1
|
Singh V, Hallan V, Pati PK. Withania somnifera osmotin (WsOsm) confers stress tolerance in tobacco and establishes novel interactions with the defensin protein (WsDF). PHYSIOLOGIA PLANTARUM 2024; 176:e14513. [PMID: 39262029 DOI: 10.1111/ppl.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Pathogenesis-related proteins (PR), including osmotins, play a vital role in plant defense, being activated in response to diverse biotic and abiotic stresses. Despite their significance, the mechanistic insights into the role of osmotins in plant defense have not been extensively explored. The present study explores the cloning and characterization of the osmotin gene (WsOsm) from Withania somnifera, aiming to illuminate its role in plant defense mechanisms. Quantitative real-time PCR analysis revealed significant induction of WsOsm in response to various phytohormones e.g. abscisic acid, salicylic acid, methyl jasmonate, brassinosteroids, and ethrel, as well as biotic and abiotic stresses like heat, cold, salt, and drought. To further elucidate WsOsm's functional role, we overexpressed the gene in Nicotiana tabacum, resulting in heightened resistance against the Alternaria solani pathogen. Additionally, we observed enhancements in shoot length, root length, and root biomass in the transgenic tobacco plants compared to wild plants. Notably, the WsOsm- overexpressing seedlings demonstrated improved salt and drought stress tolerance, particularly at the seedling stage. Confocal histological analysis of H2O2 and biochemical studies of antioxidant enzyme activities revealed higher levels in the WsOsm overexpressing lines, indicating enhanced antioxidant defense. Furthermore, a pull-down assay and mass spectrometry analysis revealed a potential interaction between WsOsm and defensin, a known antifungal PR protein (WsDF). This suggests a novel role of WsOsm in mediating plant defense responses by interacting with other PR proteins. Overall, these findings pave the way for potential future applications of WsOsm in developing stress-tolerant crops and improving plant defense strategies against pathogens.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vipin Hallan
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
2
|
Ansari MS, Ahmad G, Khan AA, Mohamed HI. Coal fly ash application as an eco-friendly approach for modulating the growth, yield, and biochemical constituents of Withania somnifera L. plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87958-87980. [PMID: 37432571 DOI: 10.1007/s11356-023-28318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023]
Abstract
The solid waste known as fly ash, which is produced when coal is burned in thermal power plants, is sustainably used in agriculture. It is an excellent soil supplement for plant growth and development since it contains some desired nutrients (macro and micro), as well as being porous. The present study was done to evaluate the effect of different fly ash levels on Withania somnifera. The present study aimed to assess the impact of various fly ash (FA) concentrations on growth, yield, photosynthetic pigments, biochemical parameters, and cell viability of W. somnifera. The results showed that FA enhanced physical and chemical properties of soil like pH, electric conductivity, porosity, water-holding capacity, and nutrients. The low doses of FA-amended soil (15%) significantly increased the shoot length (36%), root length (24.5%), fresh weight of shoots and roots (107.8 and 50.6%), dry weight of shoots and roots (61.9 and 47.1%), number of fruits (70.4%), carotenoid (43%), total chlorophyll (44.3%), relative water content (109.3%), protein content (20.4%), proline content (110.3%), total phenols (116.1%), nitrogen (20.3%), phosphorus (16.9%), and potassium (26.4%). On the other hand, the higher doses, i.e., 25% of fly ash showed a negative effect on all the above parameters and induced oxidative stress by increasing lipid peroxidation (33.1%) and hydrogen peroxide (102.0%) and improving the activities of antioxidant enzymes and osmolytes. Compared to the control plants, the plants growing in soil enriched with 15 and 25% fly ash had larger stomata pores when examined using a scanning electron microscope. In addition, according to a confocal microscopic analysis of the roots of W. somnifera, higher fly ash concentrations caused membrane damage, as evidenced by an increase in the number of stained nuclei. Moreover, several functional groups and peaks of the biomolecules represented in the control and 15% of fly ash were alcohols, phenols, allenes, ketenes, isocynates, and hydrocarbons. Gas chromatography-mass spectrometry analysis of the methanol extract of W. somnifera leaves cultivated in soil amended with 15% fly ash shows the presence of 47 bioactive compounds. The most abundant compounds in the methanol extract were cis-9-hexadecenal (22.33%), n-hexadecanoic acid (9.68%), cinnamic acid (6.37%), glycidyl oleate (3.88%), nonanoic acid (3.48%), and pyranone (3.57%). The lower concentrations of FA (15%) can be used to enhance plant growth and lower the accumulation of FA that results in environmental pollution.
Collapse
Affiliation(s)
- Moh Sajid Ansari
- Department of Botany, Faculty of Life Sciences, Section of Environmental Pollution Research Unit, Aligarh Muslim University, Aligarh, India
| | - Gufran Ahmad
- Department of Botany, Faculty of Life Sciences, Section of Environmental Pollution Research Unit, Aligarh Muslim University, Aligarh, India
| | - Abrar A Khan
- Department of Botany, Faculty of Life Sciences, Section of Environmental Pollution Research Unit, Aligarh Muslim University, Aligarh, India
| | - Heba I Mohamed
- Biological and Geological Science Department, Faculty of Education, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
3
|
Prajapati KS, Singh AK, Kushwaha PP, Shuaib M, Maurya SK, Gupta S, Senapati S, Singh SP, Waseem M, Kumar S. Withaniasomnifera phytochemicals possess SARS-CoV-2 RdRp and human TMPRSS2 protein binding potential. VEGETOS (BAREILLY, INDIA) 2022; 36:701-720. [PMID: 35729946 PMCID: PMC9199469 DOI: 10.1007/s42535-022-00404-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 02/06/2023]
Abstract
Abstract Coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has infected approximately 26 million people and caused more than 6 million deaths globally. Spike (S)-protein on the outer surface of the virus uses human trans-membrane serine protease-2 (TMPRSS2) to gain entry into the cell. Recent reports indicate that human dipeptidyl peptidase-4 inhibitors (DPP4 or CD26) could also be utilized to check the S-protein mediated viral entry into COVID-19 patients. RNA dependent RNA polymerase (RdRp) is another key virulence protein of SARS-CoV-2 life cycle. The study aimed to identify the potential anti-SARS-CoV-2 inhibitors present in Withania somnifera (Solanaceae) using computer aided drug discovery approach. Molecular docking results showed that flavone glycoside, sugar alcohol, and flavonoid present in W. somnifera showed - 11.69, - 11.61, - 10.1, - 7.71 kcal/mole binding potential against S-protein, CD26, RdRp, and TMPRSS2 proteins. The major standard inhibitors of the targeted proteins (Sitagliptin, VE607, Camostat mesylate, and Remdesivir) showed the - 7.181, - 6.6, - 5.146, and - 7.56 kcal/mole binding potential. Furthermore, the lead phytochemicals and standard inhibitors bound and non-bound RdRp and TMPRSS2 proteins were subjected to molecular dynamics (MD) simulation to study the complex stability and change in protein conformation. The result showed energetically favorable and stable complex formation in terms of RMSD, RMSF, SASA, Rg, and hydrogen bond formation. Drug likeness and physiochemical properties of the test compounds exhibited satisfactory results. Taken together, the present study suggests the presence of potential anti-SARS-CoV-2 phytochemicals in W. somnifera that requires further validation in in vitro and in vivo studies. Graphical Abstract Supplementary information The online version contains supplementary material available at 10.1007/s42535-022-00404-4.
Collapse
Affiliation(s)
- Kumari Sunita Prajapati
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401 India
| | - Atul Kumar Singh
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401 India
| | - Prem Prakash Kushwaha
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401 India
| | - Mohd Shuaib
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401 India
| | - Santosh Kumar Maurya
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401 India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Sabyasachi Senapati
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, 151401 Bathinda, India
| | - Surya Pratap Singh
- Department of Bioscience and Biotechnology, Bansthali Vidyapith, Banasthali, Rajasthan India
| | - Mohammad Waseem
- Department of Zoology, Jagdam College, Jai Prakash University, Chapra, Bihar India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401 India
| |
Collapse
|
4
|
Kushwaha PP, Singh AK, Prajapati KS, Shuaib M, Gupta S, Kumar S. Phytochemicals present in Indian ginseng possess potential to inhibit SARS-CoV-2 virulence: A molecular docking and MD simulation study. Microb Pathog 2021; 157:104954. [PMID: 34033891 PMCID: PMC8142029 DOI: 10.1016/j.micpath.2021.104954] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
Coronaviruses are deadly and contagious pathogens that affects people in different ways. Researchers have increased their efforts in the development of antiviral agents against coronavirus targeting Mpro protein (main protease) as an effective drug target. The present study explores the inhibitory potential of characteristic and non-characteristic Withania somnifera (Indian ginseng) phytochemicals (n ≈ 100) against SARS-Cov-2 Mpro protein. Molecular docking studies revealed that certain W. somnifera compounds exhibit superior binding potential (−6.16 to −12.27 kcal/mol) compared to the standard inhibitors (−2.55 to −6.16 kcal/mol) including nelfinavir and lopinavir. The non-characteristic compounds (quercetin-3-rutinoside-7-glucoside, rutin and isochlorogenic acid B) exhibited higher inhibitory potential in comparison to characteristic W. somnifera compounds withanolide and withanone. Molecular dynamics (MD) simulation studies of the complex for 100 ns confirm favorable and stable binding of the lead molecule. The MMPBSA calculation of the last 10 ns of the protein-ligand complex trajectory exhibited stable binding of quercetin-3-rutinoside-7-glucoside at the active site of SARS-Cov-2 Mpro. Taken together, the study demonstrates that the non-characteristic compounds present in W. somnifera possess enhanced potential to bind SARS-Cov-2 Mpro active site. We further recommend in vitro and in vivo experimentation to validate the anti-SARS-CoV-2 potential of these lead molecules.
Collapse
Affiliation(s)
- Prem Prakash Kushwaha
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Atul Kumar Singh
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Kumari Sunita Prajapati
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Mohd Shuaib
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
5
|
Singh V, Singh B, Joshi R, Jaju P, Pati PK. Changes in the leaf proteome profile of Withania somnifera (L.) Dunal in response to Alternaria alternata infection. PLoS One 2017; 12:e0178924. [PMID: 28575108 PMCID: PMC5456394 DOI: 10.1371/journal.pone.0178924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/22/2017] [Indexed: 12/11/2022] Open
Abstract
Withania somnifera is a high value medicinal plant which is used against large number of ailments. The medicinal properties of the plant attributes to a wide array of important secondary metabolites. The plant is predominantly infected with leaf spot pathogen Alternaria alternata, which leads to substantial biodeterioration of pharmaceutically important metabolites. To develop an effective strategy to combat this disease, proteomics based approach could be useful. Hence, in the present study, three different protein extraction methods tris-buffer based, phenol based and trichloroacetic acid-acetone (TCA-acetone) based method were comparatively evaluated for two-dimensional electrophoresis (2-DE) analysis of W. somnifera. TCA-acetone method was found to be most effective and was further used to identify differentially expressed proteins in response to fungal infection. Thirty-eight differentially expressed proteins were identified by matrix assisted laser desorption/ionization time of flight-mass spectrometry (MALDI TOF/TOF MS/MS). The known proteins were categorized into eight different groups based on their function and maximum proteins belonged to energy and metabolism, cell structure, stress and defense and RNA/DNA categories. Differential expression of some key proteins were also crosschecked at transcriptomic level by using qRT-PCR and were found to be consistent with the 2-DE data. These outcomes enable us to evaluate modifications that take place at the proteomic level during a compatible host pathogen interaction. The comparative proteome analysis conducted in this paper revealed the involvement of many key proteins in the process of pathogenesis and further investigation of these identified proteins could assist in the discovery of new strategies for the development of pathogen resistance in the plant.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Baldev Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Puneet Jaju
- Field Application Specialist - Life Science Group, Bio-rad Laboratories (India) Pvt. Ltd, Bangalore, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|