1
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
2
|
Hosny RA, El-Badiea ZA, Elmasry DMA, Fadel MA. Efficacy of ceftiofur N-acyl homoserine lactonase niosome in the treatment of multi-resistant Klebsiella pneumoniae in broilers. Vet Res Commun 2023; 47:2083-2100. [PMID: 37430152 DOI: 10.1007/s11259-023-10161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
In this study, the efficiency of the ceftiofur N-acyl homoserine lactonase niosome against multi-resistant Klebsiella pneumoniae in broilers was evaluated. Fifty-six K. pneumoniae isolates previously recovered from different poultry and environmental samples were screened for the ahlK gene. The lactonase enzyme was extracted from eight quorum-quenching isolates. The niosome was formulated, characterized, and tested for minimal inhibitory concentration (MIC) and cytotoxicity. Fourteen-day-old chicks were assigned to six groups: groups Ӏ and П served as negative and positive controls, receiving saline and K. pneumoniae solutions, respectively. In groups Ш and IV, ceftiofur and niosome were administrated intramuscularly at a dose of 10 mg/kg body weight for five consecutive days, while groups V and VI received the injections following the K. pneumoniae challenge. Signs, mortality, and gross lesions were recorded. Tracheal swabs were collected from groups П, V, and VI for counting K. pneumoniae. Pharmacokinetic parameters were evaluated in four treated groups at nine-time points. The niosome was spherical and 56.5 ± 4.41 nm in size. The viability of Vero cells was unaffected up to 5 × MIC (2.4 gml-1). The niosome-treated challenged group showed mild signs and lesions with lower mortality and colony count than the positive control group. The maximum ceftiofur serum concentrations in treated groups were observed 2 h following administration. The elimination half-life in niosome-treated groups was longer than that reported in ceftiofur-treated groups. This is the first report of the administration of N-acyl homoserine lactonase for the control of multi-resistant K. pneumoniae infections in poultry.
Collapse
Affiliation(s)
- Reham A Hosny
- Reference Laboratory for Veterinary Quality Control On Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt.
| | - Zeinab A El-Badiea
- Reference Laboratory for Veterinary Quality Control On Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Dalia M A Elmasry
- Nanomaterials Research and Synthesis Unit, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mai A Fadel
- Pharmacology and Pyrogen Unit, Department of Chemistry, Toxicology, and Feed Deficiency, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| |
Collapse
|
3
|
Priya PS, Boopathi S, Murugan R, Haridevamuthu B, Arshad A, Arockiaraj J. Quorum sensing signals: Aquaculture risk factor. REVIEWS IN AQUACULTURE 2023; 15:1294-1310. [DOI: 10.1111/raq.12774] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/28/2022] [Indexed: 10/16/2023]
Abstract
AbstractBacteria produce several virulence factors and cause massive mortality in fish and crustaceans. Abundant quorum sensing (QS) signals and high cell density are essentially required for the production of such virulence factors. Although several strategies have been developed to control aquatic pathogens through antibiotics and QS inhibition, the impact of pre‐existing QS signals in the aquatic environment has been overlooked. QS signals cause detrimental effects on mammalian cells and induce cell death by interfering with multiple cellular pathways. Moreover, QS signals not only function as a messenger, but also annihilate the functions of the host immune system which implies that QS signals should be designated as a major virulence factor. Despite QS signals' role has been well documented in mammalian cells, their impact on aquatic organisms is still at the budding stage. However, many aquatic organisms produce enzymes that degrade and detoxify such QS signals. In addition, physical and chemical factors also determine the stability of the QS signals in the aqueous environment. The balance between QS signals and existing QS signals degrading factors essentially determines the disease progression in aquatic organisms. In this review, we highlight the impact of QS signals on aquatic organisms and further discussed potential alternative strategies to control disease progression.
Collapse
Affiliation(s)
- P. Snega Priya
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Seenivasan Boopathi
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Negeri Sembilan Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| |
Collapse
|
4
|
Bulut G, Yaşa İ, Eren Eroğlu AE. Selection and Molecular Response of AHL-lactonase (aiiA) Producing Bacillus sp. Under Penicillin G-induced Conditions. Protein J 2023:10.1007/s10930-023-10115-7. [PMID: 37093416 DOI: 10.1007/s10930-023-10115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Quorum sensing (QS) is the process by which microorganisms employ chemicals called autoinducers (AIs) to communicate with their population. The QS mechanism generally controls the expression of the virulence related genes in bacteria. N-acyl homoserine lactones (AHLs) are the most widespread QS molecules. Due to their diverse AHL-lactonase activities, Bacillus species make particularly suitable candidates for procedures such as demolition of pathogenic bacterial QS signals and bioremediation of β-lactam antibiotics from contaminated environments. In this study, seven Bacillus strains with Quorum quenching (QQ) activity were isolated using an enrichment medium supplemented with Penicillin G (PenG). The AHL-lactonase encoding gene (aiiA) was amplified by PCR and sequenced. Amino acid sequences underwent multiple sequence alignment. Docking studies were carried out with both C6HSL and PenG ligand using AutoDock tools. The aiiA amino acid sequences of the isolates were found to be well conserved. Furthermore, amino acid sequence alignment revealed that 74.9% of amino acid sequences were conserved in the genus Bacillus. Docking of the C6HSL to wild type (3DHA) and H97D variant reduced the docking score by only 0.1 kcal/mol for the mutated protein. When PenG docked with a higher (1.5 kcal/mol) score as a ligand to wild-type and mutant receptors, the docking score for the mutated protein likewise decreased by 0.1 kcal/mol. This research contributed to the diversification of organisms with QQ activity and beta-lactam antibiotic resistance. It also clarified the binding score of the PenG ligand to the Bacillus AHL lactonase molecule for the first time.
Collapse
Affiliation(s)
- Gülperi Bulut
- Graduate School of Natural and Applied Sciences, Ege University, İzmir, Turkey
| | - İhsan Yaşa
- Faculty of Sciences, Department of Biology, Ege University, İzmir, Turkey
| | | |
Collapse
|
5
|
Mawardi M, Indrawati A, Wibawan IWT, Lusiastuti AM. Antimicrobial susceptibility test and antimicrobial resistance gene detection of extracellular enzyme bacteria isolated from tilapia (Oreochromis niloticus) for probiotic candidates. Vet World 2023; 16:264-271. [PMID: 37042005 PMCID: PMC10082709 DOI: 10.14202/vetworld.2023.264-271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/13/2023] [Indexed: 02/13/2023] Open
Abstract
Background and Aim: Antimicrobial resistance (AMR) is a global problem that can increase mortality and morbidity rates and adversely affect health. Therefore, AMR control must be carried out in various sectors, including the fisheries sector, using probiotics. Bacteria can become resistant to antibiotics, including bacteria used for probiotics. This study aimed to isolate bacteria as potential producers of extracellular enzymes, phenotypic characterization, and antibiotic-resistant gene patterns.
Materials and Methods: In this study, 459 bacterial isolates were isolated from the stomach of tilapia in Indonesia. Tilapia was obtained from Sukabumi, Ciamis, Serang, Banjarnegara, Jayapura, Sorong, Manokwari Selatan, Takalar, Lampung, Batam, and Mandiangin. Enzymatic bacteria were identified. An antimicrobial susceptibility test was conducted by agar disk diffusion, and genotypic detection of encoding genes was performed using a molecular method.
Results: This study obtained 137 isolates (29.84%) that can produce extracellular enzymes. The highest number of E-sensitive isolates was found, including 130 isolates (94.89%). Six isolates (6/137) can produce four enzymes (amylase, protease, cellulose, and lipase), and they were sensitive to antibiotics. A total of 99 isolates can produce extracellular enzymes, and they were sensitive to antibiotics. Such isolates serve as a consortium of probiotic candidates. The isolates that are resistant to oxytetracycline (OT), erythromycin (E), tetracycline (TE), and enrofloxacin (ENR) included 15 isolates (10.95%), seven isolates (5.11%), three isolates (2.19%), and one isolate (0.73%), respectively. In addition, four isolates (2.92%) were detected as multidrug-resistant. The tet(A) gene obtained the highest result of detection of resistance genes in isolates that were intermediate and resistant to TE and OT. Isolates that serve as ENR intermediates have a high qnr(S) resistance gene.
Conclusion: The data in this study provide the latest update that bacteria can serve as a consortium of potential probiotics with antibiotic-resistant genes for the treatment of fish. Bacteria that are intermediate to antibiotics may contain resistance genes. The results of this study will improve the policy of probiotic standards in Indonesia.
Collapse
Affiliation(s)
- Mira Mawardi
- School of Veterinary Medicine and Biomedical Sciences (SVMBS), IPB University, Jl. Agatis Kampus IPB Dramaga Bogor, 16680, Indonesia; Main Center for Freshwater Aquaculture, Ministry of Marine Affairs and Fisheries, Jl. Selabintana No. 37, Selabatu, Kec, Cikole, Kota Sukabumi, Jawa Barat 43114, Indonesia
| | - Agustin Indrawati
- School of Veterinary Medicine and Biomedical Sciences (SVMBS), IPB University, Jl. Agatis Kampus IPB Dramaga Bogor, 16680, Indonesia
| | - I. Wayan Teguh Wibawan
- School of Veterinary Medicine and Biomedical Sciences (SVMBS), IPB University, Jl. Agatis Kampus IPB Dramaga Bogor, 16680, Indonesia
| | - Angela Mariana Lusiastuti
- Research Center for Veterinary Sciences, National Research and Innovation Agency, RE Martadinata 30 Bogor, Jawa Barat, Indonesia
| |
Collapse
|
6
|
Falà AK, Álvarez-Ordóñez A, Filloux A, Gahan CGM, Cotter PD. Quorum sensing in human gut and food microbiomes: Significance and potential for therapeutic targeting. Front Microbiol 2022; 13:1002185. [PMID: 36504831 PMCID: PMC9733432 DOI: 10.3389/fmicb.2022.1002185] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Human gut and food microbiomes interact during digestion. The outcome of these interactions influences the taxonomical composition and functional capacity of the resident human gut microbiome, with potential consequential impacts on health and disease. Microbe-microbe interactions between the resident and introduced microbiomes, which likely influence host colonisation, are orchestrated by environmental conditions, elements of the food matrix, host-associated factors as well as social cues from other microorganisms. Quorum sensing is one example of a social cue that allows bacterial communities to regulate genetic expression based on their respective population density and has emerged as an attractive target for therapeutic intervention. By interfering with bacterial quorum sensing, for instance, enzymatic degradation of signalling molecules (quorum quenching) or the application of quorum sensing inhibitory compounds, it may be possible to modulate the microbial composition of communities of interest without incurring negative effects associated with traditional antimicrobial approaches. In this review, we summarise and critically discuss the literature relating to quorum sensing from the perspective of the interactions between the food and human gut microbiome, providing a general overview of the current understanding of the prevalence and influence of quorum sensing in this context, and assessing the potential for therapeutic targeting of quorum sensing mechanisms.
Collapse
Affiliation(s)
- A. Kate Falà
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Cormac G. M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,School of Pharmacy, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland,*Correspondence: Paul D. Cotter,
| |
Collapse
|
7
|
Mojica MF, Humphries R, Lipuma JJ, Mathers AJ, Rao GG, Shelburne SA, Fouts DE, Van Duin D, Bonomo RA. Clinical challenges treating Stenotrophomonas maltophilia infections: an update. JAC Antimicrob Resist 2022; 4:dlac040. [PMID: 35529051 PMCID: PMC9071536 DOI: 10.1093/jacamr/dlac040] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Stenotrophomonas maltophilia is a non-fermenting, Gram-negative bacillus that has emerged as an opportunistic nosocomial pathogen. Its intrinsic multidrug resistance makes treating infections caused by S. maltophilia a great clinical challenge. Clinical management is further complicated by its molecular heterogeneity that is reflected in the uneven distribution of antibiotic resistance and virulence determinants among different strains, the shortcomings of available antimicrobial susceptibility tests and the lack of standardized breakpoints for the handful of antibiotics with in vitro activity against this microorganism. Herein, we provide an update on the most recent literature concerning these issues, emphasizing the impact they have on clinical management of S. maltophilia infections.
Collapse
Affiliation(s)
- Maria F. Mojica
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Romney Humphries
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John J. Lipuma
- University of Michigan Medical School, Pediatric Infectious Disease, Ann Arbor, MI, USA
| | - Amy J. Mathers
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Clinical Microbiology Laboratory, Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center McGovern Medical School, Houston, TX, USA
| | - Derrick E. Fouts
- Genomic Medicine, The J. Craig Venter Institute, Rockville, MD, USA
| | - David Van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Robert A. Bonomo
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Senior Clinician Scientist Investigator, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Medical Service and Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Departments of Medicine, Biochemistry, Pharmacology, Molecular Biology and Microbiology, and Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
8
|
Cerezo IM, Fumanal M, Tapia-Paniagua ST, Bautista R, Anguís V, Fernández-Díaz C, Alarcón FJ, Moriñigo MA, Balebona MC. Solea senegalensis Bacterial Intestinal Microbiota Is Affected by Low Dietary Inclusion of Ulva ohnoi. Front Microbiol 2022; 12:801744. [PMID: 35211100 PMCID: PMC8861459 DOI: 10.3389/fmicb.2021.801744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
The inclusion of macroalgae in the diets of farmed fish offers the opportunity for an added-value dietary ingredient to the nutraceutical feed. The composition of algae varies greatly among species. Several Ulva species have been considered in aquafeed formulations for different farmed fish, and Ulva ohnoi is being applied recently. However, the effects of seaweed dietary inclusion on the host must be evaluated. Considering the important role of the host intestinal microbiota, the potential effects of U. ohnoi dietary inclusion need to be studied. In this study, the characterization of the intestinal microbiome of Solea senegalensis, a flatfish with high potential for aquaculture in South Europe, receiving U. ohnoi (5%)-supplemented diet for 90 days has been carried out. In addition, the functional profiles of bacterial communities have been determined by using PICRUSt, a computational approach to predict the functional composition of a metagenome by using marker gene data and a database of reference genomes. The results show that long-term dietary administration of U. ohnoi (5%)-supplemented feed modulates S. senegalensis intestinal microbiota, especially in the posterior intestinal section. Increased relative abundance of Vibrio jointly with decreased Stenotrophomonas genus has been detected in fish receiving Ulva diet compared to control-fed fish. The influence of the diet on the intestinal functionality of S. senegalensis has been studied for the first time. Changes in bacterial composition were accompanied by differences in predicted microbiota functionality. Increased abundance of predicted genes involved in xenobiotic biodegradation and metabolism were observed in the microbiota when U. ohnoi diet was used. On the contrary, predicted percentages of genes associated to penicillin and cephalosporin biosynthesis as well as beta-lactam resistance were reduced after feeding with Ulva diet.
Collapse
Affiliation(s)
- Isabel M. Cerezo
- Departamento de Microbiología, Facultad de Ciencias, Ceimar-Universidad de Málaga, Málaga, Spain
- Unidad de Bioinformática – SCBI, Universidad de Málaga, Málaga, Spain
| | - Milena Fumanal
- Departamento de Microbiología, Facultad de Ciencias, Ceimar-Universidad de Málaga, Málaga, Spain
| | | | - Rocio Bautista
- Unidad de Bioinformática – SCBI, Universidad de Málaga, Málaga, Spain
| | | | | | | | - Miguel A. Moriñigo
- Departamento de Microbiología, Facultad de Ciencias, Ceimar-Universidad de Málaga, Málaga, Spain
| | - M. Carmen Balebona
- Departamento de Microbiología, Facultad de Ciencias, Ceimar-Universidad de Málaga, Málaga, Spain
| |
Collapse
|
9
|
El Aichar F, Muras A, Parga A, Otero A, Nateche F. Quorum quenching and anti-biofilm activities of halotolerant Bacillus strains isolated in different environments in Algeria. J Appl Microbiol 2021; 132:1825-1839. [PMID: 34741374 DOI: 10.1111/jam.15355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
AIMS The current study aimed to screen Bacillus strains with wide-spectrum quorum quenching (QQ) activity against N-acyl-l-homoserine lactones (AHLs), helpful in controlling virulence traits in Gram-negatives, including biofilm formation and also with anti-biofilm activity against Gram-positives. METHODS AND RESULTS A total of 94 halotolerant strains of Bacillus isolated from soil and salt-lake sediment samples in Algeria were examined for the presence of QQ activity against AHLs, the presence of the aiiA gene, encoding an AHL lactonase enzyme typical of Bacillus spp., antimicrobial and anti-biofilm activities against Pseudomonas aeruginosa and Streptococcus mutans. Of all strains of Bacillus spp. isolated, 48.9% showed antibacterial activity. In addition, 40% of these isolates showed a positive QQ activity against long-chain AHLs, of which seven strains presented the aiiA gene. Among the species with broad-spectrum QQ activity, the cell extract of Bacillus thuringiensis DZ16 showed antibiofilm activity against P. aeruginosa PAO1, reducing 60% using the Amsterdam active attachment (AAA) biofilm cultivation model. In addition, the cell extract of B. subtilis DZ17, also presenting a broad-spectrum QQ activity, significantly reduced Strep. mutans ATCC 25175 biofilm formations by 63% and 53% in the xCELLigence and the AAA model, respectively, without affecting growth. Strain DZ17 is of particular interest due to its explicit halophilic nature because it can thrive at salinities in the range of 6%-30%. CONCLUSIONS B. thuringiensis DZ16 and B. subtilis DZ17 strains have interesting antibacterial, QQ, and anti-biofilm activities. The high range of salinities accepted by these strains increases their biotechnological potential. This may open up their use as probiotics, the treatment and prevention of conventional and emerging infectious diseases. SIGNIFICANCE AND IMPACT OF STUDY The use of safe, economical and effective probiotics is limited to control the infections related to multi-resistant bacteria. In our study, we provide two promising agents with QQ, anti-biofilm and antibacterial activities.
Collapse
Affiliation(s)
- Fairouz El Aichar
- Microbiology Team, Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological Sciences (FSB), University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria.,Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Andrea Muras
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Parga
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Farida Nateche
- Microbiology Team, Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological Sciences (FSB), University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
10
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
11
|
Simón R, Docando F, Nuñez-Ortiz N, Tafalla C, Díaz-Rosales P. Mechanisms Used by Probiotics to Confer Pathogen Resistance to Teleost Fish. Front Immunol 2021; 12:653025. [PMID: 33986745 PMCID: PMC8110931 DOI: 10.3389/fimmu.2021.653025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Probiotics have been defined as live microorganisms that when administered in adequate amounts confer health benefits to the host. The use of probiotics in aquaculture is an attractive bio-friendly method to decrease the impact of infectious diseases, but is still not an extended practice. Although many studies have investigated the systemic and mucosal immunological effects of probiotics, not all of them have established whether they were actually capable of increasing resistance to different types of pathogens, being this the outmost desired goal. In this sense, in the current paper, we have summarized those experiments in which probiotics were shown to provide increased resistance against bacterial, viral or parasitic pathogens. Additionally, we have reviewed what is known for fish probiotics regarding the mechanisms through which they exert positive effects on pathogen resistance, including direct actions on the pathogen, as well as positive effects on the host.
Collapse
Affiliation(s)
| | | | | | | | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| |
Collapse
|
12
|
Santos RA, Oliva-Teles A, Pousão-Ferreira P, Jerusik R, Saavedra MJ, Enes P, Serra CR. Isolation and Characterization of Fish-Gut Bacillus spp. as Source of Natural Antimicrobial Compounds to Fight Aquaculture Bacterial Diseases. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:276-293. [PMID: 33544251 DOI: 10.1007/s10126-021-10022-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture is responsible for more than 50% of global seafood consumption. Bacterial diseases are a major constraint to this sector and associated with misuse of antibiotics, pose serious threats to public health. Fish-symbionts, co-inhabitants of fish pathogens, might be a promising source of natural antimicrobial compounds (NACs) alternative to antibiotics, limiting bacterial diseases occurrence in aquafarms. In particular, sporeforming Bacillus spp. are known for their probiotic potential and production of NACs antagonistic of bacterial pathogens and are abundant in aquaculture fish guts. Harnessing the fish-gut microbial community potential, 172 sporeforming strains producing NACs were isolated from economically important aquaculture fish species, namely European seabass, gilthead seabream, and white seabream. We demonstrated that they possess anti-growth, anti-biofilm, or anti-quorum-sensing activities, to control bacterial infections and 52% of these isolates effectively antagonized important fish pathogens, including Aeromonas hydrophila, A. salmonicida, A. bivalvium, A. veronii, Vibrio anguillarum, V. harveyi, V. parahaemolyticus, V. vulnificus, Photobacterium damselae, Tenacibaculum maritimum, Edwardsiela tarda, and Shigella sonnei. By in vitro quantification of sporeformers' capacity to suppress growth and biofilm formation of fish pathogens, and by assessing their potential to interfere with pathogens communication, we identified three promising candidates to become probiotics or source of bioactive molecules to be used in aquaculture against bacterial aquaculture diseases.
Collapse
Affiliation(s)
- Rafaela A Santos
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre s/n, Ed. FC4, 4169-007, Porto, Portugal.
- CIIMAR - Centro Interdisciplinar de Investigação Marinha E Ambiental, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
- CITAB - Centro de Investigação E Tecnologias Agroambientais E Biológicas, Universidade de Trás-Os-Montes E Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
- CECAV - Centro de Ciência Animal e Veterinária, Universidade de Trás-Os-Montes E Alto Douro, P.O. Box 1013, 5001-801, Vila Real, Portugal.
| | - Aires Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre s/n, Ed. FC4, 4169-007, Porto, Portugal
- CIIMAR - Centro Interdisciplinar de Investigação Marinha E Ambiental, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Pedro Pousão-Ferreira
- Instituto Português Do Mar E da Atmosfera (IPMA), Estação Piloto de Piscicultura de Olhão, Av. 5 de Outubro s/n, 8700-305, Olhão, Portugal
| | - Russell Jerusik
- Epicore Bionetworks Inc., 4 Lina Lane, NJ, 08060, Eastampton, USA
| | - Maria J Saavedra
- CIIMAR - Centro Interdisciplinar de Investigação Marinha E Ambiental, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- CITAB - Centro de Investigação E Tecnologias Agroambientais E Biológicas, Universidade de Trás-Os-Montes E Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
- CECAV - Centro de Ciência Animal e Veterinária, Universidade de Trás-Os-Montes E Alto Douro, P.O. Box 1013, 5001-801, Vila Real, Portugal
- Departamento de Ciências Veterinárias, ECAV, Universidade de Trás-Os-Montes E Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Paula Enes
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre s/n, Ed. FC4, 4169-007, Porto, Portugal
- CIIMAR - Centro Interdisciplinar de Investigação Marinha E Ambiental, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Cláudia R Serra
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre s/n, Ed. FC4, 4169-007, Porto, Portugal.
- CIIMAR - Centro Interdisciplinar de Investigação Marinha E Ambiental, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
13
|
Salgueiro V, Manageiro V, Bandarra NM, Reis L, Ferreira E, Caniça M. Bacterial Diversity and Antibiotic Susceptibility of Sparus aurata from Aquaculture. Microorganisms 2020; 8:E1343. [PMID: 32887439 PMCID: PMC7564983 DOI: 10.3390/microorganisms8091343] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/02/2023] Open
Abstract
In a world where the population continues to increase and the volume of fishing catches stagnates or even falls, the aquaculture sector has great growth potential. This study aimed to contribute to the depth of knowledge of the diversity of bacterial species found in Sparus aurata collected from a fish farm and to understand which profiles of diminished susceptibility to antibiotics would be found in these bacteria that might be disseminated in the environment. One hundred thirty-six bacterial strains were recovered from the S. aurata samples. These strains belonged to Bacillaceae, Bacillales Family XII. Incertae Sedis, Comamonadaceae, Enterobacteriaceae, Enterococcaceae, Erwiniaceae, Micrococcaceae, Pseudomonadaceae and Staphylococcaceae families. Enterobacter sp. was more frequently found in gills, intestine and skin groups than in muscle groups (p ≤ 0.01). Antibiotic susceptibility tests found that non-susceptibility to phenicols was significantly higher in gills, intestine and skin samples (45%) than in muscle samples (24%) (p ≤ 0.01) and was the most frequently found non-susceptibility in both groups of samples. The group of Enterobacteriaceae from muscles presented less decreased susceptibility to florfenicol (44%) than in the group of gills, intestine and skin samples (76%). We found decreased susceptibilities to β-lactams and glycopeptides in the Bacillaceae family, to quinolones and mupirocin in the Staphylococcaceae family, and mostly to β-lactams, phenicols and quinolones in the Enterobacteriaceae and Pseudomonadaceae families. Seven Enterobacter spp. and five Pseudomonas spp. strains showed non-susceptibility to ertapenem and meropenem, respectively, which is of concern because they are antibiotics used as a last resort in serious clinical infections. To our knowledge, this is the first description of species Exiguobacterium acetylicum, Klebsiella michiganensis, Lelliottia sp. and Pantoea vagans associated with S. aurata (excluding cases where these bacteria are used as probiotics) and of plasmid-mediated quinolone resistance qnrB19-producing Leclercia adecarboxylata strain. The non-synonymous G385T and C402A mutations at parC gene (within quinolone resistance-determining regions) were also identified in a Klebsiella pneumoniae, revealing decreased susceptibility to ciprofloxacin. In this study, we found not only bacteria from the natural microbiota of fish but also pathogenic bacteria associated with fish and humans. Several antibiotics for which decreased susceptibility was found here are integrated into the World Health Organization list of "critically important antimicrobials" and "highly important antimicrobials" for human medicine.
Collapse
Affiliation(s)
- Vanessa Salgueiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR-HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (V.M.); (L.R.); (E.F.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR-HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (V.M.); (L.R.); (E.F.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Narcisa M. Bandarra
- Department of Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere (IPMA, IP), 1749-077 Lisbon, Portugal;
| | - Lígia Reis
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR-HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (V.M.); (L.R.); (E.F.)
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR-HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (V.M.); (L.R.); (E.F.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR-HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (V.M.); (L.R.); (E.F.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| |
Collapse
|
14
|
Zhang W, Luo Q, Zhang Y, Fan X, Ye T, Mishra S, Bhatt P, Zhang L, Chen S. Quorum Quenching in a Novel Acinetobacter sp. XN-10 Bacterial Strain against Pectobacterium carotovorum subsp. carotovorum. Microorganisms 2020; 8:microorganisms8081100. [PMID: 32717872 PMCID: PMC7466008 DOI: 10.3390/microorganisms8081100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023] Open
Abstract
Quorum sensing (QS) is a cell density-dependent mechanism that regulates the expression of specific genes in microbial cells. Quorum quenching (QQ) is a promising strategy for attenuating pathogenicity by interfering with the QS system of pathogens. N-Acyl-homoserine lactones (AHLs) act as signaling molecules in many Gram-negative bacterial pathogens and have received wide attention. In this study, a novel, efficient AHL-degrading bacterium, Acinetobacter sp. strain XN-10, was isolated from agricultural contaminated soil and evaluated for its degradation efficiency and potential use against QS-mediated pathogens. Strain XN-10 could effectively degrade N-(3-oxohexanoyl)-L-homoserine lactone (OHHL), N-hexanoyl-L-homoserine lactone (C6HSL), N-(3-oxododecanoyl)-L-homoserine lactone (3OC12HSL), and N-(3-oxooctanoyl)-L-homoserine lactone (3OC8HSL), which all belong to the AHL family. Analysis of AHL metabolic products by gas chromatography-mass spectrometry (GC-MS) led to the identification of N-cyclohexyl-propanamide, and pentanoic acid, 4-methyl, methyl ester as the main intermediate metabolites, revealing that AHL could be degraded by hydrolysis and dehydroxylation. All intermediates were transitory and faded away without any non-cleavable metabolites at the end of the experiment. Furthermore, strain XN-10 significantly attenuated the pathogenicity of Pectobacterium carotovorum subsp. carotovorum (Pcc) to suppress tissue maceration in carrots, potatoes, and Chinese cabbage. Taken together, our results shed light on the QQ mechanism of a novel AHL-degrading bacterial isolate, and they provide useful information which show potential for biocontrol of infectious diseases caused by AHL-dependent bacterial pathogens.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qingqing Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yiyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xinghui Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Tian Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lianhui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
15
|
Ghanei-Motlagh R, Mohammadian T, Gharibi D, Menanteau-Ledouble S, Mahmoudi E, Khosravi M, Zarea M, El-Matbouli M. Quorum Quenching Properties and Probiotic Potentials of Intestinal Associated Bacteria in Asian Sea Bass Lates calcarifer. Mar Drugs 2019; 18:md18010023. [PMID: 31888034 PMCID: PMC7024293 DOI: 10.3390/md18010023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Quorum quenching (QQ), the enzymatic degradation of N-acyl homoserine lactones (AHLs), has been suggested as a promising strategy to control bacterial diseases. In this study, 10 AHL-degrading bacteria isolated from the intestine of barramundi were identified by 16S rDNA sequencing. They were able to degrade both short and long-chain AHLs associated with several pathogenic Vibrio species (spp.) in fish, including N-[(RS)-3-Hydroxybutyryl]-l-homoserine lactone (3-oh-C4-HSL), N-Hexanoyl-l-homoserine lactone (C6-HSL), N-(β-Ketocaproyl)-l-homoserine lactone (3-oxo-C6-HSL), N-(3-Oxodecanoyl)-l-homoserine lactone (3-oxo-C10-HSL), N-(3-Oxotetradecanoyl)-l-homoserine lactone (3-oxo-C14-HSL). Five QQ isolates (QQIs) belonging to the Bacillus and Shewanella genera, showed high capacity to degrade both synthetic AHLs as well as natural AHLs produced by Vibrio harveyi and Vibrio alginolyticus using the well-diffusion method and thin-layer chromatography (TLC). The genes responsible for QQ activity, including aiiA, ytnP, and aaC were also detected. Analysis of the amino acid sequences from the predicted lactonases revealed the presence of the conserved motif HxHxDH. The selected isolates were further characterized in terms of their probiotic potentials in vitro. Based on our scoring system, Bacillus thuringiensis QQ1 and Bacillus cereus QQ2 exhibited suitable probiotic characteristics, including the production of spore and exoenzymes, resistance to bile salts and pH, high potential to adhere on mucus, appropriate growth abilities, safety to barramundi, and sensitivity to antibiotics. These isolates, therefore, constitute new QQ probiotics that could be used to control vibriosis in Lates calcalifer.
Collapse
Affiliation(s)
- Reza Ghanei-Motlagh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria; (R.G.-M.); (M.E.-M.)
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-831351, Iran;
| | - Takavar Mohammadian
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-831351, Iran;
- Correspondence: (T.M.); (S.M.-L.)
| | - Darioush Gharibi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-831351, Iran; (D.G.); (M.K.)
| | - Simon Menanteau-Ledouble
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria; (R.G.-M.); (M.E.-M.)
- Correspondence: (T.M.); (S.M.-L.)
| | - Esmaeil Mahmoudi
- Department of Plant Protection, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 158-81595, Iran;
| | - Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-831351, Iran; (D.G.); (M.K.)
| | - Mojtaba Zarea
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 61357-831351, Iran;
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria; (R.G.-M.); (M.E.-M.)
| |
Collapse
|
16
|
Reina JC, Torres M, Llamas I. Stenotrophomonas maltophilia AHL-Degrading Strains Isolated from Marine Invertebrate Microbiota Attenuate the Virulence of Pectobacterium carotovorum and Vibrio coralliilyticus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:276-290. [PMID: 30762152 DOI: 10.1007/s10126-019-09879-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Many Gram-negative aquacultural and agricultural pathogens control virulence factor expression through a quorum-sensing (QS) mechanism involving the production of N-acylhomoserine (AHL) signalling molecules. Thus, the interruption of QS systems by the enzymatic degradation of signalling molecules, known as quorum quenching (QQ), has been proposed as a novel strategy to combat these infections. Given that the symbiotic bacteria of marine invertebrates are considered to be an important source of new bioactive molecules, this study explores the presence of AHL-degrading bacteria among 827 strains previously isolated from the microbiota of anemones and holothurians. Four of these strains (M3-1, M1-14, M3-13 and M9-54-2), belonging to the species Stenotrophomonas maltophilia, were selected on the basis of their ability to degrade a broad range of AHLs, and the enzymes involved in their activity were identified. Strain M9-54-2, which showed the strongest AHL-degrading activity, was selected for further study. High-performance liquid chromatography-mass-spectrometry confirmed that the QQ enzyme is not a lactonase. Strain M9-54-2 degraded AHL accumulation and reduced the production of enzymatic activity in Pectobacterium carotovorum CECT 225T and Vibrio coralliilyticus VibC-Oc-193 in in vitro co-cultivation experiments. The effect of AHL inactivation was confirmed by a reduction in potato tuber maceration and brine shrimp (Artemia salina) mortality caused by P. carotovorum and Vibrio coralliilyticus, respectively. This study strengthens the evidence of marine organisms as an underexplored and promising source of QQ enzymes, useful to prevent infections in aquaculture and agriculture. To our knowledge, this is the first time that anemones and holothurians have been studied for this purpose.
Collapse
Affiliation(s)
- José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18071, Granada, Spain
- Institute for Integrative Biology of the Cell, CEA, CNRS, University Paris-Sud, University Paris-Saclay, Gif sur Yvette, France
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071, Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18071, Granada, Spain.
| |
Collapse
|
17
|
Torres M, Dessaux Y, Llamas I. Saline Environments as a Source of Potential Quorum Sensing Disruptors to Control Bacterial Infections: A Review. Mar Drugs 2019; 17:md17030191. [PMID: 30934619 PMCID: PMC6471967 DOI: 10.3390/md17030191] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Saline environments, such as marine and hypersaline habitats, are widely distributed around the world. They include sea waters, saline lakes, solar salterns, or hypersaline soils. The bacteria that live in these habitats produce and develop unique bioactive molecules and physiological pathways to cope with the stress conditions generated by these environments. They have been described to produce compounds with properties that differ from those found in non-saline habitats. In the last decades, the ability to disrupt quorum-sensing (QS) intercellular communication systems has been identified in many marine organisms, including bacteria. The two main mechanisms of QS interference, i.e., quorum sensing inhibition (QSI) and quorum quenching (QQ), appear to be a more frequent phenomenon in marine aquatic environments than in soils. However, data concerning bacteria from hypersaline habitats is scarce. Salt-tolerant QSI compounds and QQ enzymes may be of interest to interfere with QS-regulated bacterial functions, including virulence, in sectors such as aquaculture or agriculture where salinity is a serious environmental issue. This review provides a global overview of the main works related to QS interruption in saline environments as well as the derived biotechnological applications.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
| |
Collapse
|
18
|
Torabi Delshad S, Soltanian S, Sharifiyazdi H, Bossier P. Effect of quorum quenching bacteria on growth, virulence factors and biofilm formation of Yersinia ruckeri in vitro and an in vivo evaluation of their probiotic effect in rainbow trout. JOURNAL OF FISH DISEASES 2018; 41:1429-1438. [PMID: 30014501 DOI: 10.1111/jfd.12840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Five N-acyl homoserine lactone-degrading bacteria (quorum quenching (QQ) strains) were selected to evaluate their impacts on growth, virulence factors and biofilm formation in Yersinia ruckeri in vitro. No difference was observed among the growth pattern of Y. ruckeri in monoculture and coculture with the QQ strains. To investigate the regulation of virulence factors by quorum sensing in Y. ruckeri, cultures were supplemented with 3oxo-C8-HSL. The results indicated that swimming motility and biofilm formation are positively regulated by QS (p < 0.05), whereas caseinase, phospholipase and haemolysin productions are not influenced by 3oxo-C8-HSL (p > 0.05). The QQs were able to decrease swimming motility and biofilm formation in Y. ruckeri. QQ bacteria were supplemented to trout feed at 108 CFU/g (for 40 days). Their probiotic effect was verified by Y. ruckeri challenge either by immersion or injection in trout. All strains could significantly increase fish survival with Bacillus thuringiensis and Citrobacter gillenii showing the highest and lowest relative percentage survival (RPS) values (respectively, 85% and 38%). Besides, there was no difference between the RPS values by either immersion or injection challenge expect for B. thuringiensis. The putative involvement of the QQ capacity in the protection against Yersinia is discussed.
Collapse
Affiliation(s)
- Somayeh Torabi Delshad
- Department of Aquatic Animal Health and Diseases, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University, Ghent, Belgium
| | - Siyavash Soltanian
- Department of Aquatic Animal Health and Diseases, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Hassan Sharifiyazdi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Peter Bossier
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University, Ghent, Belgium
| |
Collapse
|