1
|
Khan HA, Neyaz LA, Malak HA, Alshehri WA, Elbanna K, Organji SR, Asiri FH, Aldosari MS, Abulreesh HH. Diversity and antimicrobial susceptibility patterns of clinical and environmental Salmonella enterica serovars in Western Saudi Arabia. Folia Microbiol (Praha) 2024; 69:1305-1317. [PMID: 38767834 DOI: 10.1007/s12223-024-01172-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
The diverse environmental distribution of Salmonella makes it a global source of human gastrointestinal infections. This study aimed to detect Salmonella spp. and explore their diversity and antimicrobial susceptibility patterns in clinical and environmental samples. Pre-enrichment, selective enrichment, and selective plating techniques were adopted for the Salmonella detection whereas the API 20E test and Vitek Compact 2 system were used to confirm the identity of isolates. Salmonella serovars were subjected to molecular confirmation by 16S rDNA gene sequencing. Disc diffusion method and Vitek 2 Compact system determined the antibiotic susceptibility of Salmonella serovars. Multiple antibiotic resistance index (MARI) was calculated to explore whether Salmonella serovars originate from areas with heavy antibiotic usage. Results depicted low Salmonella prevalence in clinical and environmental samples (3.5%). The main detected serovars included Salmonella Typhimurium, S. enteritidis, S. Infantis, S. Newlands, S. Heidelberg, S. Indian, S. Reading, and S. paratyphi C. All the detected Salmonella serovars (27) exhibited multidrug resistance to three or more antimicrobial classes. The study concludes that the overall Salmonella serovars prevalence was found to be low in environmental and clinical samples of Western Saudi Arabia (Makkah and Jeddah). However, antimicrobial susceptibility patterns of human and environmental Salmonella serovars revealed that all isolates exhibited multidrug-resistance (MDR) patterns to frequently used antibiotics, which might reflect antibiotic overuse in clinical and veterinary medicine. It would be suitable to apply and enforce rules and regulations from the One Health approach, which aim to prevent antibiotic resistance infections, enhance food safety, and improve human and animal health, given that all Salmonella spp. detected in this investigation were exhibiting MDR patterns.
Collapse
Affiliation(s)
- Hajrah A Khan
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Leena A Neyaz
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hesham A Malak
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Wafa A Alshehri
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khaled Elbanna
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Sameer R Organji
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Fatimah H Asiri
- King Abdulaziz Hospital, Ministry of Health, Makkah, Saudi Arabia
| | | | - Hussein H Abulreesh
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
| |
Collapse
|
2
|
Dixon MH, Nellore D, Zaacks SC, Barak JD. Time of arrival during plant disease progression and humidity additively influence Salmonella enterica colonization of lettuce. Appl Environ Microbiol 2024; 90:e0131124. [PMID: 39207142 PMCID: PMC11409676 DOI: 10.1128/aem.01311-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The interplay between plant hosts, phytopathogenic bacteria, and enteric human pathogens in the phyllosphere has consequences for human health. Salmonella enterica has been known to take advantage of phytobacterial infection to increase its success on plants, but there is little knowledge of additional factors that may influence the relationship between enteric pathogens and plant disease. In this study, we investigated the role of humidity and the extent of plant disease progression on S. enterica colonization of plants. We found that high humidity was necessary for the replication of S. enterica on diseased lettuce, but not required for S. enterica ingress into the UV-protected apoplast. Additionally, the Xanthomonas hortorum pv. vitians (hereafter, X. vitians)-infected lettuce host was found to be a relatively hostile environment for S. enterica when it arrived prior to the development of watersoaking or following necrosis onset, supporting the existence of an ideal window during X. vitians infection progress that maximizes S. enterica survival. In vitro growth studies in sucrose media suggest that X. vitians may allow S. enterica to benefit from cross-feeding during plant infection. Overall, this study emphasizes the role of phytobacterial disease as a driver of S. enterica success in the phyllosphere, demonstrates how the time of arrival during disease progress can influence S. enterica's fate in the apoplast, and highlights the potential for humidity to transform an infected apoplast into a growth-promoting environment for bacterial colonizers. IMPORTANCE Bacterial leaf spot of lettuce caused by Xanthomonas hortorum pv. vitians is a common threat to leafy green production. The global impact caused by phytopathogens, including X. vitians, is likely to increase with climate change. We found that even under a scenario where increased humidity did not enhance plant disease, high humidity had a substantial effect on facilitating Salmonella enterica growth on Xanthomonas-infected plants. High humidity climates may directly contribute to the survival of human enteric pathogens in crop fields or indirectly affect bacterial survival via changes to the phyllosphere brought on by phytopathogen disease.
Collapse
Affiliation(s)
- Megan H. Dixon
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - Dharshita Nellore
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Sonia C. Zaacks
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeri D. Barak
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Chevez ZR, Dunn LL, da Silva ALBR, Rodrigues C. Prevalence of STEC virulence markers and Salmonella as a function of abiotic factors in agricultural water in the southeastern United States. Front Microbiol 2024; 15:1320168. [PMID: 38832116 PMCID: PMC11144861 DOI: 10.3389/fmicb.2024.1320168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Fresh produce can be contaminated by enteric pathogens throughout crop production, including through contact with contaminated agricultural water. The most common outbreaks and recalls in fresh produce are due to contamination by Salmonella enterica and Shiga toxin-producing E. coli (STEC). Thus, the objectives of this study were to investigate the prevalence of markers for STEC (wzy, hly, fliC, eaeA, rfbE, stx-I, stx-II) and Salmonella (invA) in surface water sources (n = 8) from produce farms in Southwest Georgia and to determine correlations among the prevalence of virulence markers for STEC, water nutrient profile, and environmental factors. Water samples (500 mL) from eight irrigation ponds were collected from February to December 2021 (n = 88). Polymerase chain reaction (PCR) was used to screen for Salmonella and STEC genes, and Salmonella samples were confirmed by culture-based methods. Positive samples for Salmonella were further serotyped. Particularly, Salmonella was detected in 6/88 (6.81%) water samples from all ponds, and the following 4 serotypes were detected: Saintpaul 3/6 (50%), Montevideo 1/6 (16.66%), Mississippi 1/6 (16.66%), and Bareilly 1/6 (16.66%). Salmonella isolates were only found in the summer months (May-Aug.). The most prevalent STEC genes were hly 77/88 (87.50%) and stx-I 75/88 (85.22%), followed by fliC 54/88 (61.63%), stx-II 41/88 (46.59%), rfbE 31/88 (35.22%), and eaeA 28/88 (31.81%). The wzy gene was not detected in any of the samples. Based on a logistic regression analysis, the odds of codetection for STEC virulence markers (stx-I, stx-II, and eaeA) were negatively correlated with calcium and relative humidity (p < 0.05). A conditional forest analysis was performed to assess predictive performance (AUC = 0.921), and the top predictors included humidity, nitrate, calcium, and solar radiation. Overall, information from this research adds to a growing body of knowledge regarding the risk that surface water sources pose to produce grown in subtropical environmental conditions and emphasizes the importance of understanding the use of abiotic factors as a holistic approach to understanding the microbial quality of water.
Collapse
Affiliation(s)
- Zoila R. Chevez
- Department of Horticulture, Auburn University, Auburn, AL, United States
| | - Laurel L. Dunn
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
| | | | - Camila Rodrigues
- Department of Horticulture, Auburn University, Auburn, AL, United States
| |
Collapse
|
4
|
Goforth M, Obergh V, Park R, Porchas M, Crosby KM, Jifon JL, Ravishankar S, Brierley P, Leskovar DL, Turini TA, Schultheis J, Coolong T, Miller R, Koiwa H, Patil BS, Cooper MA, Huynh S, Parker CT, Guan W, Cooper KK. Bacterial diversity and composition on the rinds of specific melon cultivars and hybrids from across different growing regions in the United States. PLoS One 2024; 19:e0293861. [PMID: 38603714 PMCID: PMC11008840 DOI: 10.1371/journal.pone.0293861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/03/2024] [Indexed: 04/13/2024] Open
Abstract
The goal of this study was to characterize the bacterial diversity on different melon varieties grown in different regions of the US, and determine the influence that region, rind netting, and variety of melon has on the composition of the melon microbiome. Assessing the bacterial diversity of the microbiome on the melon rind can identify antagonistic and protagonistic bacteria for foodborne pathogens and spoilage organisms to improve melon safety, prolong shelf-life, and/or improve overall plant health. Bacterial community composition of melons (n = 603) grown in seven locations over a four-year period were used for 16S rRNA gene amplicon sequencing and analysis to identify bacterial diversity and constituents. Statistically significant differences in alpha diversity based on the rind netting and growing region (p < 0.01) were found among the melon samples. Principal Coordinate Analysis based on the Bray-Curtis dissimilarity distance matrix found that the melon bacterial communities clustered more by region rather than melon variety (R2 value: 0.09 & R2 value: 0.02 respectively). Taxonomic profiling among the growing regions found Enterobacteriaceae, Bacillaceae, Microbacteriaceae, and Pseudomonadaceae present on the different melon rinds at an abundance of ≥ 0.1%, but no specific core microbiome was found for netted melons. However, a core of Pseudomonadaceae, Bacillaceae, and Exiguobacteraceae were found for non-netted melons. The results of this study indicate that bacterial diversity is driven more by the region that the melons were grown in compared to rind netting or melon type. Establishing the foundation for regional differences could improve melon safety, shelf-life, and quality as well as the consumers' health.
Collapse
Affiliation(s)
- Madison Goforth
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States of America
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
| | - Victoria Obergh
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States of America
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
| | - Richard Park
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States of America
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
| | - Martin Porchas
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Yuma Center of Excellence for Desert Agriculture, University of Arizona, Yuma, AZ, United States of America
| | - Kevin M. Crosby
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Vegetable & Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States of America
| | - John L. Jifon
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Vegetable & Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States of America
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States of America
| | - Sadhana Ravishankar
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States of America
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
| | - Paul Brierley
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Yuma Center of Excellence for Desert Agriculture, University of Arizona, Yuma, AZ, United States of America
| | - Daniel L. Leskovar
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Vegetable & Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States of America
- Texas A&M AgriLife Research and Extension Center, Texas A&M System, Uvalde, TX, United States of America
| | - Thomas A. Turini
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- University of California Cooperative Extension, Fresno, CA, United States of America
| | - Jonathan Schultheis
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Department of Horticultural Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Timothy Coolong
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Department of Horticulture, University of Georgia, Athens, GA, United States of America
| | - Rhonda Miller
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Department of Animal Science, Texas A&M University, College Station, TX, United States of America
| | - Hisashi Koiwa
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Vegetable & Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States of America
| | - Bhimanagouda S. Patil
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Vegetable & Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States of America
| | - Margarethe A. Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States of America
| | - Steven Huynh
- Produce Safety and Microbiology, Agricultural Research Service, USDA, Albany, CA, United States of America
| | - Craig T. Parker
- Produce Safety and Microbiology, Agricultural Research Service, USDA, Albany, CA, United States of America
| | - Wenjing Guan
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States of America
- Southwest Purdue Agricultural Center, Vincennes, IN, United States of America
| | - Kerry K. Cooper
- USDA National Center of Excellence for Melon at the Vegetable and Fruit Improvement Center of Texas A&M University, College Station, TX, United States of America
- Yuma Center of Excellence for Desert Agriculture, University of Arizona, Yuma, AZ, United States of America
- BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
5
|
Acheamfour CL, Parveen S, Gutierrez A, Handy ET, Behal S, Kim D, Kim S, East C, Xiong R, Haymaker JR, Micallef SA, Rosenberg Goldstein RE, Kniel KE, Sapkota AR, Hashem F, Sharma M. Detection of Salmonella enterica and Listeria monocytogenes in alternative irrigation water by culture and qPCR-based methods in the Mid-Atlantic U.S. Microbiol Spectr 2024; 12:e0353623. [PMID: 38376152 PMCID: PMC10986563 DOI: 10.1128/spectrum.03536-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Alternative irrigation waters (rivers, ponds, and reclaimed water) can harbor bacterial foodborne pathogens like Salmonella enterica and Listeria monocytogenes, potentially contaminating fruit and vegetable commodities. Detecting foodborne pathogens using qPCR-based methods may accelerate testing methods and procedures compared to culture-based methods. This study compared detection of S. enterica and L. monocytogenes by qPCR (real-time PCR) and culture methods in irrigation waters to determine the influence of water type (river, pond, and reclaimed water), season (winter, spring, summer, and fall), or volume (0.1, 1, and 10 L) on sensitivity, accuracy, specificity, and positive (PPV), and negative (NPV) predictive values of these methods. Water samples were collected by filtration through modified Moore swabs (MMS) over a 2-year period at 11 sites in the Mid-Atlantic U.S. on a bi-weekly or monthly schedule. For qPCR, bacterial DNA from culture-enriched samples (n = 1,990) was analyzed by multiplex qPCR specific for S. enterica and L. monocytogenes. For culture detection, enriched samples were selectively enriched, isolated, and PCR confirmed. PPVs for qPCR detection of S. enterica and L. monocytogenes were 68% and 67%, respectively. The NPV were 87% (S. enterica) and 85% (L. monocytogenes). Higher levels of qPCR/culture agreement were observed in spring and summer compared to fall and winter for S. enterica; for L. monocytogenes, lower levels of agreement were observed in winter compared to spring, summer, and fall. Reclaimed and pond water supported higher levels of qPCR/culture agreement compared to river water for both S. enterica and L. monocytogenes, indicating that water type may influence the agreement of these results. IMPORTANCE Detecting foodborne pathogens in irrigation water can inform interventions and management strategies to reduce risk of contamination and illness associated with fresh and fresh-cut fruits and vegetables. The use of non-culture methods like qPCR has the potential to accelerate the testing process. Results indicated that pond and reclaimed water showed higher levels of agreement between culture and qPCR methods than river water, perhaps due to specific physiochemical characteristics of the water. These findings also show that season and sample volume affect the agreement of qPCR and culture results. Overall, qPCR methods could be more confidently utilized to determine the absence of Salmonella enterica and Listeria monocytogenes in irrigation water samples examined in this study.
Collapse
Affiliation(s)
- Chanelle L. Acheamfour
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
- Department of Biological Sciences, Delaware State University, Dover, Delaware, USA
| | - Salina Parveen
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Alan Gutierrez
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland, USA
| | - Eric T. Handy
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland, USA
| | - Sara Behal
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland, USA
| | - Donghyun Kim
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland, USA
| | - Seongyun Kim
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland, USA
- Department of Environmental System Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Cheryl East
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland, USA
| | - Ray Xiong
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland, USA
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, USA
| | - Joseph R. Haymaker
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Shirley A. Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
| | - Rachel E. Rosenberg Goldstein
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Kalmia E. Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, USA
| | - Amy R. Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Fawzy Hashem
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Manan Sharma
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, Maryland, USA
| |
Collapse
|
6
|
Weller DL, Murphy CM, Love TMT, Danyluk MD, Strawn LK. Methodological differences between studies confound one-size-fits-all approaches to managing surface waterways for food and water safety. Appl Environ Microbiol 2024; 90:e0183523. [PMID: 38214516 PMCID: PMC10880618 DOI: 10.1128/aem.01835-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
Even though differences in methodology (e.g., sample volume and detection method) have been shown to affect observed microbial water quality, multiple sampling and laboratory protocols continue to be used for water quality monitoring. Research is needed to determine how these differences impact the comparability of findings to generate best management practices and the ability to perform meta-analyses. This study addresses this knowledge gap by compiling and analyzing a data set representing 2,429,990 unique data points on at least one microbial water quality target (e.g., Salmonella presence and Escherichia coli concentration). Variance partitioning analysis was used to quantify the variance in likelihood of detecting each pathogenic target that was uniquely and jointly attributable to non-methodological versus methodological factors. The strength of the association between microbial water quality and select methodological and non-methodological factors was quantified using conditional forest and regression analysis. Fecal indicator bacteria concentrations were more strongly associated with non-methodological factors than methodological factors based on conditional forest analysis. Variance partitioning analysis could not disentangle non-methodological and methodological signals for pathogenic Escherichia coli, Salmonella, and Listeria. This suggests our current perceptions of foodborne pathogen ecology in water systems are confounded by methodological differences between studies. For example, 31% of total variance in likelihood of Salmonella detection was explained by methodological and/or non-methodological factors, 18% was jointly attributable to both methodological and non-methodological factors. Only 13% of total variance was uniquely attributable to non-methodological factors for Salmonella, highlighting the need for standardization of methods for microbiological water quality testing for comparison across studies.IMPORTANCEThe microbial ecology of water is already complex, without the added complications of methodological differences between studies. This study highlights the difficulty in comparing water quality data from projects that used different sampling or laboratory methods. These findings have direct implications for end users as there is no clear way to generalize findings in order to characterize broad-scale ecological phenomenon and develop science-based guidance. To best support development of risk assessments and guidance for monitoring and managing waters, data collection and methods need to be standardized across studies. A minimum set of data attributes that all studies should collect and report in a standardized way is needed. Given the diversity of methods used within applied and environmental microbiology, similar studies are needed for other microbiology subfields to ensure that guidance and policy are based on a robust interpretation of the literature.
Collapse
Affiliation(s)
- Daniel L. Weller
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Claire M. Murphy
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Tanzy M. T. Love
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Michelle D. Danyluk
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Laura K. Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
7
|
Phillippe AJ, Wagner KL, Will RE, Zou CB. Escherichia coli efflux from rangeland ecosystems in the southcentral Great Plains of the United States. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:78-89. [PMID: 37902423 DOI: 10.1002/jeq2.20527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023]
Abstract
Bacterial contamination of surface water is a public health concern. To quantify the efflux of Escherichia coli into ephemeral and intermittent streams and assess its numbers in relation to secondary body contact standards, we monitored runoff and measured E. coli numbers from 10 experimental watersheds that differed in vegetation cover and cattle access in north-central Oklahoma. Escherichia coli numbers were not significantly different among the watersheds, with one exception; the grazed prairie watershed (GP1) had greater numbers compared to one ungrazed prairie watershed (UP2). Median E. coli numbers in runoff from ungrazed watersheds ranged from 260 to 1482 MPN/100 mL in comparison with grazed watersheds that ranged from 320 to 8878 MPN/100 mL. In the GP1 watershed, higher cattle stocking rates during pre- and post-calving (February-May) resulted in significantly greater bacterial numbers and event loading compared to periods with lower stocking rates. The lack of significance among watersheds is likely due to the grazed sites being rotationally (and lightly) grazed, data variability, and wildlife contributions. To address wildlife sources, we used camera trap data to assess the usage in the watersheds; however, the average number of animals in a 24-h period did not correlate with observed median E. coli numbers. Because of its impacts on E. coli numbers in water, grazing management (stocking rate, rotation, and timing) should be considered for improving water quality in streams and reservoirs.
Collapse
Affiliation(s)
- Austin J Phillippe
- Department of Natural Resource Ecology and Management, Oklahoma State University, Oklahoma City, Oklahoma, USA
- Oklahoma Water Resources Center, Oklahoma State University, Oklahoma City, Oklahoma, USA
| | - Kevin L Wagner
- Oklahoma Water Resources Center, Oklahoma State University, Oklahoma City, Oklahoma, USA
- Department of Plant and Soil Sciences, Oklahoma State University, Oklahoma City, Oklahoma, USA
| | - Rodney E Will
- Department of Natural Resource Ecology and Management, Oklahoma State University, Oklahoma City, Oklahoma, USA
| | - Chris B Zou
- Department of Natural Resource Ecology and Management, Oklahoma State University, Oklahoma City, Oklahoma, USA
| |
Collapse
|
8
|
Hsu TTD, Yu D, Wu M. Predicting Fecal Indicator Bacteria Using Spatial Stream Network Models in A Mixed-Land-Use Suburban Watershed in New Jersey, USA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4743. [PMID: 36981647 PMCID: PMC10049084 DOI: 10.3390/ijerph20064743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Good water quality safeguards public health and provides economic benefits through recreational opportunities for people in urban and suburban environments. However, expanding impervious areas and poorly managed sanitary infrastructures result in elevated concentrations of fecal indicator bacteria and waterborne pathogens in adjacent waterways and increased waterborne illness risk. Watershed characteristics, such as urban land, are often associated with impaired microbial water quality. Within the proximity of the New York-New Jersey-Pennsylvania metropolitan area, the Musconetcong River has been listed in the Clean Water Act's 303 (d) List of Water Quality-Limited Waters due to high concentrations of fecal indicator bacteria (FIB). In this study, we aimed to apply spatial stream network (SSN) models to associate key land use variables with E. coli as an FIB in the suburban mixed-land-use Musconetcong River watershed in the northwestern New Jersey. The SSN models explicitly account for spatial autocorrelation in stream networks and have been widely utilized to identify watershed attributes linked to deteriorated water quality indicators. Surface water samples were collected from the five mainstem and six tributary sites along the middle section of the Musconetcong River from May to October 2018. The log10 geometric means of E. coli concentrations for all sampling dates and during storm events were derived as response variables for the SSN modeling, respectively. A nonspatial model based on an ordinary least square regression and two spatial models based on Euclidean and stream distance were constructed to incorporate four upstream watershed attributes as explanatory variables, including urban, pasture, forest, and wetland. The results indicate that upstream urban land was positively and significantly associated with the log10 geometric mean concentrations of E. coli for all sampling cases and during storm events, respectively (p < 0.05). Prediction of E. coli concentrations by SSN models identified potential hot spots prone to water quality deterioration. The results emphasize that anthropogenic sources were the main threats to microbial water quality in the suburban Musconetcong River watershed. The SSN modeling approaches from this study can serve as a novel microbial water quality modeling framework for other watersheds to identify key land use stressors to guide future urban and suburban water quality restoration directions in the USA and beyond.
Collapse
Affiliation(s)
- Tsung-Ta David Hsu
- New Jersey Center for Water Science and Technology, Montclair State University, Montclair, NJ 07043, USA
| | - Danlin Yu
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA
| | - Meiyin Wu
- New Jersey Center for Water Science and Technology, Montclair State University, Montclair, NJ 07043, USA
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA
| |
Collapse
|
9
|
Weller DL, Love TMT, Weller DE, Murphy CM, Rahm BG, Wiedmann M. Structural Equation Models Suggest That On-Farm Noncrop Vegetation Removal Is Not Associated with Improved Food Safety Outcomes but Is Linked to Impaired Water Quality. Appl Environ Microbiol 2022; 88:e0160022. [PMID: 36409131 PMCID: PMC9746293 DOI: 10.1128/aem.01600-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
While growers have reported pressures to minimize wildlife intrusion into produce fields through noncrop vegetation (NCV) removal, NCV provides key ecosystem services. To model food safety and environmental tradeoffs associated with NCV removal, published and publicly available food safety and water quality data from the Northeastern United States were obtained. Because data on NCV removal are not widely available, forest-wetland cover was used as a proxy, consistent with previous studies. Structural equation models (SEMs) were used to quantify the effect of forest-wetland cover on (i) food safety outcomes (e.g., detecting pathogens in soil) and (ii) water quality (e.g., nutrient levels). Based on the SEMs, NCV was not associated with or had a protective effect on food safety outcomes (more NCV was associated with a reduced likelihood of pathogen detection). The probabilities of detecting Listeria spp. in soil (effect estimate [EE] = -0.17; P = 0.005) and enterohemorrhagic Escherichia coli in stream samples (EE = -0.27; P < 0.001) were negatively associated with the amount of NCV surrounding the sampling site. Larger amounts of NCV were also associated with lower nutrient, salinity, and sediment levels, and higher dissolved oxygen levels. Total phosphorous levels were negatively associated with the amount of NCV in the upstream watershed (EE = -0.27; P < 0.001). Similar negative associations (P < 0.05) were observed for other physicochemical parameters, such as nitrate (EE = -0.38). Our findings suggest that NCV should not be considered an inherent produce safety risk or result in farm audit demerits. This study also provides a framework for evaluating environmental tradeoffs associated with using specific preharvest food safety strategies. IMPORTANCE Currently, on-farm food safety decisions are typically made independently of conservation considerations, often with detrimental impacts on agroecosystems. Comanaging agricultural environments to simultaneously meet conservation and food safety aims is complicated because farms are closely linked to surrounding environments, and management decisions can have unexpected environmental, economic, and food safety consequences. Thus, there is a need for research on the conservation and food safety tradeoffs associated with implementing specific preharvest food safety practices. Understanding these tradeoffs is critical for developing adaptive comanagement strategies and ensuring the short- and long-term safety, sustainability, and profitability of agricultural systems. This study quantifies tradeoffs and synergies between food safety and environmental aims, and outlines a framework for modeling tradeoffs and synergies between management aims that can be used to support future comanagement research.
Collapse
Affiliation(s)
- Daniel L. Weller
- Department of Food Science, Cornell University, Ithaca, New York, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Tanzy M. T. Love
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Donald E. Weller
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Claire M. Murphy
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Brian G. Rahm
- Virginia Polytechnic and State University, Blacksburg, Virginia, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
Nguyen KH, Smith S, Roundtree A, Feistel DJ, Kirby AE, Levy K, Mattioli MC. Fecal indicators and antibiotic resistance genes exhibit diurnal trends in the Chattahoochee River: Implications for water quality monitoring. Front Microbiol 2022; 13:1029176. [PMID: 36439800 PMCID: PMC9684717 DOI: 10.3389/fmicb.2022.1029176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022] Open
Abstract
Water bodies that serve as sources of drinking or recreational water are routinely monitored for fecal indicator bacteria (FIB) by state and local agencies. Exceedances of monitoring thresholds set by those agencies signal likely elevated human health risk from exposure, but FIB give little information about the potential source of contamination. To improve our understanding of how within-day variation could impact monitoring data interpretation, we conducted a study at two sites along the Chattahoochee River that varied in their recreational usage and adjacent land-use (natural versus urban), collecting samples every 30 min over one 24-h period. We assayed for three types of microbial indicators: FIB (total coliforms and Escherichia coli); human fecal-associated microbial source tracking (MST) markers (crAssphage and HF183/BacR287); and a suite of clinically relevant antibiotic resistance genes (ARGs; blaCTX-M, blaCMY, MCR, KPC, VIM, NDM) and a gene associated with antibiotic resistance (intl1). Mean levels of FIB and clinically relevant ARGs (blaCMY and KPC) were similar across sites, while MST markers and intI1 occurred at higher mean levels at the natural site. The human-associated MST markers positively correlated with antibiotic resistant-associated genes at both sites, but no consistent associations were detected between culturable FIB and any molecular markers. For all microbial indicators, generalized additive mixed models were used to examine diurnal variability and whether this variability was associated with environmental factors (water temperature, turbidity, pH, and sunlight). We found that FIB peaked during morning and early afternoon hours and were not associated with environmental factors. With the exception of HF183/BacR287 at the urban site, molecular MST markers and intI1 exhibited diurnal variability, and water temperature, pH, and turbidity were significantly associated with this variability. For blaCMY and KPC, diurnal variability was present but was not correlated with environmental factors. These results suggest that differences in land use (natural or urban) both adjacent and upstream may impact overall levels of microbial contamination. Monitoring agencies should consider matching sample collection times with peak levels of target microbial indicators, which would be in the morning or early afternoon for the fecal associated indicators. Measuring multiple microbial indicators can lead to clearer interpretations of human health risk associated with exposure to contaminated water.
Collapse
Affiliation(s)
| | - Shanon Smith
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Alexis Roundtree
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Dorian J. Feistel
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Amy E. Kirby
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Karen Levy
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Mia Catharine Mattioli
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
- *Correspondence: Mia Catharine Mattioli,
| |
Collapse
|
11
|
Irrigation water and contamination of fresh produce with bacterial foodborne pathogens. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Persistent Spatial Patterns of Listeria monocytogenes and Salmonella enterica Concentrations in Surface Waters: Empirical Orthogonal Function Analysis of Data from Maryland. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
High spatiotemporal variability of pathogen concentrations in surface waters complicates the design and interpretation of microbial water quality monitoring. Empirical orthogonal function (EOF) analysis can provide spatial patterns (EOFs) of variability in deviations of concentrations in specific locations from the average concentration across the study area. These patterns can be interpreted to assess the effect of environmental factors on pathogen levels in the water. The first and the second EOFs for Listeria monocytogenes explained 84.4% and 9.7% of the total variance of deviations from average, respectively. That percentage was 50.8% and 45.0% for Salmonella enterica. The precipitation also had a strong explanatory capability (79%) of the first EOF. The first EOFs of Listeria and precipitation were similar at pond sites but were opposite to the precipitation at the stream sites. The first EOF of S. enterica and precipitation demonstrated opposite trends, whereas the second S. enterica EOF pattern had similar signs with the precipitation EOF at pond sites, indicating a relationship between rainfall and Salmonella at these sites. Overall, the rainfall data could inform on persistent spatial patterns in concentrations of the two pathogens at the pond sites in farm settings but not at stream sites located in forested areas.
Collapse
|
13
|
Rocha ADDL, Ferrari RG, Pereira WE, de Lima LA, Givisiez PEN, Moreno-Switt AI, Toro M, Delgado-Suárez EJ, Meng J, de Oliveira CJB. Revisiting the Biological Behavior of Salmonella enterica in Hydric Resources: A Meta-Analysis Study Addressing the Critical Role of Environmental Water on Food Safety and Public Health. Front Microbiol 2022; 13:802625. [PMID: 35722289 PMCID: PMC9201643 DOI: 10.3389/fmicb.2022.802625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing number of studies reporting the presence of Salmonella in environmental water sources suggests that it is beyond incidental findings originated from sparse fecal contamination events. However, there is no consensus on the occurrence of Salmonella as its relative serovar representation across non-recycled water sources. We conducted a meta-analysis of proportions by fitting a random-effects model using the restricted maximum-likelihood estimator to obtain the weighted average proportion and between-study variance associated with the occurrence of Salmonella in water sources. Moreover, meta-regression and non-parametric supervised machine learning method were performed to predict the effect of moderators on the frequency of Salmonella in non-recycled water sources. Three sequential steps (identification of information sources, screening and eligibility) were performed to obtain a preliminary selection from identified abstracts and article titles. Questions related to the frequency of Salmonella in aquatic environments, as well as putative differences in the relative frequencies of the reported Salmonella serovars and the role of potential variable moderators (sample source, country, and sample volume) were formulated according to the population, intervention, comparison, and outcome method (PICO). The results were reported according to the Preferred Reporting Items for Systematic Review and Meta-Analyzes statement (PRISMA). A total of 26 eligible papers reporting 148 different Salmonella serovars were retrieved. According to our model, the Salmonella frequency in non-recycled water sources was 0.19 [CI: 0.14; 0.25]. The source of water was identified as the most import variable affecting the frequency of Salmonella, estimated as 0.31 and 0.17% for surface and groundwater, respectively. There was a higher frequency of Salmonella in countries with lower human development index (HDI). Small volume samples of surface water resulted in lower detectable Salmonella frequencies both in high and low HDI regions. Relative frequencies of the 148 serovars were significantly affected only by HDI and volume. Considering that serovars representation can also be affected by water sample volume, efforts toward the standardization of water samplings for monitoring purposes should be considered. Further approaches such as metagenomics could provide more comprehensive insights about the microbial ecology of fresh water and its importance for the quality and safety of agricultural products.
Collapse
Affiliation(s)
- Alan Douglas de Lima Rocha
- Departamento de Zootecnia, Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Rafaela Gomes Ferrari
- Departamento de Zootecnia, Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Walter Esfrain Pereira
- Departamento de Ciências Fundamentais e Sociais, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Laiorayne Araújo de Lima
- Departamento de Zootecnia, Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Patrícia Emília Naves Givisiez
- Departamento de Zootecnia, Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| | - Andrea Isabel Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestla, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magaly Toro
- Laboratorio de Microbiologia y Probioticos, Instituto de Nutricion y Tecnologia de los Alimentos, Universidad de Chile, Santiago, Chile
| | | | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, College Park, MD, United States
| | - Celso José Bruno de Oliveira
- Departamento de Zootecnia, Laboratório de Avaliação de Produtos de Origem Animal (LAPOA), Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, Brazil
| |
Collapse
|
14
|
González-López I, Medrano-Félix JA, Castro-del Campo N, López-Cuevas O, González-Gómez JP, Valdez-Torres JB, Aguirre-Sánchez JR, Martínez-Urtaza J, Gómez-Gil B, Lee BG, Quiñones B, Chaidez C. Prevalence and Genomic Diversity of Salmonella enterica Recovered from River Water in a Major Agricultural Region in Northwestern Mexico. Microorganisms 2022; 10:microorganisms10061214. [PMID: 35744732 PMCID: PMC9228531 DOI: 10.3390/microorganisms10061214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica is a leading cause of human gastrointestinal disease worldwide. Given that Salmonella is persistent in aquatic environments, this study examined the prevalence, levels and genotypic diversity of Salmonella isolates recovered from major rivers in an important agricultural region in northwestern Mexico. During a 13-month period, a total of 143 river water samples were collected and subjected to size-exclusion ultrafiltration, followed by enrichment, and selective media for Salmonella isolation and quantitation. The recovered Salmonella isolates were examined by next-generation sequencing for genome characterization. Salmonella prevalence in river water was lower in the winter months (0.65 MPN/100 mL) and significantly higher in the summer months (13.98 MPN/100 mL), and a Poisson regression model indicated a negative effect of pH and salinity and a positive effect of river water temperature (p = 0.00) on Salmonella levels. Molecular subtyping revealed Oranienburg, Anatum and Saintpaul were the most predominant Salmonella serovars. Single nucleotide polymorphism (SNP)-based phylogeny revealed that the detected 27 distinct serovars from river water clustered in two major clades. Multiple nonsynonymous SNPs were detected in stiA, sivH, and ratA, genes required for Salmonella fitness and survival, and these findings identified relevant markers to potentially develop improved methods for characterizing this pathogen.
Collapse
Affiliation(s)
- Irvin González-López
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán 80110, Sinaloa, Mexico; (I.G.-L.); (N.C.-d.C.); (O.L.-C.); (J.P.G.-G.); (J.B.V.-T.); (J.R.A.-S.)
| | - José Andrés Medrano-Félix
- Investigadoras e Investigadores por México, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán 80110, Sinaloa, Mexico;
| | - Nohelia Castro-del Campo
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán 80110, Sinaloa, Mexico; (I.G.-L.); (N.C.-d.C.); (O.L.-C.); (J.P.G.-G.); (J.B.V.-T.); (J.R.A.-S.)
| | - Osvaldo López-Cuevas
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán 80110, Sinaloa, Mexico; (I.G.-L.); (N.C.-d.C.); (O.L.-C.); (J.P.G.-G.); (J.B.V.-T.); (J.R.A.-S.)
| | - Jean Pierre González-Gómez
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán 80110, Sinaloa, Mexico; (I.G.-L.); (N.C.-d.C.); (O.L.-C.); (J.P.G.-G.); (J.B.V.-T.); (J.R.A.-S.)
| | - José Benigno Valdez-Torres
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán 80110, Sinaloa, Mexico; (I.G.-L.); (N.C.-d.C.); (O.L.-C.); (J.P.G.-G.); (J.B.V.-T.); (J.R.A.-S.)
| | - José Roberto Aguirre-Sánchez
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán 80110, Sinaloa, Mexico; (I.G.-L.); (N.C.-d.C.); (O.L.-C.); (J.P.G.-G.); (J.B.V.-T.); (J.R.A.-S.)
| | - Jaime Martínez-Urtaza
- Department of Genetics and Microbiology, Universitat Autờnoma de Barcelona, 08193 Bellaterra, Spain;
| | - Bruno Gómez-Gil
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Mazatlán, Acuicultura y Manejo Ambiental, Mazatlán 82100, Sinaloa, Mexico;
| | - Bertram G. Lee
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA 94710, USA; (B.G.L.); (B.Q.)
| | - Beatriz Quiñones
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA 94710, USA; (B.G.L.); (B.Q.)
| | - Cristóbal Chaidez
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán 80110, Sinaloa, Mexico; (I.G.-L.); (N.C.-d.C.); (O.L.-C.); (J.P.G.-G.); (J.B.V.-T.); (J.R.A.-S.)
- Correspondence: ; Tel.: +52-(667)-480-6950
| |
Collapse
|
15
|
Salmonella enterica Serovar Diversity, Distribution, and Prevalence in Public Access Waters from a Central California Coastal Leafy Green Growing Region during 2011 - 2016. Appl Environ Microbiol 2021; 88:e0183421. [PMID: 34910555 DOI: 10.1128/aem.01834-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prevalence and serovar diversity of Salmonella enterica was measured during a five-year survey of surface waters in a 500 mi^2 agricultural region of the Central California Coast. Rivers, streams, lakes, and ponds were sampled bimonthly resulting in 2,979 samples. Overall prevalence was 56.4% with higher levels detected in Spring than in Fall. Small, but significant, differences in prevalence were detected based on sample locations. Detection of Salmonella was correlated positively with both significant rain events and, in some environments, levels of generic Escherichia coli. Analysis of 1,936 isolates revealed significant serovar diversity, with 91 different serovars detected. The most common isolated serovars were S. enterica subsp. enterica serovars I 6,8:d:- (406 isolates, 21.0%, and potentially monophasic Salmonella Muenchen), Give (334 isolates, 17.3%), Muenchen (158 isolates, 8.2%), Typhimurium (227 isolates, 11.7%), Oranienburg (106 isolates, 5.5%), and Montevideo (78 isolates, 4%). Sixteen of the 24 most common serovars detected in the region are among the serovars reported to cause the most human salmonellosis in the United States. Some of the serovars were associated with location and seasonal bias. Analysis of XbaI Pulsed Field Gel Electrophoresis (PFGE) patterns of strains of serovars Typhimurium, Oranienburg, and Montevideo showed significant intra-serovar diversity. PFGE pulsotypes were identified in the region for multiple years of the survey, indicating persistence or regular re-introduction to the region. Importance Non-typhoidal Salmonella is the among the leading causes of bacterial foodborne illness and increasing numbers of outbreaks and recalls are due to contaminated produce. High prevalence and 91 different serovars were detected in this leafy green growing region. Seventeen serovars that cause most of the human salmonellosis in the United States were detected, with 16 of those serovars detected in multiple locations and multiple years of the 5-year survey. Understanding the widespread prevalence and diversity of Salmonella in the region will assist in promoting food safety practices and intervention methods for growers and regulators.
Collapse
|
16
|
Prevalence and Antimicrobial Resistance Profiles of Foodborne Pathogens Isolated from Dairy Cattle and Poultry Manure Amended Farms in Northeastern Ohio, the United States. Antibiotics (Basel) 2021; 10:antibiotics10121450. [PMID: 34943663 PMCID: PMC8698512 DOI: 10.3390/antibiotics10121450] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Foodborne pathogens significantly impact public health globally. Excessive antimicrobial use plays a significant role in the development of the public health crisis of antibiotic resistance. Here, we determined the prevalence and antimicrobial resistance profiles of E. coli O157, Salmonella, L. monocytogenes, and Campylobacter isolated between 2016 and 2020 from small scale agricultural settings that were amended with dairy cattle or poultry manure in Northeastern Ohio. The total prevalence of the foodborne pathogens was 19.3%: Campylobacter 8%, Listeria monocytogenes 7.9%, Escherichia coli O157 1.8%, and Salmonella 1.5%. The prevalence was significantly higher in dairy cattle (87.7%) compared to poultry (12.2%) manure amended farms. Furthermore, the prevalence was higher in manure samples (84%) compared to soil samples (15.9%; p < 0.05). Multiple drug resistance was observed in 73%, 77%, 100%, and 57.3% of E. coli O157, Salmonella, L. monocytogenes, and Campylobacter isolates recovered, respectively. The most frequently observed resistance genes were mphA, aadA, and aphA1 in E. coli O157; blaTEM, tet(B), and strA in Salmonella; penA, ampC, lde, ermB, tet(O), and aadB in L. monocytogenes and blaOXA-61, tet(O), and aadE in Campylobacter. Our results highlight the critical need to address the dissemination of foodborne pathogens and antibiotic resistance in agricultural settings.
Collapse
|
17
|
New standards at European Union level on water reuse for agricultural irrigation: Are the Spanish wastewater treatment plants ready to produce and distribute reclaimed water within the minimum quality requirements? Int J Food Microbiol 2021; 356:109352. [PMID: 34385095 DOI: 10.1016/j.ijfoodmicro.2021.109352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022]
Abstract
The new European regulation on minimum quality requirements (MQR) for water reuse (EU, 2020/741) was launched in May 2020 and describes the directives for the use of reclaimed water for agricultural irrigation. This Regulation will be directly applicable in all Member States from 26 June 2023. Since its publication in 2020, concerns have raised about potential non-compliance situations in water reuse systems. The present study represents a case study where three different water reuse systems have been monitored to establish their compliance with the MQR. Each water reuse system includes a wastewater treatment plant (WWTP), a distribution/storage system and an end-user point, where water is used for irrigation of leafy greens. The selected water reuse systems allowed us to compare the efficacy of water treatments implemented in two WWTPs as well as the impact of three different irrigation systems (drip, furrow and overhead irrigation). The presence and concentration of indicator microorganisms (Escherichia coli and C. perfringens spores) as well as pathogenic bacteria (Shiga toxin-producing, E. coli (STEC), E. coli O157:H7, and Salmonella spp.) were monitored in different sampling points (influent and effluent of the WWTPs, water reservoirs located at the distribution system and the end-user point at the irrigation system as well as in the leafy greens during their growing cycle. Average levels of E. coli (0.73 ± 1.20 log cfu E. coli/100 mL) obtained at the point where the WWTP operator delivers reclaimed water to the next actor in the chain, defined in the European regulation as the 'point of compliance', were within the established MQR (<1 log cfu/100 mL) (EU, 2020/741). On the other hand, average levels of E. coli at the end-user point (1.0 ± 1.2 log cfu/100 mL) were below the recommended threshold (2 log cfu E. coli/100 mL) for irrigation water based on the guidance document on microbiological risks in fresh fruits and vegetables at primary production (EC, 2017/C_163/01). However, several outlier points were observed among the samples taken at the irrigation point, which were linked to a specific cross-contamination event within the distribution/storage system. Regarding pathogenic bacteria, water samples from the influent of the WWTPs showed a 100% prevalence, while only 5% of the effluent samples were positive for any of the monitored pathogenic bacteria. Obtained results indicate that reclaimed water produced in the selected water reuse system is suitable to be used as irrigation water. However, efforts are necessary not only in the establishment of advance disinfection treatments but also in the maintenance of the distribution/storage systems.
Collapse
|
18
|
Hernandez SM, Maurer JJ, Yabsley MJ, Peters VE, Presotto A, Murray MH, Curry S, Sanchez S, Gerner-Smidt P, Hise K, Huang J, Johnson K, Kwan T, Lipp EK. Free-Living Aquatic Turtles as Sentinels of Salmonella spp. for Water Bodies. Front Vet Sci 2021; 8:674973. [PMID: 34368271 PMCID: PMC8339271 DOI: 10.3389/fvets.2021.674973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Reptile-associated human salmonellosis cases have increased recently in the United States. It is not uncommon to find healthy chelonians shedding Salmonella enterica. The rate and frequency of bacterial shedding are not fully understood, and most studies have focused on captive vs. free-living chelonians and often in relation to an outbreak. Their ecology and significance as sentinels are important to understanding Salmonella transmission. In 2012-2013, Salmonella prevalence was determined for free-living aquatic turtles in man-made ponds in Clarke and Oconee Counties, in northern Georgia (USA) and the correlation between species, basking ecology, demographics (age/sex), season, or landcover with prevalence was assessed. The genetic relatedness between turtle and archived, human isolates, as well as, other archived animal and water isolates reported from this study area was examined. Salmonella was isolated from 45 of 194 turtles (23.2%, range 14-100%) across six species. Prevalence was higher in juveniles (36%) than adults (20%), higher in females (33%) than males (18%), and higher in bottom-dwelling species (31%; common and loggerhead musk turtles, common snapping turtles) than basking species (15%; sliders, painted turtles). Salmonella prevalence decreased as forest cover, canopy cover, and distance from roads increased. Prevalence was also higher in low-density, residential areas that have 20-49% impervious surface. A total of 9 different serovars of two subspecies were isolated including 3 S. enterica subsp. arizonae and 44 S. enterica subsp. enterica (two turtles had two serotypes isolated from each). Among the S. enterica serovars, Montevideo (n = 13) and Rubislaw (n = 11) were predominant. Salmonella serovars Muenchen, Newport, Mississippi, Inverness, Brazil, and Paratyphi B. var L(+) tartrate positive (Java) were also isolated. Importantly, 85% of the turtle isolates matched pulsed-field gel electrophoresis patterns of human isolates, including those reported from Georgia. Collectively, these results suggest that turtles accumulate Salmonella present in water bodies, and they may be effective sentinels of environmental contamination. Ultimately, the Salmonella prevalence rates in wild aquatic turtles, especially those strains shared with humans, highlight a significant public health concern.
Collapse
Affiliation(s)
- Sonia M Hernandez
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States.,Department of Population Health, Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - John J Maurer
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Michael J Yabsley
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States.,Department of Population Health, Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Valerie E Peters
- Department of Biological Sciences, Eastern Kentucky University, Richmond, KY, United States
| | - Andrea Presotto
- Department of Geography, University of Georgia, Athens, GA, United States
| | - Maureen H Murray
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States.,Department of Population Health, Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Davee Center for Epidemiology and Endocrinology and the Urban Wildlife Institute, Lincoln Park Zoo, Chicago, IL, United States
| | - Shannon Curry
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States.,Department of Population Health, Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Susan Sanchez
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Peter Gerner-Smidt
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Kelley Hise
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Joyce Huang
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States.,Department of Population Health, Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kasey Johnson
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Tiffany Kwan
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Erin K Lipp
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, United States
| |
Collapse
|
19
|
Deaven AM, Ferreira CM, Reed EA, Chen See JR, Lee NA, Almaraz E, Rios PC, Marogi JG, Lamendella R, Zheng J, Bell RL, Shariat NW. Salmonella Genomics and Population Analyses Reveal High Inter- and Intraserovar Diversity in Freshwater. Appl Environ Microbiol 2021; 87:e02594-20. [PMID: 33397693 PMCID: PMC8104997 DOI: 10.1128/aem.02594-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023] Open
Abstract
Freshwater can support the survival of the enteric pathogen Salmonella, though temporal Salmonella diversity in a large watershed has not been assessed. At 28 locations within the Susquehanna River basin, 10-liter samples were assessed in spring and summer over 2 years. Salmonella prevalence was 49%, and increased river discharge was the main driver of Salmonella presence. The amplicon-based sequencing tool, CRISPR-SeroSeq, was used to determine serovar population diversity and detected 25 different Salmonella serovars, including up to 10 serovars from a single water sample. On average, there were three serovars per sample, and 80% of Salmonella-positive samples contained more than one serovar. Serovars Give, Typhimurium, Thompson, and Infantis were identified throughout the watershed and over multiple collections. Seasonal differences were evident: serovar Give was abundant in the spring, whereas serovar Infantis was more frequently identified in the summer. Eight of the ten serovars most commonly associated with human illness were detected in this study. Crucially, six of these serovars often existed in the background, where they were masked by a more abundant serovar(s) in a sample. Serovars Enteritidis and Typhimurium, especially, were masked in 71 and 78% of samples where they were detected, respectively. Whole-genome sequencing-based phylogeny demonstrated that strains within the same serovar collected throughout the watershed were also very diverse. The Susquehanna River basin is the largest system where Salmonella prevalence and serovar diversity have been temporally and spatially investigated, and this study reveals an extraordinary level of inter- and intraserovar diversity.IMPORTANCESalmonella is a leading cause of bacterial foodborne illness in the United States, and outbreaks linked to fresh produce are increasing. Understanding Salmonella ecology in freshwater is of importance, especially where irrigation practices or recreational use occur. As the third largest river in the United States east of the Mississippi, the Susquehanna River is the largest freshwater contributor to the Chesapeake Bay, and it is the largest river system where Salmonella diversity has been studied. Rainfall and subsequent high river discharge rates were the greatest indicators of Salmonella presence in the Susquehanna and its tributaries. Several Salmonella serovars were identified, including eight commonly associated with foodborne illness. Many clinically important serovars were present at a low frequency within individual samples and so could not be detected by conventional culture methods. The technologies employed here reveal an average of three serovars in a 10-liter sample of water and up to 10 serovars in a single sample.
Collapse
Affiliation(s)
- Abigail M Deaven
- Department of Population Health, University of Georgia, Athens, Georgia, USA
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Christina M Ferreira
- Division of Microbiology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Elizabeth A Reed
- Division of Microbiology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | | | - Nora A Lee
- Biology Department, Juniata College, Huntingdon, Pennsylvania, USA
| | - Eduardo Almaraz
- Biology Department, Juniata College, Huntingdon, Pennsylvania, USA
| | - Paula C Rios
- Department of Population Health, University of Georgia, Athens, Georgia, USA
| | - Jacob G Marogi
- Division of Microbiology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | | | - Jie Zheng
- Division of Microbiology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Rebecca L Bell
- Division of Microbiology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Nikki W Shariat
- Department of Population Health, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
20
|
Gu G, Strawn LK, Ottesen AR, Ramachandran P, Reed EA, Zheng J, Boyer RR, Rideout SL. Correlation of Salmonella enterica and Listeria monocytogenes in Irrigation Water to Environmental Factors, Fecal Indicators, and Bacterial Communities. Front Microbiol 2021; 11:557289. [PMID: 33488530 PMCID: PMC7820387 DOI: 10.3389/fmicb.2020.557289] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
Outbreaks of foodborne illnesses linked to fresh fruits and vegetables have been key drivers behind a wide breadth of research aiming to fill data gaps in our understanding of the total ecology of agricultural water sources such as ponds and wells and the relationship of this ecology to foodborne pathogens such as Salmonella enterica and Listeria monocytogenes. Both S. enterica and L. monocytogenes can persist in irrigation water and have been linked to produce contamination events. Data describing the abundance of these organisms in specific agricultural water sources are valuable to guide water treatment measures. Here, we profiled the culture independent water microbiota of four farm ponds and wells correlated with microbiological recovery of S. enterica (prevalence: pond, 19.4%; well, 3.3%), L. monocytogenes (pond, 27.1%; well, 4.2%) and fecal indicator testing. Correlation between abiotic factors, including water parameters (temperature, pH, conductivity, dissolved oxygen percentage, oxidation reduction potential, and turbidity) and weather (temperature and rainfall), and foodborne pathogens were also evaluated. Although abiotic factors did not correlate with recovery of S. enterica or L. monocytogenes (p > 0.05), fecal indicators were positively correlated with incidence of S. enterica in well water. Bacterial taxa such as Sphingomonadaceae and Hymenobacter were positively correlated with the prevalence and population of S. enterica, and recovery of L. monocytogenes was positively correlated with the abundance of Rhizobacter and Comamonadaceae (p < 0.03). These data will support evolving mitigation strategies to reduce the risk of produce contamination by foodborne pathogens through irrigation.
Collapse
Affiliation(s)
- Ganyu Gu
- Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, VA, United States
| | - Laura K Strawn
- Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, VA, United States
| | - Andrea R Ottesen
- Center for Veterinary Medicine, US Food and Drug Administration, Laurel, MD, United States.,Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, United States
| | - Padmini Ramachandran
- Center for Veterinary Medicine, US Food and Drug Administration, Laurel, MD, United States
| | - Elizabeth A Reed
- Center for Veterinary Medicine, US Food and Drug Administration, Laurel, MD, United States
| | - Jie Zheng
- Center for Veterinary Medicine, US Food and Drug Administration, Laurel, MD, United States
| | - Renee R Boyer
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| | - Steven L Rideout
- Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, VA, United States
| |
Collapse
|
21
|
Hudson LK, Constantine-Renna L, Thomas L, Moore C, Qian X, Garman K, Dunn JR, Denes TG. Genomic characterization and phylogenetic analysis of Salmonella enterica serovar Javiana. PeerJ 2020; 8:e10256. [PMID: 33240617 PMCID: PMC7682435 DOI: 10.7717/peerj.10256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023] Open
Abstract
Salmonella enterica serovar Javiana is the fourth most reported serovar of laboratory-confirmed human Salmonella infections in the U.S. and in Tennessee (TN). Although Salmonella ser. Javiana is a common cause of human infection, the majority of cases are sporadic in nature rather than outbreak-associated. To better understand Salmonella ser. Javiana microbial population structure in TN, we completed a phylogenetic analysis of 111 Salmonella ser. Javiana clinical isolates from TN collected from Jan. 2017 to Oct. 2018. We identified mobile genetic elements and genes known to confer antibiotic resistance present in the isolates, and performed a pan-genome-wide association study (pan-GWAS) to compare gene content between clades identified in this study. The population structure of TN Salmonella ser. Javiana clinical isolates consisted of three genetic clades: TN clade I (n = 54), TN clade II (n = 4), and TN clade III (n = 48). Using a 5, 10, and 25 hqSNP distance threshold for cluster identification, nine, 12, and 10 potential epidemiologically-relevant clusters were identified, respectively. The majority of genes that were found to be over-represented in specific clades were located in mobile genetic element (MGE) regions, including genes encoding integrases and phage structures (91.5%). Additionally, a large portion of the over-represented genes from TN clade II (44.9%) were located on an 87.5 kb plasmid containing genes encoding a toxin/antitoxin system (ccdAB). Additionally, we completed phylogenetic analyses of global Salmonella ser. Javiana datasets to gain a broader insight into the population structure of this serovar. We found that the global phylogeny consisted of three major clades (one of which all of the TN isolates belonged to) and two cgMLST eBurstGroups (ceBGs) and that the branch length between the two Salmonella ser. Javiana ceBGs (1,423 allelic differences) was comparable to those from other serovars that have been reported as polyphyletic (929–2,850 allelic differences). This study demonstrates the population structure of TN and global Salmonella ser. Javiana isolates, a clinically important Salmonella serovar and can provide guidance for phylogenetic cluster analyses for public health surveillance and response.
Collapse
Affiliation(s)
- Lauren K Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN, United States of America
| | | | - Linda Thomas
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN, United States of America
| | - Christina Moore
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN, United States of America
| | - Xiaorong Qian
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN, United States of America
| | - Katie Garman
- Tennessee Department of Health, Nashville, TN, United States of America
| | - John R Dunn
- Tennessee Department of Health, Nashville, TN, United States of America
| | - Thomas G Denes
- Department of Food Science, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
22
|
Prevalence of Salmonella and Listeria monocytogenes in non-traditional irrigation waters in the Mid-Atlantic United States is affected by water type, season, and recovery method. PLoS One 2020; 15:e0229365. [PMID: 32182252 PMCID: PMC7077874 DOI: 10.1371/journal.pone.0229365] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/04/2020] [Indexed: 11/19/2022] Open
Abstract
Irrigation water contaminated with Salmonella enterica and Listeria monocytogenes may provide a route of contamination of raw or minimally processed fruits and vegetables. While previous work has surveyed specific and singular types of agricultural irrigation water for bacterial pathogens, few studies have simultaneously surveyed different water sources repeatedly over an extended period of time. This study quantified S. enterica and L. monocytogenes levels (MPN/L) at 6 sites, including river waters: tidal freshwater river (MA04, n = 34), non-tidal freshwater river, (MA05, n = 32), one reclaimed water holding pond (MA06, n = 25), two pond water sites (MA10, n = 35; MA11, n = 34), and one produce wash water site (MA12, n = 10) from September 2016—October 2018. Overall, 50% (84/168) and 31% (53/170) of sampling events recovered S. enterica and L. monocytogenes, respectively. Results showed that river waters supported significantly (p < 0.05) greater levels of S. enterica than pond or reclaimed waters. The non-tidal river water sites (MA05) with the lowest water temperature supported significantly greater level of L. monocytogenes compared to all other sites; L. monocytogenes levels were also lower in winter and spring compared to summer seasons. Filtering 10 L of water through a modified Moore swab (MMS) was 43.5 (Odds ratio, p < 0.001) and 25.5 (p < 0.001) times more likely to recover S. enterica than filtering 1 L and 0.1 L, respectively; filtering 10 L was 4.8 (p < 0.05) and 3.9 (p < 0.05) times more likely to recover L. monocytogenes than 1L and 0.1 L, respectively. Work presented here shows that S. enterica and L. monocytogenes levels are higher in river waters compared to pond or reclaimed waters in the Mid-Atlantic region of the U.S., and quantitatively shows that analyzing 10 L water is more likely recover pathogens than smaller samples of environmental waters.
Collapse
|
23
|
Weller D, Belias A, Green H, Roof S, Wiedmann M. Landscape, Water Quality, and Weather Factors Associated With an Increased Likelihood of Foodborne Pathogen Contamination of New York Streams Used to Source Water for Produce Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020; 3:124. [PMID: 32440656 PMCID: PMC7241490 DOI: 10.3389/fsufs.2019.00124] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is a need for science-based tools to (i) help manage microbial produce safety hazards associated with preharvest surface water use, and (ii) facilitate comanagement of agroecosystems for competing stakeholder aims. To develop these tools an improved understanding of foodborne pathogen ecology in freshwater systems is needed. The purpose of this study was to identify (i) sources of potential food safety hazards, and (ii) combinations of factors associated with an increased likelihood of pathogen contamination of agricultural water Sixty-eight streams were sampled between April and October 2018 (196 samples). At each sampling event separate 10-L grab samples (GS) were collected and tested for Listeria, Salmonella, and the stx and eaeA genes. A 1-L GS was also collected and used for Escherichia coli enumeration and detection of four host-associated fecal source-tracking markers (FST). Regression analysis was used to identify individual factors that were significantly associated with pathogen detection. We found that eaeA-stx codetection [Odds Ratio (OR) = 4.2; 95% Confidence Interval (CI) = 1.3, 13.4] and Salmonella isolation (OR = 1.8; CI = 0.9, 3.5) were strongly associated with detection of ruminant and human FST markers, respectively, while Listeria spp. (excluding Listeria monocytogenes) was negatively associated with log10 E. coli levels (OR = 0.50; CI = 0.26, 0.96). L. monocytogenes isolation was not associated with the detection of any fecal indicators. This observation supports the current understanding that, unlike enteric pathogens, Listeria is not fecally-associated and instead originates from other environmental sources. Separately, conditional inference trees were used to identify scenarios associated with an elevated or reduced risk of pathogen contamination. Interestingly, while the likelihood of isolating L. monocytogenes appears to be driven by complex interactions between environmental factors, the likelihood of Salmonella isolation and eaeA-stx codetection were driven by physicochemical water quality (e.g., dissolved oxygen) and temperature, respectively. Overall, these models identify environmental conditions associated with an enhanced risk of pathogen presence in agricultural water (e.g., rain events were associated with L. monocytogenes isolation from samples collected downstream of dairy farms; P = 0.002). The information presented here will enable growers to comanage their operations to mitigate the produce safety risks associated with preharvest surface water use.
Collapse
Affiliation(s)
- Daniel Weller
- Department of Food Science, Cornell University, Ithaca, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Belias
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Hyatt Green
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Sherry Roof
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
24
|
Factors Impacting the Prevalence of Foodborne Pathogens in Agricultural Water Sources in the Southeastern United States. WATER 2019. [DOI: 10.3390/w12010051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surface water poses a great risk to fruit and vegetable crops when contaminated by foodborne pathogens. Several factors impact the microbial quality of surface waters and increase the risk of produce contamination. Therefore, evaluating the factors associated with the prevalence of pathogenic microorganisms in agricultural water sources is critical to determine and establish preventive actions that may minimize the incidence of foodborne outbreaks associated with contaminated production water. In the Southeastern U.S. environmental factors such as rainfall, temperature, and seasonal variations have been associated with the prevalence of pathogens or microbial indicators of fecal contamination in water. Also, the geographical location of the irrigation sources as well as surrounding activities and land use play an important role on the survival and prevalence of pathogenic bacteria. Therefore, these factors may be determinants useful in the evaluation of production water quality and may help to preemptively identify scenarios or hazards associated with the incidence of foodborne pathogenic microorganisms.
Collapse
|
25
|
Lee D, Tertuliano M, Harris C, Vellidis G, Levy K, Coolong T. Salmonella Survival in Soil and Transfer onto Produce via Splash Events. J Food Prot 2019; 82:2023-2037. [PMID: 31692392 DOI: 10.4315/0362-028x.jfp-19-066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nearly one-half of foodborne illnesses in the United States can be attributed to fresh produce consumption. The preharvest stage of production presents a critical opportunity to prevent produce contamination in the field from contaminating postharvest operations and exposing consumers to foodborne pathogens. One produce-contamination route that is not often explored is the transfer of pathogens in the soil to edible portions of crops via splash water. We report here on the results from multiple field and microcosm experiments examining the potential for Salmonella contamination of produce crops via splash water, and the effect of soil moisture content on Salmonella survival in soil and concentration in splash water. In field and microcosm experiments, we detected Salmonella for up to 8 to 10 days after inoculation in soil and on produce. Salmonella and suspended solids were detected in splash water at heights of up to 80 cm from the soil surface. Soil-moisture conditions before the splash event influenced the detection of Salmonella on crops after the splash events-Salmonella concentrations on produce after rainfall were significantly higher in wet plots than in dry plots (geometric mean difference = 0.43 CFU/g; P = 0.03). Similarly, concentrations of Salmonella in splash water in wet plots trended higher than concentrations from dry plots (geometric mean difference = 0.67 CFU/100 mL; P = 0.04). These results indicate that splash transfer of Salmonella from soil onto crops can occur and that antecedent soil-moisture content may mediate the efficiency of microbial transfer. Splash transfer of Salmonella may, therefore, pose a hazard to produce safety. The potential for the risk of splash should be further explored in agricultural regions in which Salmonella and other pathogens are present in soil. These results will help inform the assessment of produce safety risk and the development of management practices for the mitigation of produce contamination.
Collapse
Affiliation(s)
- Debbie Lee
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, Georgia 30322
| | | | | | | | - Karen Levy
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, Georgia 30322
| | - Timothy Coolong
- Department of Horticulture, College of Agricultural & Environmental Sciences, University of Georgia, 2360 Rainwater Road, Tifton, Georgia 31793, USA
| |
Collapse
|
26
|
Ahmed W, Hamilton K, Toze S, Cook S, Page D. A review on microbial contaminants in stormwater runoff and outfalls: Potential health risks and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1304-1321. [PMID: 31539962 PMCID: PMC7126443 DOI: 10.1016/j.scitotenv.2019.07.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 04/14/2023]
Abstract
Demands on global water supplies are increasing in response to the need to provide more food, water, and energy for a rapidly growing population. These water stressors are exacerbated by climate change, as well as the growth and urbanisation of industry and commerce. Consequently, urban water authorities around the globe are exploring alternative water sources to meet ever-increasing demands. These alternative sources are primarily treated sewage, stormwater, and groundwater. Stormwater including roof-harvested rainwater has been considered as an alternative water source for both potable and non-potable uses. One of the most significant issues concerning alternative water reuse is the public health risk associated with chemical and microbial contaminants. Several studies to date have quantified fecal indicators and pathogens in stormwater. Microbial source tracking (MST) approaches have also been used to determine the sources of fecal contamination in stormwater and receiving waters. This review paper summarizes occurrence and concentrations of fecal indicators, pathogens, and MST marker genes in urban stormwater. A section of the review highlights the removal of fecal indicators and pathogens through water sensitive urban design (WSUD) or Best Management Practices (BMPs). We also discuss approaches for assessing and mitigating health risks associated with stormwater, including a summary of existing quantitative microbial risk assessment (QMRA) models for potable and non-potable reuse of stormwater. Finally, the most critical research gaps are identified for formulating risk management strategies.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia.
| | - Kerry Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Simon Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Stephen Cook
- CSIRO Land and Water, Research way, Clayton South, VIC 3169, Australia
| | - Declan Page
- CSIRO Land and Water, Waite Laboratories, Waite Rd., Urrbrae, SA 5064, Australia
| |
Collapse
|
27
|
Lee D, Chang HH, Sarnat SE, Levy K. Precipitation and Salmonellosis Incidence in Georgia, USA: Interactions between Extreme Rainfall Events and Antecedent Rainfall Conditions. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:97005. [PMID: 31536392 PMCID: PMC6792369 DOI: 10.1289/ehp4621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND The southeastern United States consistently has high salmonellosis incidence, but disease drivers remain unknown. Salmonella is regularly detected in this region's natural environment, leading to numerous exposure opportunities. Rainfall patterns may impact the survival/transport of environmental Salmonella in ways that can affect disease transmission. OBJECTIVES This study investigated associations between short-term precipitation (extreme rainfall events) and longer-term precipitation (rainfall conditions antecedent to these extreme events) on salmonellosis counts in the state of Georgia in the United States. METHODS For the period 1997-2016, negative binomial models estimated associations between weekly county-level extreme rainfall events (≥90th percentile of daily rainfall) and antecedent conditions (8-week precipitation sums, categorized into tertiles) and weekly county-level salmonellosis counts. RESULTS In Georgia's Coastal Plain counties, extreme and antecedent rainfall were associated with significant differences in salmonellosis counts. In these counties, extreme rainfall was associated with a 5% increase in salmonellosis risk (95% CI: 1%, 10%) compared with weeks with no extreme rainfall. Antecedent dry periods were associated with a 9% risk decrease (95% CI: 5%, 12%), whereas wet periods were associated with a 5% increase (95% CI: 1%, 9%), compared with periods of moderate rainfall. In models considering the interaction between extreme and antecedent rainfall conditions, wet periods were associated with a 13% risk increase (95% CI: 6%, 19%), whereas wet periods followed by extreme events were associated with an 11% increase (95% CI: 5%, 18%). Associations were substantially magnified when analyses were restricted to cases attributed to serovars commonly isolated from wildlife/environment (e.g., Javiana). For example, wet periods followed by extreme rainfall were associated with a 34% risk increase (95% CI: 20%, 49%) in environmental serovar infection. CONCLUSIONS Given the associations of short-term extreme rainfall events and longer-term rainfall conditions on salmonellosis incidence, our findings suggest that avoiding contact with environmental reservoirs of Salmonella following heavy rainfall events, especially during the rainy season, may reduce the risk of salmonellosis. https://doi.org/10.1289/EHP4621.
Collapse
Affiliation(s)
- Debbie Lee
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Howard H. Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Stefanie Ebelt Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Karen Levy
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Erickson MC, Liao JY, Payton AS, Cook PW, Bakker HCDEN, Bautista J, Díaz-Pérez JC. Survival of Salmonella enterica and Escherichia coli O157:H7 Sprayed onto the Foliage of Field-Grown Cabbage Plants. J Food Prot 2019; 82:479-485. [PMID: 30806554 DOI: 10.4315/0362-028x.jfp-18-326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To reduce the number of cabbage pathogen outbreaks, it is essential to understand the fate of enteric pathogens that contaminate plants in the field. To assist in that effort, two independent trials were conducted with a red cultivar (cv. Red Dynasty) and a green cultivar (cv. Bravo F1) of field-grown cabbage ( Brassica oleracea var. capitata). In the first trial, plants with small heads were sprayed with an inoculum containing both attenuated Salmonella enterica Typhimurium and Escherichia coli O157:H7 (5.0 log CFU/mL). Initial pathogen levels (ca. 3.9 log CFU per head), determined through plate count enumeration (limit of detection was 1.3 log CFU/g), dropped precipitously such that 2 days later, they could not be detected by enrichment culture in 22 to 35% of the heads. However, subsequent declines were at a slower rate; no differences were observed between red and green cabbage heads ( P > 0.05), and heads were still positive for the pathogens 22 days after being sprayed with the inoculum. As a result, the logistic model revealed that for every 2 days contaminated cabbage heads remained in the field, the probability of finding a positive sample decreased by a factor of 1.1 (95% confidence interval from 1.0 to 1.2, P = 0.0022) and 1.2 (95% confidence interval from 1.0 to 1.4, P ≤ 0.0001) for Salmonella and E. coli O157:H7, respectively. In the second trial occurring 2 weeks later, plants with medium red or green cabbage heads were sprayed with an inoculum at a dose of 3.5 log CFU/mL. A similar decay in prevalence over time occurred for green cabbage as in trial 1; however, pathogen decline in red cabbage was less in trial 2 than in trial 1. The extended persistence of pathogens in cabbage heads exhibited in both trials infers that harvest of contaminated cabbage destined for raw consumption is risky. Additional field studies are necessary to determine whether similar pathogen fates occur in other regions or climates and to clarify the effect of the maturity of red cabbage on pathogen inactivation.
Collapse
Affiliation(s)
- Marilyn C Erickson
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Jye-Yin Liao
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Alison S Payton
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Peter W Cook
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Henk C DEN Bakker
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Jesus Bautista
- 2 Department of Horticulture, University of Georgia, 2360 Rainwater Road, Tifton, Georgia 31793-5766, USA
| | - Juan Carlos Díaz-Pérez
- 2 Department of Horticulture, University of Georgia, 2360 Rainwater Road, Tifton, Georgia 31793-5766, USA
| |
Collapse
|
29
|
Lee D, Tertuliano M, Vellidis G, Harris C, Grossman MK, Rajeev S, Levy K. Evaluation of Grower-Friendly, Science-Based Sampling Approaches for the Detection of Salmonella in Ponds Used for Irrigation of Fresh Produce. Foodborne Pathog Dis 2018; 15:627-636. [PMID: 30334659 PMCID: PMC6201782 DOI: 10.1089/fpd.2018.2441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The recognition that irrigation water sources contribute to preharvest contamination of produce has led to new regulations on testing microbial water quality. To best identify contamination problems, growers who depend on irrigation ponds need guidance on how and where to collect water samples for testing. In this study, we evaluated several sampling strategies to identify Salmonella and Escherichia coli contamination in five ponds used for irrigation on produce farms in southern Georgia. Both Salmonella and E. coli were detected regularly in all the ponds over the 19-month study period, with overall prevalence and concentrations increasing in late summer and early fall. Of 507 water samples, 217 (42.8%) were positive for Salmonella, with a very low geometric mean (GM) concentration of 0.06 most probable number (MPN)/100 mL, and 442 (87.1%) tested positive for E. coli, with a GM of 6.40 MPN/100 mL. We found no significant differences in Salmonella or E. coli detection rates or concentrations between sampling at the bank closest to the pump intake versus sampling from the bank around the pond perimeter, when comparing with results from the pump intake, which we considered our gold standard. However, samples collected from the bank closest to the intake had a greater level of agreement with the intake (Cohen's kappa statistic = 0.53; p < 0.001) than the samples collected around the pond perimeter (kappa = 0.34; p = 0.009). E. coli concentrations were associated with increased odds of Salmonella detection (odds ratio = 1.31; 95% confidence interval = 1.10-1.56). All the ponds would have met the Produce Safety Rule standards for E. coli, although Salmonella was also detected. Results from this study provide important information to growers and regulators about pathogen detection in irrigation ponds and inform best practices for surface water sampling.
Collapse
Affiliation(s)
- Debbie Lee
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Moukaram Tertuliano
- Department of Crop and Soil Sciences, University of Georgia, Tifton, Georgia
| | - George Vellidis
- Department of Crop and Soil Sciences, University of Georgia, Tifton, Georgia
| | - Casey Harris
- Department of Crop and Soil Sciences, University of Georgia, Tifton, Georgia
| | - Marissa K. Grossman
- Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, Georgia
| | - Sreekumari Rajeev
- Department of Infectious Diseases, College of Veterinary Medicine, Veterinary Diagnostic and Investigational Laboratory, Tifton, Georgia
| | - Karen Levy
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| |
Collapse
|