent uro-genital infections: a randomized placebo-controlled pilot study. Arch Gynecol Obstet 2016; 295:163-172. [PMID: 27826653 DOI: 10.1007/s00404-016-4235-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this study was to evaluate in the vagina of 60 pre-menopausal women the detection of orally administered multispecies probiotic formulations showing anti-microbial properties in test in vitro. METHODS A randomized, double-blind, three-arm parallel pilot study was carried out on 60 pre-menopausal women. Subjects were randomly divided in three groups (F_1, F_2, F_3). Each group received a daily oral administration of probiotic mixtures (for 14 days and at the day 21, 7 days after the wash-out) containing: Lactobacillus acidophilus and Lactobacillus reuteri (F_1), or Lactobacillus plantarum, Lactobacillus rhamnosus and Bifidobacterium animalis subsp. lactis (F_2), or placebo (F_3), respectively. Vaginal swabs were collected at four experimental times, at t0 and at t7, t14 and t21 days, and analyzed by qPCR. At the same time, the anti-microbial activity of the probiotic formulations was verified by assays in vitro against microorganisms as Escherichia coli and Candida albicans. RESULTS L. acidophilus and L. reuteri as well as L. plantarum, L. rhamnosus and B. lactis were significantly increased on 7 days in the groups administered with F_1 and F_2, respectively, compared to group F_3. A similar significant trend was observed on 21 days, 7 days after the wash-out. F_1 and F_2 showed coherent anti-microbial properties. CONCLUSION Both probiotic formulations F_1 and F_2, chosen because of their anti-microbial activity against pathogens responsible for vaginal dysbiosis and infections, led to vaginal detection and enhancement of the amount of species of formulates when orally administered. This work provides the basis for further clinical investigations of the F_1 and F_2 capacity to prevent or treat uro-genital infections.
Collapse
Affiliation(s)
- Valerio Mezzasalma
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Enrico Manfrini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Emanuele Ferri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Marco Boccarusso
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| | - Irene Schiano
- Farcoderm Srl, Via Angelini 21, 27028, San Martino Siccomario, Pavia, Italy
| | - Angela Michelotti
- Farcoderm Srl, Via Angelini 21, 27028, San Martino Siccomario, Pavia, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
22
|
Verdenelli MC, Cecchini C, Coman MM, Silvi S, Orpianesi C, Coata G, Cresci A, Di Renzo GC. Impact of Probiotic SYNBIO(®) Administered by Vaginal Suppositories in Promoting Vaginal Health of Apparently Healthy Women. Curr Microbiol 2016; 73:483-90. [PMID: 27324341 DOI: 10.1007/s00284-016-1085-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/11/2016] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to investigate whether vaginal administration of probiotic Lactobacillus results in their colonization and persistence in the vagina and whether it promotes normalization and maintenance of pH and Nugent score. A single-arm, open-label controlled towards the baseline (pre-post) study including 35 apparently healthy women was conducted. Each woman was examined three times during the study. Women were instructed to receive daily for 7 days, the probiotic suppositories SYNBIO(®) gin (Lactobacillus rhamnosus IMC 501(®) and Lactobacillus paracasei IMC 502(®)). Vaginal swabs were collected during visit 1, 2, and 3 to determine the total lactobacilli count, the presence of the two administered bacteria, the measure of the pH, and the estimation of Nugent score. Evaluation of treatment tolerability was based on analysis of the type and occurrence of adverse events. The probiotic vaginal suppository was well tolerated and no side effects were reported. Intermediate Nugent score was registered in 40 % of women at visit 1 and these intermediate scores reverted to normal at day 7 (end of treatment) in 20 % of subjects. Administration of SYNBIO(®) gin contributed to a significant increase in the lactobacilli level at visit 2. Molecular typing revealed the presence of the two strains originating from SYNBIO(®) gin in 100 % of women at visit 2 and 34 % at visit 3. No significant changes were registered for pH between visits. The SYNBIO(®) gin product is safe for daily use in healthy women and it could be useful to restore and maintain a normal vaginal microbiota.
Collapse
Affiliation(s)
| | - Cinzia Cecchini
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032, Camerino, Italy
| | - Maria Magdalena Coman
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032, Camerino, Italy.,School of Advanced Studies, University of Camerino, Camerino, Italy
| | - Stefania Silvi
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032, Camerino, Italy.,School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Carla Orpianesi
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032, Camerino, Italy
| | - Giuliana Coata
- Department of Obstetrics and Gynecology, University of Perugia, Perugia, Italy
| | - Alberto Cresci
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032, Camerino, Italy
| | - Gian Carlo Di Renzo
- Department of Obstetrics and Gynecology, University of Perugia, Perugia, Italy
| |
Collapse
|