1
|
Pivarcsik T, Tóth G, Szemerédi N, Bogdanov A, Spengler G, Kljun J, Kladnik J, Turel I, Enyedy ÉA. Comparison of Solution Chemical Properties and Biological Activity of Ruthenium Complexes of Selected β-Diketone, 8-Hydroxyquinoline and Pyrithione Ligands. Pharmaceuticals (Basel) 2021; 14:518. [PMID: 34072270 PMCID: PMC8226722 DOI: 10.3390/ph14060518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
In this work, the various biological activities of eight organoruthenium(II) complexes were evaluated to reveal correlations with their stability and reactivity in aqueous media. Complexes with general formula [Ru(η6-p-cymene)(X,Y)(Z)] were prepared, where (X,Y) represents either an O,O-ligand (β-diketone), N,O-ligand (8-hydroxyquinoline) or O,S-pyrithione-type ligands (pyrithione = 1-hydroxypyridine-2(1H)-thione) with Cl- or 1,3,5-triaza-7-phosphaadamantane (PTA) as a co-ligand (Z). The tested complexes inhibit the chlamydial growth on HeLa cells, and one of the complexes inhibits the growth of the human herpes simplex virus-2. The chlorido complexes with N,O- and O,S-ligands displayed strong antibacterial activity on Gram-positive strains including the resistant S. aureus (MRSA) and were cytotoxic in adenocarcinoma cell lines. Effect of the structural variation on the biological properties and solution stability was clearly revealed. The decreased bioactivity of the β-diketone complexes can be related to their lower stability in solution. In contrast, the O,S-pyrithione-type complexes are highly stable in solution and the complexation prevents the oxidation of the O,S-ligands. Comparing the binding of PTA and the chlorido co-ligands, it can be concluded that PTA is generally more strongly coordinated to ruthenium, which at the same time decreased the reactivity of complexes with human serum albumin or 1-methylimidazole as well as diminished their bioactivity.
Collapse
Affiliation(s)
- Tamás Pivarcsik
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (G.T.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
| | - Gábor Tóth
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (G.T.)
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.S.); (A.B.)
| | - Anita Bogdanov
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.S.); (A.B.)
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (G.T.)
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.S.); (A.B.)
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (J.K.)
| | - Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (J.K.)
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (J.K.)
| | - Éva A. Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary; (T.P.); (G.T.)
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm Tér 7, H-6720 Szeged, Hungary
| |
Collapse
|
2
|
Li R, Cui L, Chen M, Huang Y. Nanomaterials for Airborne Virus Inactivation: A Short Review. AEROSOL SCIENCE AND ENGINEERING 2021; 5:1-11. [PMCID: PMC7596633 DOI: 10.1007/s41810-020-00080-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) that broke out at the end of 2019 spread rapidly around the world, causing a large number of deaths and serious economic losses. Previous studies showed that aerosol transmission is one of the main pathways for the spread of COVID-19, Therefore, effective control measures are urgently needed to contain the epidemic. Nanomaterials have broad-spectrum antiviral capabilities, and their inactivation for viruses in the air has been extensively studied. This review discusses antiviral nanomaterials such as metal nanomaterials, metal oxide-based nano-photocatalysts, and nonmetallic nanomaterials; summarizes their structure and chemical properties, the efficiency of inactivating viruses, the mechanism of inactivating viruses, and the application of virus purification in the air. This review provides insights on the development and application of antiviral nanomaterials, which can help control the aerosol transmission of viruses.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 People’s Republic of China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, 710061 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Long Cui
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 People’s Republic of China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, 710061 People’s Republic of China
| | - Meijuan Chen
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Yu Huang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 People’s Republic of China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, 710061 People’s Republic of China
| |
Collapse
|
3
|
Ammendolia MG, De Berardis B, Maurizi L, Longhi C. Exposure to TiO 2 Nanoparticles Increases Listeria monocytogenes Infection of Intestinal Epithelial Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2196. [PMID: 33158026 PMCID: PMC7693858 DOI: 10.3390/nano10112196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in a variety of consumer products. Cellular exposure to TiO2 NPs results in complex effects on cell physiology that could impact biological systems. We investigated the behavior of Listeria monocytogenes in intestinal epithelial cells pre-treated with either a low or high (1 and 20 µg/cm2) dose of TiO2 NPs. Our results indicate that the pre-treated cells with a low dose became more permissive to listeria infection; indeed, both adhesion and invasion were significantly increased compared to control. Increased invasion seems to be correlated to cytoskeletal alterations induced by nanoparticles, and higher bacterial survival might be due to the high levels of listeriolysin O that protects L. monocytogenes from reactive oxygen species (ROS). The potential risk of increased susceptibility to L. monocytogenes infection related to long-term intake of nanosized TiO2 at low doses should be considered.
Collapse
Affiliation(s)
- Maria Grazia Ammendolia
- National Center of Innovative Technologies in Public Health, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Barbara De Berardis
- National Center of Innovative Technologies in Public Health, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Linda Maurizi
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (C.L.)
| | - Catia Longhi
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (C.L.)
| |
Collapse
|
4
|
Baaity Z, Breunig S, Önder K, Somogyvári F. Direct qPCR is a sensitive approach to detect Mycoplasma contamination in U937 cell cultures. BMC Res Notes 2019; 12:720. [PMID: 31675990 PMCID: PMC6823952 DOI: 10.1186/s13104-019-4763-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/24/2019] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE We aim to directly detect Mycoplasma DNA in a U937 suspension cell culture without using DNA purification. In order to make Mycoplasma contamination monitoring easier, we optimized a commercially available quantitative PCR (qPCR)-based detection kit. We compared the sensitivity of direct qPCR against qPCR with a purified DNA template. RESULTS Our findings indicate that qPCR worked optimally with a 6 μl sample volume and a 52 °C annealing-extension temperature. We were able to decrease the annealing-extension step time from 60 to 20 s without any major decrease in reaction sensitivity. The total cycle time of optimized direct qPCR was 65 min. The optimized qPCR protocol was used to detect Mycoplasma DNA before and after DNA purification. Our findings indicate that direct qPCR had a higher sensitivity than regular qPCR. Ct levels produced by direct qPCR with 6 μl templates were almost identical to Ct levels produced by regular qPCR with DNA purified from a 60 μl cell culture sample (23.42 vs 23.49 average Ct levels, respectively). The optimized direct qPCR protocol was successfully applied to monitor the elimination of Mycoplasma contamination from U937 cell cultures.
Collapse
Affiliation(s)
- Zain Baaity
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm sq. 10., Szeged, 6720, Hungary
| | - Sven Breunig
- Procomcure Biotech GmbH, Breitwies 1, 5303, Thalgau, Austria
| | - Kamil Önder
- Procomcure Biotech GmbH, Breitwies 1, 5303, Thalgau, Austria
| | - Ferenc Somogyvári
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm sq. 10., Szeged, 6720, Hungary.
| |
Collapse
|
5
|
Vanić Ž, Rukavina Z, Manner S, Fallarero A, Uzelac L, Kralj M, Amidžić Klarić D, Bogdanov A, Raffai T, Virok DP, Filipović-Grčić J, Škalko-Basnet N. Azithromycin-liposomes as a novel approach for localized therapy of cervicovaginal bacterial infections. Int J Nanomedicine 2019; 14:5957-5976. [PMID: 31440052 PMCID: PMC6679693 DOI: 10.2147/ijn.s211691] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/25/2019] [Indexed: 01/09/2023] Open
Abstract
Background Efficient localized cervicovaginal antibacterial therapy, enabling the delivery of antibiotic to the site of action at lower doses while escaping systemic drug effects and reducing the risk of developing microbial resistance, is attracting considerable attention. Liposomes have been shown to allow sustained drug release into vaginal mucosa and improve delivery of antibiotics to bacterial cells and biofilms. Azithromycin (AZI), a potent broad-spectrum macrolide antibiotic, has not yet been investigated for localized therapy of cervicovaginal infections, although it is administered orally for the treatment of sexually transmitted diseases. Encapsulation of AZI in liposomes could improve its solubility, antibacterial activity, and allow the prolonged drug release in the cervicovaginal tissue, while avoiding systemic side effects. Purpose The objective of this study was to develop AZI-liposomes and explore their potentials for treating cervicovaginal infections. Methods AZI-liposomes that differed in bilayer elasticity/rigidity and surface charge were prepared and evaluated under simulated cervicovaginal conditions to yield optimized liposomes, which were assessed for antibacterial activity against several planktonic and biofilm-forming Escherichia coli strains and intracellular Chlamydia trachomatis, ex vivo AZI vaginal deposition/penetration, and in vitro cytotoxicity toward cervical cells. Results Negatively charged liposomes with rigid bilayers (CL-3), propylene glycol liposomes (PGL-2) and deformable propylene glycol liposomes (DPGL-2) were efficient against planktonic E. coli ATCC 700928 and K-12. CL-3 was superior for preventing the formation of E. coli ATCC 700928 and K-12 biofilms, with IC50 values (concentrations that inhibit biofilm viability by 50%) up to 8-fold lower than those of the control (free AZI). DPGL-2 was the most promising for eradication of already formed E. coli biofilms and for treating C. trachomatis infections. All AZI-liposomes were biocompatible with cervical cells and improved localization of the drug inside vaginal tissue compared with the control. Conclusion The performed studies confirm the potentials of AZI-liposomes for localized cervicovaginal therapy.
Collapse
Affiliation(s)
- Željka Vanić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Zora Rukavina
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Suvi Manner
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi and University of Helsinki, 20520 Turku, Finland
| | - Adyary Fallarero
- Division of Pharmaceutical Biosciences, Pharmaceutical Biology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Lidija Uzelac
- Department of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Marijeta Kralj
- Department of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Daniela Amidžić Klarić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Bogdanov
- Department of Medical Microbiology and Immunobiology, University of Szeged, 6720 Szeged, Hungary
| | - Tímea Raffai
- Department of Medical Microbiology and Immunobiology, University of Szeged, 6720 Szeged, Hungary
| | - Dezső Peter Virok
- Department of Medical Microbiology and Immunobiology, University of Szeged, 6720 Szeged, Hungary
| | - Jelena Filipović-Grčić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø the Arctic University of Norway, 5037 Tromsø, Norway
| |
Collapse
|
6
|
Meštrović T, Virok DP, Ljubin-Sternak S, Raffai T, Burián K, Vraneš J. Antimicrobial Resistance Screening in Chlamydia trachomatis by Optimized McCoy Cell Culture System and Direct qPCR-Based Monitoring of Chlamydial Growth. Methods Mol Biol 2019; 2042:33-43. [PMID: 31385269 DOI: 10.1007/978-1-4939-9694-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obligate intracellular localization of Chlamydia trachomatis (C. trachomatis) complicates antimicrobial sensitivity testing efforts that we are so accustomed to in routine bacteriology. Cell culture systems with immunofluorescence staining, to identify cellular inclusions in the presence of various concentrations of antimicrobial drugs, are still the most pervasive techniques, but more specific and sensitive nucleic acid concentration measuring methods are increasingly being used. Here we describe how to approach antimicrobial susceptibility/resistance screening in C. trachomatis by using a McCoy cell culture system, optimized by a research group from Croatia, and direct qPCR-based monitoring of chlamydial growth, optimized by a research group from Hungary.
Collapse
Affiliation(s)
- Tomislav Meštrović
- University North, University Centre Varaždin, Varaždin, Croatia.
- Clinical Microbiology and Parasitology Unit, Polyclinic "Dr. Zora Profozić", Zagreb, Croatia.
| | - Dezső P Virok
- Institute of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Sunčanica Ljubin-Sternak
- Medical Microbiology Department, School of Medicine, University of Zagreb, Zagreb, Croatia
- Clinical Microbiology Department, Teaching Institute of Public Health "Dr. Andrija Štampar", Zagreb, Croatia
| | - Tímea Raffai
- Institute of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Katalin Burián
- Institute of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Jasmina Vraneš
- Medical Microbiology Department, School of Medicine, University of Zagreb, Zagreb, Croatia
- Clinical Microbiology Department, Teaching Institute of Public Health "Dr. Andrija Štampar", Zagreb, Croatia
| |
Collapse
|