1
|
Costa FC, Nunes LC, Ranjan K, Silveira AP, Martins da Silva IG, Mariano ADLES, de Souza PEN, Báo SN, Poças-Fonseca MJ, Muehlmann LA. Effect of Curcumin Pretreatment on the Susceptibility of Cryptococcus neoformans to Photodynamic Therapy Mediated by Aluminum Phthalocyanine in Nanoemulsion. Pharmaceuticals (Basel) 2025; 18:240. [PMID: 40006053 PMCID: PMC11859812 DOI: 10.3390/ph18020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Curcumin has antimicrobial activity, and its mechanism of action involves changing histone acetylation. Our group has shown that histone deacetylases (HDACs) inhibitors increase the sensibility of Cryptococcus neoformans to certain antifungal treatments. Therefore, the aim of this work was to investigate whether curcumin pretreatment increases the effect of photodynamic therapy (PDT) mediated by aluminum phthalocyanine in nanoemulsion (AlPc-NE) against C. neoformans. Methods: The minimum inhibitory concentrations (MIC) of AlPc-NE and curcumin, along with the 72-h growth curve of cells exposed to the combined treatments, were evaluated in the C. neoformans reference strain H99. Additionally, further analysis was performed using HDAC gene deletion mutant strains, hda1Δ and hos2Δ. Results: Curcumin reduces the effect of PDT on C. neoformans reference strain H99, likely due to its antioxidant properties. In the hda1Δ strain, 50% MIC of curcumin reduced the effect of PDT, but this effect was not observed in response to 75% MIC of curcumin. Conversely, in the hos2Δ strain, pretreatment with curcumin at 75% MIC enhanced the efficacy of PDT in combination with 50% MIC of AlPc-NE. Conclusions: These results indicate that curcumin inhibits C. neoformans. Moreover, at lower concentrations, curcumin protects cells against oxidant damage, while at higher concentrations, it may trigger epigenetic mechanisms that compromise cell viability. In conclusion, both curcumin and PDT are active against C. neoformans, with HDACs affecting their efficacy, and the effectiveness of the combined treatment depends on the concentration of both curcumin and AlPc-NE.
Collapse
Affiliation(s)
- Fabiana Chagas Costa
- Laboratory of Nanoscience and Immunology, Faculty of Health Sciences and Technologies, University of Brasilia, Campus Ceilandia, Brasília 72220-900, Brazil;
- Department of Genetics and Morphology, Institute of Biological Sciences (IB), University of Brasilia (UnB), Brasilia 70910-900, Brazil; (L.C.N.); (K.R.)
| | - Lourival Carvalho Nunes
- Department of Genetics and Morphology, Institute of Biological Sciences (IB), University of Brasilia (UnB), Brasilia 70910-900, Brazil; (L.C.N.); (K.R.)
| | - Kunal Ranjan
- Department of Genetics and Morphology, Institute of Biological Sciences (IB), University of Brasilia (UnB), Brasilia 70910-900, Brazil; (L.C.N.); (K.R.)
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi 834001, India
| | - Ariane Pandolfo Silveira
- Laboratory of Microscopy and Microanalysis—LMM, Department of Cell Biology, Institute of Biological Sciences (IB), University of Brasilia (UnB), Brasilia 70910-900, Brazil; (A.P.S.); (I.G.M.d.S.); (S.N.B.)
| | - Ingrid Gracielle Martins da Silva
- Laboratory of Microscopy and Microanalysis—LMM, Department of Cell Biology, Institute of Biological Sciences (IB), University of Brasilia (UnB), Brasilia 70910-900, Brazil; (A.P.S.); (I.G.M.d.S.); (S.N.B.)
| | - André de Lima e Silva Mariano
- Laboratory for Softwares and Physics Instrumentation Development, Institute of Physics, University of Brasilia (UnB), Brasilia 70910-900, Brazil; (A.d.L.e.S.M.); (P.E.N.d.S.)
| | - Paulo Eduardo Narcizo de Souza
- Laboratory for Softwares and Physics Instrumentation Development, Institute of Physics, University of Brasilia (UnB), Brasilia 70910-900, Brazil; (A.d.L.e.S.M.); (P.E.N.d.S.)
| | - Sônia Nair Báo
- Laboratory of Microscopy and Microanalysis—LMM, Department of Cell Biology, Institute of Biological Sciences (IB), University of Brasilia (UnB), Brasilia 70910-900, Brazil; (A.P.S.); (I.G.M.d.S.); (S.N.B.)
| | - Marcio Jose Poças-Fonseca
- Department of Genetics and Morphology, Institute of Biological Sciences (IB), University of Brasilia (UnB), Brasilia 70910-900, Brazil; (L.C.N.); (K.R.)
| | - Luis Alexandre Muehlmann
- Laboratory of Nanoscience and Immunology, Faculty of Health Sciences and Technologies, University of Brasilia, Campus Ceilandia, Brasília 72220-900, Brazil;
| |
Collapse
|
2
|
Ganeshkumar A, de Lima PMN, Haribabu J, Borges BM, Preite NW, Loures FV, Arulraj A, Junqueira JC. Sclareolide as Antifungal Strategy Against Cryptococcus neoformans: Unveiling Its Mechanisms of Action. Microorganisms 2024; 12:2324. [PMID: 39597712 PMCID: PMC11596910 DOI: 10.3390/microorganisms12112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Cryptococcal infection commonly begins as an opportunistic infection in humans, however, this can escalate to a systemic or life-threatening form in immunocompromised individuals. Here, we aim to identify novel antifungal molecules from plants resources. Sclareolide, a phytochemical classified as a sesquiterpene lactone, was assessed against Cryptococcus neoformans H99. Sclareolide exhibited promising antifungal properties with a minimum inhibitory concentration (MIC) of 16 µg/mL. Additionally, the C. neoformans growth rate was significantly affected by sclareolide treatment in a concentration-dependent manner, as observed through a time killing assay, with a significant reduction at MIC × 8 compared to the control by 48 h. To elucidate the underlying mechanisms of sclareolide antifungal activity, fluorescence-based methods were employed. Propidium iodide (PI) accumulation assay indicated a reduction in C. neoformans membrane integrity, with values as low as 6.62 ± 0.18% after treatment. Moreover, sclareolide at MIC × 4 and MIC × 8 significantly increased the production of reactive oxygen species (ROS) and reduced the mitochondrial membrane potential (MMP), suggesting oxidative stress and mitochondrial dysfunction in C. neoformans. Sclareolide did not induce caspase-dependent apoptosis, suggesting a non-apoptotic mechanism. Further, a checkerboard experiment was performed to assess potential synergistic interaction with Amphotericin B, however, no synergism was observed. Moving on, sclareolide at 128 µg/mL did not exhibit toxicity in Galleria mellonella, further supporting its potential as a safe antifungal agent. These findings suggest that the antifungal activity of sclareolide against C. neoformans is mediated by oxidative stress. Further in vivo and pharmacokinetic studies are recommended to explore the potential of sclareolide as a prototype for the development of novel anti-cryptococcal therapies.
Collapse
Affiliation(s)
- Arumugam Ganeshkumar
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University (UNESP), Sao Jose dos Campos, São Paulo 12245-000, Brazil;
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - Patricia Michelle Nagai de Lima
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University (UNESP), Sao Jose dos Campos, São Paulo 12245-000, Brazil;
| | - Jebiti Haribabu
- Faculty of Medicine, University of Atacama, Los Carreras 1579, Copiapo 1532502, Chile
- Chennai Institute of Technology (CIT), Chennai 600069, Tamil Nadu, India
| | - Bruno Montanari Borges
- Institute of Science and Technology, Federal University of Sao Paulo (UNIFESP), Sao Jose dos Campos, Sao Paulo 12231-280, Brazil (N.W.P.)
| | - Nycolas Willian Preite
- Institute of Science and Technology, Federal University of Sao Paulo (UNIFESP), Sao Jose dos Campos, Sao Paulo 12231-280, Brazil (N.W.P.)
| | - Flavio Vieira Loures
- Institute of Science and Technology, Federal University of Sao Paulo (UNIFESP), Sao Jose dos Campos, Sao Paulo 12231-280, Brazil (N.W.P.)
| | - Arunachalam Arulraj
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Av. José Pedro Alessandri 1242, Ñuñoa, Santiago 7800002, Chile;
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University (UNESP), Sao Jose dos Campos, São Paulo 12245-000, Brazil;
| |
Collapse
|
3
|
Caza M, Santos DA, Burden E, Brisland A, Hu G, Kronstad JW. Proteasome inhibition as a therapeutic target for the fungal pathogen Cryptococcus neoformans. Microbiol Spectr 2023; 11:e0190423. [PMID: 37750732 PMCID: PMC10580939 DOI: 10.1128/spectrum.01904-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023] Open
Abstract
The current therapeutic challenges for treating fungal diseases demand new approaches and new drugs. A promising strategy involves combination therapy with agents of distinct mechanisms of action to increase fungicidal activity and limit the impact of mutations leading to resistance. In this study, we evaluated the antifungal potential of bortezomib by examining the inhibition of proteasome activity, cell proliferation, and capsule production by Cryptococcus neoformans, the causative agent of fungal meningoencephalitis. Chemical genetic screens with collections of deletion mutants identified potential druggable targets for combination therapy with bortezomib. In vitro assays of combinations of bortezomib with flucytosine, chlorpromazine, bafilomycin A1, copper sulfate, or hydroxyurea revealed antifungal effects against C. neoformans. Furthermore, combination treatment with bortezomib and flucytosine in a murine inhalation model of cryptococcosis resulted in the improvement of neurological functions and reduced fungal replication and dissemination, leading to a delay in disease progression. This study therefore highlights the utility of chemical genetic screens to identify new therapeutic approaches as well as the antifungal potential of proteasome inhibition. IMPORTANCE Fungal diseases of humans are difficult to treat, and there is a clear need for additional antifungal drugs, better diagnostics, effective vaccines, and new approaches to deal with emerging drug resistance. Fungi are challenging to control because they share many common biochemical functions with their mammalian hosts and it is therefore difficult to identify fungal-specific targets for drug development. One approach is to employ existing antifungal drugs in combination with agents that target common cellular processes at levels that are (ideally) not toxic for the host. We pursued this approach in this study by examining the potential of the clinically approved proteasome inhibitor bortezomib to influence the proliferation and virulence of Cryptococcus neoformans. We found that the combination of bortezomib with the anti-cryptococcal drug flucytosine improved the survival of infected mice, thus demonstrating the potential of this strategy for antifungal therapy.
Collapse
Affiliation(s)
- Mélissa Caza
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Assis Santos
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elizabeth Burden
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Brisland
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanggan Hu
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - James W. Kronstad
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Sousa NSOD, Almeida JDRD, Frickmann H, Lacerda MVG, Souza JVBD. Searching for new antifungals for the treatment of cryptococcosis. Rev Soc Bras Med Trop 2023; 56:e01212023. [PMID: 37493736 PMCID: PMC10367226 DOI: 10.1590/0037-8682-0121-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/19/2023] [Indexed: 07/27/2023] Open
Abstract
There is a consensus that the antifungal repertoire for the treatment of cryptococcal infections is limited. Standard treatment involves the administration of an antifungal drug derived from natural sources (i.e., amphotericin B) and two other drugs developed synthetically (i.e., flucytosine and fluconazole). Despite treatment, the mortality rates associated with fungal cryptococcosis are high. Amphotericin B and flucytosine are toxic, require intravenous administration, and are usually unavailable in low-income countries because of their high cost. However, fluconazole is cost-effective, widely available, and harmless with regard to its side effects. However, fluconazole is a fungistatic agent that has contributed considerably to the increase in fungal resistance and frequent relapses in patients with cryptococcal meningitis. Therefore, there is an unquestionable need to identify new alternatives or adjuvants to conventional drugs for the treatment of cryptococcosis. A potential antifungal agent should be able to kill cryptococci and "bypass" the virulence mechanism of the yeast. Furthermore, it should have fungicidal action, low toxicity, high selectivity, easily penetrate the central nervous system, and widely available. In this review, we describe cryptococcosis, its conventional therapy, and failures arising from the use of drugs traditionally considered to be the reference standard. Additionally, we present the approaches used for the discovery of new drugs to counteract cryptococcosis, ranging from the conventional screening of natural products to the inclusion of structural modifications to optimize anticryptococcal activity, as well as drug repositioning and combined therapies.
Collapse
Affiliation(s)
| | | | - Hagen Frickmann
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Germany
| | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil
- Instituto de Pesquisas Leônidas & Maria Deane, Fiocruz, Manaus, AM, Brasil
- University of Texas Medical Branch, Galveston, USA
| | - João Vicente Braga de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Manaus, AM, Brasil
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| |
Collapse
|
5
|
Khan A, Moni SS, Ali M, Mohan S, Jan H, Rasool S, Kamal MA, Alshahrani S, Halawi M, Alhazmi HA. Antifungal Activity of Plant Secondary Metabolites on Candida albicans: An Updated Review. Curr Mol Pharmacol 2023; 16:15-42. [PMID: 35249516 DOI: 10.2174/1874467215666220304143332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Fungal infections have been increasing continuously worldwide, especially in immunocompromised individuals. Fungi, regarded as eukaryotic pathogens, have many similarities to the host cells, which inhibit anti-fungal drug development progress. Various fungal model systems have been studied, and it was concluded that Candida spp. is the most common disease-causing fungus. Candida species are well known to cause infections not only in our mouth, skin, and vagina, but they are also a frequent cause of life-threatening hospital bloodstream infections. The morphological and developmental pathways of Candida have been studied extensively, providing insight into the fungus development. Candida albicans is known to be the most pathogenic species responsible for a variety of infections in humans. Conventional anti-fungal drugs, mainly azoles drugs available in the market, have been used for years developing resistance in C. albicans. Hence, the production of new anti-fungal drugs, which require detailed molecular knowledge of fungal pathogenesis, needs to be encouraged. Therefore, this review targets the new approach of "Green Medicines" or the phytochemicals and their secondary metabolites as a source of novel anti-fungal agents to overcome the drug resistance of C. albicans, their mechanism of action, and their combined effects with the available anti-fungal drugs.
Collapse
Affiliation(s)
- Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | | | - M Ali
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Huma Jan
- Department of Clinical Biochemistry, University of Kashmir, Hazratbal, Srinagar -190006, J&K, India
| | - Saiema Rasool
- Department of School Education, Govt. of Jammu & Kashmir, Srinagar, 190001 J&K, India
| | - Mohammad A Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589. Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Maryam Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, 45142, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
6
|
Cryptococcus spp. and Cryptococcosis: focusing on the infection in Brazil. Braz J Microbiol 2022; 53:1321-1337. [PMID: 35486354 PMCID: PMC9433474 DOI: 10.1007/s42770-022-00744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022] Open
Abstract
Cryptococcosis is a global fungal infection caused by the Cryptococcus neoformans/Cryptococcus gattii yeast complex. This infection is acquired by inhalation of propagules such as basidiospores or dry yeast, initially causing lung infections with the possibility of progressing to the meninges. This infection mainly affects immunocompromised HIV and transplant patients; however, immunocompetent patients can also be affected. This review proposes to evaluate cryptococcosis focusing on studies of this mycosis in Brazilian territory; moreover, recent advances in the understanding of its virulence mechanism, animal models in research are also assessed. For this, literature review as realized in PubMed, Scielo, and Brazilian legislation. In Brazil, cryptococcosis has been identified as one of the most lethal fungal infections among HIV patients and C. neoformans VNI and C. gattii VGII are the most prevalent genotypes. Moreover, different clinical settings published in Brazil were described. As in other countries, cryptococcosis is difficult to treat due to a limited therapeutic arsenal, which is highly toxic and costly. The presence of a polysaccharide capsule, thermo-tolerance, production of melanin, biofilm formation, mechanisms for iron use, and morphological alterations is an important virulence mechanism of these yeasts. The introduction of cryptococcosis as a compulsory notification disease could improve data regarding incidence and help in the management of these infections.
Collapse
|
7
|
Rocha OB, do Carmo Silva L, de Carvalho Júnior MAB, de Oliveira AA, de Almeida Soares CM, Pereira M. In vitro and in silico analysis reveals antifungal activity and potential targets of curcumin on Paracoccidioides spp. Braz J Microbiol 2021; 52:1897-1911. [PMID: 34324170 PMCID: PMC8578512 DOI: 10.1007/s42770-021-00548-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
The search for new compounds with activity against Paracoccidioides, etiologic agents of Paracoccidioidomycosis (PCM), is extremely necessary due to the current scenario of the available therapeutic arsenal. Treatment is restricted to three classes of antifungals with side effects. Curcumin is a polyphenol with antifungal effects that is extracted from Curcuma longa. The present work aimed to evaluate the activity of curcumin in different species of Paracoccidioides and to evaluate the potential molecular targets of curcumin using computational strategies. In addition, interactions with classic antifungals used in the treatment of PCM were evaluated. Curcumin inhibits the growth of Paracoccidioides spp. exerting a fungicidal effect. The combination of curcumin with amphotericin B, co-trimoxazole, and itraconazole showed a synergistic or additive interaction. Molecular targets as superoxide dismutase, catalase, and isocitrate lyase were proposed based on in silico approaches. Curcumin affects the fungal plasma membrane and increases the production of reactive oxygen species. Therefore, curcumin is a good alternative for the treatment of PCM.
Collapse
Affiliation(s)
- Olívia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
| | - Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
| | - Marcos Antonio Batista de Carvalho Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
| | - Amanda Alves de Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil.
| |
Collapse
|
8
|
Andriani GM, Morguette AEB, Spoladori LFA, Pereira PML, Cabral WRC, Fernandes BT, Tavares ER, Almeida RS, Lancheros CAC, Nakamura CV, Mello JCP, Yamauchi LM, Yamada-Ogatta SF. Antifungal Combination of Ethyl Acetate Extract of Poincianella pluviosa (DC.) L. P. Queiros Stem Bark With Amphotericin B in Cryptococcus neoformans. Front Microbiol 2021; 12:660645. [PMID: 34177839 PMCID: PMC8222688 DOI: 10.3389/fmicb.2021.660645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/06/2021] [Indexed: 12/03/2022] Open
Abstract
Cryptococcus neoformans is the leading cause of cryptococcosis, an invasive and potentially fatal infectious disease. Therapeutic failures are due to the increase in antifungal resistance, the adverse effects of drugs, and the unavailability of therapeutic regimens in low-income countries, which limit the treatment of cryptococcosis, increasing the morbidity and mortality associated with these infections. Thus, new antifungal drugs and innovative strategies for the cryptococcosis treatment are urgently needed. The aim of the present study was to evaluate the effect of ethyl acetate fraction (EAF) of Poincianella pluviosa stem bark on planktonic and biofilm mode of growth of C. neoformans. Furthermore, the interaction between the EAF and amphotericin B (AmB) was evaluated in vitro and in Galleria mellonella infection model. Minimal inhibitory concentrations (MICs) of EAF ranged from 125.0 to >1,000.0 μg/ml and >1,000.0 μg/ml for planktonic and sessile cells, respectively. The combination between EAF and AmB exhibited a synergistic fungicidal activity toward C. neoformans, with a fractional inhibitory concentration index (FICI) ranging from 0.03 to 0.06 and 0.08 to 0.28 for planktonic and sessile cells, respectively. Microscopy analyses of planktonic C. neoformans cells treated with EAF, alone or combined with AmB, revealed morphological and ultrastructural alterations, including loss of integrity of the cell wall and cell membrane detachment, suggesting leakage of intracellular content, reduction of capsule size, and presence of vacuoles. Moreover, EAF alone or combined with AmB prolonged the survival rate of C. neoformans-infected G. mellonella larvae. These findings indicate that P. pluviosa may be an important source of new compounds that can be used as a fungus-specific adjuvant for the treatment of cryptococcosis.
Collapse
Affiliation(s)
- Gabriella Maria Andriani
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Ana Elisa Belotto Morguette
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Laís Fernanda Almeida Spoladori
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Patrícia Morais Lopes Pereira
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Weslei Roberto Correia Cabral
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Bruna Terci Fernandes
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Eliandro Reis Tavares
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil.,Programa Nacional de Pós-Doutorado, CAPES, Londrina, Brazil
| | - Ricardo Sérgio Almeida
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Cesar Armando Contreras Lancheros
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, Brazil
| | - Celso Vataru Nakamura
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil.,Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Ciências Básicas da Saúde, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, Brazil
| | - João Carlos Palazzo Mello
- Laboratório de Biologia Farmacêutica, Departamento de Farmácia, Universidade Estadual de Maringá, Maringá, Brazil
| | - Lucy Megumi Yamauchi
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil.,Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Programa de Pós-graduação em Microbiologia, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil.,Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
9
|
Abstract
The SmithKline, Harwell, Imperial College, Royal Hospital, Phenotype Assessment (SHIRPA) is a rapid battery of tests comprising 42 measurements of motor activity, coordination, postural control, muscle tone, autonomic functions, and emotional reactivity, as well as reflexes dependent on visual, auditory, and tactile modalities. Individual scores in SHIRPA are sensitive in detecting phenotypes of several experimental models of neural disease, especially cerebellar degeneration and Alzheimer disease, and combined subscores have been useful in estimating the impact of vascular anomalies and exposure to infectious agents. In cerebellar degeneration, weak forelimb grip, impaired wire maneuver and air righting, and negative geotaxis appear as prevalent features. Most of the measures in the battery are susceptible to change after gene modifications or physiological alterations. SHIRPA can be used both in adult mice and mice in the preweaning period to screen for sensorimotor function and emotional reactivity, not selective attention or memory. © 2021 Wiley Periodicals LLC Basic Protocol: Step-by-step procedure for SHIRPA.
Collapse
Affiliation(s)
- Robert Lalonde
- Department of Psychology, University of Rouen, Mont-Saint-Aignan, France
- Laboratory of Stress, Immunity, Pathogens, Medical School, University of Lorraine, Vandœuvre-les-Nancy, France
| | | | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens, Medical School, University of Lorraine, Vandœuvre-les-Nancy, France
- CHRU Nancy, Vandœuvre-les-Nancy, France
| |
Collapse
|
10
|
Silva E Souza E, Barcellos VDA, Sbaraini N, Reuwsaat JCV, Schneider RDO, da Silva AC, Garcia AWA, von Poser GL, Barbosa EG, Lima JPMS, Vainstein MH. A Plumieridine-Rich Fraction From Allamanda polyantha Inhibits Chitinolytic Activity and Exhibits Antifungal Properties Against Cryptococcus neoformans. Front Microbiol 2020; 11:2058. [PMID: 32983042 PMCID: PMC7483551 DOI: 10.3389/fmicb.2020.02058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/05/2020] [Indexed: 12/28/2022] Open
Abstract
Cryptococcosis is a fungal infection caused mainly by the pathogenic yeasts Cryptococcus neoformans and Cryptococcus gattii. The infection initiates with the inhalation of propagules that are then deposited in the lungs. If not properly treated, cryptococci cells can disseminate and reach the central nervous system. The current recommended treatment for cryptococcosis employs a three-stage regimen, with the administration of amphotericin B, flucytosine and fluconazole. Although effective, these drugs are often unavailable worldwide, can lead to resistance development, and may display toxic effects on the patients. Thus, new drugs for cryptococcosis treatment are needed. Recently, an iridoid named plumieridine was found in Allamanda polyantha seed extract; it exhibited antifungal activity against C. neoformans with a MIC of 250 μg/mL. To address the mode of action of plumieridine, several in silico and in vitro experiments were performed. Through a ligand-based a virtual screening approach, chitinases were identified as potential targets. Confirmatory in vitro assays showed that C. neoformans cell-free supernatant incubated with plumieridine displayed reduced chitinase activity, while chitinolytic activity was not inhibited in the insoluble cell fraction. Additionally, confocal microscopy revealed changes in the distribution of chitooligomers in the cryptococcal cell wall, from a polarized to a diffuse cell pattern state. Remarkably, further assays have shown that plumieridine can also inhibit the chitinolytic activity from the supernatant and cell-free extracts of bacteria, insect and mouse-derived macrophage cells (J774.A1). Together, our results suggest that plumieridine can be a broad-spectrum chitinase inhibitor.
Collapse
Affiliation(s)
- Eden Silva E Souza
- Bioinformatics Multidisciplinary Environment, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Nicolau Sbaraini
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Adriana Corrêa da Silva
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Rai M, Ingle AP, Pandit R, Paralikar P, Anasane N, Santos CAD. Curcumin and curcumin-loaded nanoparticles: antipathogenic and antiparasitic activities. Expert Rev Anti Infect Ther 2020; 18:367-379. [PMID: 32067524 DOI: 10.1080/14787210.2020.1730815] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Curcumin is an important bioactive compound present in Curcuma longa, and is well known for its bioactivities such as anti-inflammatory, anticancer, antimicrobial, antiparasitic and antioxidant activity. The use of curcumin is limited owing to its poor solubility in water, fast degradation, and low bioavailability. This problem can be solved by using nano-curcumin, which is soluble in water and enhances its activity against various microbial pathogens and parasites.Areas covered: We have reviewed curcumin, curcumin-loaded nanoparticles and their activities against various pathogenic microbes (antifungal, antiviral and antiprotozoal) and parasites, as curcumin has already demonstrated broad-spectrum antimicrobial activity. It has also inhibited biofilm formation by various bacteria including Pseudomonas aeruginosa. The antimicrobial activity of curcumin can be increased in the presence of light radiation due to its photo-excitation. Further, it has been found that the activity of curcumin nanoparticles is enhanced when used in combination with antibiotics. Finally, we discussed the toxicity and safety issues of curcumin.Expert opinion: Since many microbial pathogens have developed resistance to antibiotics, the combination of curcumin with different nanoparticles will prove to be a boon for their treatment. Moreover, curcumin and curcumin-loaded nanoparticles can also be used against various parasites.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, SGB Amravati University, Amravati, India
| | - Avinash P Ingle
- Department of Biotechnology, Lorena School of Engineering, University of Sao Paulo, Lorena, Brazil
| | - Raksha Pandit
- Department of Biotechnology, SGB Amravati University, Amravati, India
| | - Priti Paralikar
- Department of Biotechnology, SGB Amravati University, Amravati, India
| | - Netravati Anasane
- Department of Biotechnology, SGB Amravati University, Amravati, India
| | | |
Collapse
|
12
|
Al Aboody MS, Mickymaray S. Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics (Basel) 2020; 9:E45. [PMID: 31991883 PMCID: PMC7168129 DOI: 10.3390/antibiotics9020045] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of fungal infections is growing at an alarming pace and the pathogenesis is still not clearly understood. Recurrence of these fungal diseases is often due to their evolutionary avoidance of antifungal resistance. The development of suitable novel antimicrobial agents for fungal diseases continues to be a major problem in the current clinical field. Hence, it is urgently necessary to develop surrogate agents that are more effective than conventional available drugs. Among the remarkable innovations from earlier investigations on natural-drugs, flavonoids are a group of plant-derived substances capable of promoting many valuable effects on humans. The identification of flavonoids with possible antifungal effects at small concentrations or in synergistic combinations could help to overcome this problem. A combination of flavonoids with available drugs is an excellent approach to reduce the side effects and toxicity. This review focuses on various naturally occurring flavonoids and their antifungal activities, modes of action, and synergetic use in combination with conventional drugs.
Collapse
Affiliation(s)
| | - Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Riyadh Region, Majmaah 11952, Saudi Arabia;
| |
Collapse
|
13
|
Praditya D, Kirchhoff L, Brüning J, Rachmawati H, Steinmann J, Steinmann E. Anti-infective Properties of the Golden Spice Curcumin. Front Microbiol 2019; 10:912. [PMID: 31130924 PMCID: PMC6509173 DOI: 10.3389/fmicb.2019.00912] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/10/2019] [Indexed: 01/02/2023] Open
Abstract
The search for novel anti-infectives is one of the most important challenges in natural product research, as diseases caused by bacteria, viruses, and fungi are influencing the human society all over the world. Natural compounds are a continuing source of novel anti-infectives. Accordingly, curcumin, has been used for centuries in Asian traditional medicine to treat various disorders. Numerous studies have shown that curcumin possesses a wide spectrum of biological and pharmacological properties, acting, for example, as anti-inflammatory, anti-angiogenic and anti-neoplastic, while no toxicity is associated with the compound. Recently, curcumin’s antiviral and antibacterial activity was investigated, and it was shown to act against various important human pathogens like the influenza virus, hepatitis C virus, HIV and strains of Staphylococcus, Streptococcus, and Pseudomonas. Despite the potency, curcumin has not yet been approved as a therapeutic antiviral agent. This review summarizes the current knowledge and future perspectives of the antiviral, antibacterial, and antifungal effects of curcumin.
Collapse
Affiliation(s)
- Dimas Praditya
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany.,Institute of Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and The Helmholtz Centre for Infection Research, Hanover, Germany.,Research Center for Biotechnology, Indonesian Institute of Science, Cibinong, Indonesia
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janina Brüning
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Heni Rachmawati
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.,Research Center for Nanosciences and Nanotechnology, Bandung Institute of Technology, Bandung, Indonesia
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
14
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
15
|
Zacchino SA, Butassi E, Liberto MD, Raimondi M, Postigo A, Sortino M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 37:27-48. [PMID: 29174958 DOI: 10.1016/j.phymed.2017.10.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 05/27/2023]
Abstract
BACKGROUND The intensive use of antibacterial and antifungal drugs has dramatically increased the microbial resistance and has led to a higher number of difficult-to-eradicate infections. Combination therapy with two or more antimicrobial drugs has emerged some years ago to overcome the issue, but it has proven to be not completely effective. Natural secondary metabolites of MW ≤ 500 represent promising adjuvants for antimicrobials and have been the object of several researches that have increased in the last two decades. PURPOSE The purpose of this Review is to do a literature search of the natural compounds that showed high enhancing capacity of antibacterials' and antifungals' effects against planktonic bacteria and fungi and to analyze which are the natural products most used in combination with a focus on polyphenols and terpenoids. RESULTS One hundred of papers were collected for reviewing. Fifty six (56) of them deal with combinations of low MW natural products with antibacterial drugs against planktonic bacteria and forty four (44) on natural products with antifungal drugs against planktonic fungi. Of the antibacterial adjuvants, 41 (73%) were either polyphenols (27; 48%) or terpenes (14; 25%). The remaining 15 papers (27%), deal with different class of natural products. Since most natural potentiators belong to the terpene or phenolic structural types, a more detailed description of the works dealing with these type of compounds is provided here. Bacterial and fungal resistance mechanisms, the modes of action of the main classes of antibacterial and antifungal drugs and the methodologies most used to assess the type of interactions in the combinations were included in the Review too. CONCLUSIONS AND PERSPECTIVES Several promising results on the potentiation effects of antifungals' and antibacterials' activities by low MW natural products mainly on polyphenols and terpenes were reported in the literature and, in spite of that most works included only in vitro assays, this knowledge opens a wide range of possibilities for the combination antimicrobial therapy. Further research including in vivo assays and clinical trials are required to determine the relevance of these antimicrobial enhancers in the clinical area and should be the focus of future studies in order to develop new antimicrobial combination agents that overpass the drawbacks of the existing antibiotics and antifungals in clinical use.
Collapse
Affiliation(s)
- Susana A Zacchino
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - Estefania Butassi
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Melina Di Liberto
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Marcela Raimondi
- Area Microbiología, Facultad de Cs. Médicas, Universidad Nacional de Rosario, Santa Fe 3100, Rosario 2000, Argentina
| | - Agustina Postigo
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Maximiliano Sortino
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina; Área Micología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| |
Collapse
|
16
|
Coelho C, Casadevall A. Cryptococcal therapies and drug targets: the old, the new and the promising. Cell Microbiol 2016; 18:792-9. [PMID: 26990050 DOI: 10.1111/cmi.12590] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/28/2016] [Accepted: 03/08/2016] [Indexed: 01/09/2023]
Abstract
Half a century after the introduction of Amphotericin B the management of cryptococcosis remains unsatisfactory. The disease, caused primarily by the two fungal species Cryptococcus neoformans and Cryptococcus gattii, remains responsible for considerable morbidity and mortality despite standard medical care. Current therapeutic options are limited to Amphotericin B, azoles and 5-flucytosine. However, this organism has numerous well-characterized virulence mechanisms that are amenable to pharmacological interference and are thus potential therapeutic targets. Here, we discuss existing approved antifungal drugs, resistance mechanisms to these drugs and non-standard antifungal drugs that have potential in treatment of cryptococcosis, including immunomodulatory strategies that synergize with antifungal drugs, such as cytokine administration or monoclonal antibodies. Finally, we summarize attempts to target well-described virulence factors of Cryptococcus, the capsule or fungal melanin. This review emphasizes the pressing need for new therapeutic alternatives for cryptococcosis.
Collapse
Affiliation(s)
- Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|