1
|
Kumar M, Saini HS. Deciphering Indigenous Bacterial Diversity of Co-Polluted Sites to Unravel Its Bioremediation Potential: A Metagenomic Approach. J Basic Microbiol 2024; 64:e2400303. [PMID: 38988320 DOI: 10.1002/jobm.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Polluted drains across the globe are affected due to reckless disposal of untreated industrial effluents resulting in significant water pollution affecting microbial community structure/dynamics. To elucidate this, polluted samples were collected from Budha Nala (BN) drain, Tung Dhab (TD) drain, and wastewater treatment plant (WWTP) receiving an inflow of organic pollutants as well as heavy metals due to anthropogenic activities. The sample of unpolluted pristine soil (PS) was used as control, as there is no history of usage of organic chemicals at this site. The bacterial diversity of these samples was sequenced using the Illumina MiSeq platform by amplifying the V3/V4 region of 16S rRNA. The majority of operational taxonomic unit (OTUs) at polluted sites belonged to phyla Proteobacteria specifically Gammaproteobacteria class, followed by Actinobacteria, Bacteriodetes, Chloroflexi, Firmicutes, Planctomycetes, WS6, and TM7, whereas unpolluted site revealed the prevalence of Proteobacteria followed by Actinobacteria, Planctomycetes, Firmicutes, Acidobacteria, Chloroflexi, Bacteroidetes, Verrucomicrobia, and Nitrospirae. The data sets decode unclassified species of the phyla Proteobacteria, Bacteriodetes, Chloroflexi, Firmicutes, and WS6, along with some unclassified bacterial species. The study provided a comparative study of changed microbial community structure, their possible functions across diverse geographical locations, and identifying specific bacterial genera as pollution bio-indicators of aged polluted drains.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
2
|
Mohammadi M, Bayat Z, Hassanshahian M, Mousavi M, Shekarchizadeh F. Microbial community response to biostimulation and bioaugmentation in crude oil-polluted sediments of the Persian Gulf. ENVIRONMENTAL RESEARCH 2024; 249:118197. [PMID: 38220081 DOI: 10.1016/j.envres.2024.118197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
The Persian Gulf is a transit point for a lot of crude oil at the international level. The purpose of this research is to compare two methods of biostimulation and bioaugmentation for degradation of sediments contaminated with crude oil in the Persian Gulf. In this research, six types of microcosms were designed (Sediments from Khark Island). Some indicators such as: the quantity of marine bacteria, enzyme activity (Catalase, Polyphenol oxidase, Dehydrogenase), biodiversity indices and the percentage of crude oil degradation were analyzed during different days (0, 20, 40, 60, 80, 100 and 120). The results of this research showed that the highest quantity of heterotrophic and crude oil-degrading bacteria was found in the sixth microcosm (SB). This microcosm represents a combination of two methods: bioaugmentation and biostimulation (3.9 × 106 CFU g-1). Following crude oil pollution, the activity of catalase and polyphenol oxidase increased and the dehydrogenase enzyme decreased. The bioaugmentation microcosm exhibited the highest activity of enzymes among all the microcosms studied. Predominant bacteria in each microcosm belonged to: Cellulosimicrobium, Shewanella, Alcanivorax and Cobetia. The highest degradation of crude oil is related to the Stimulation-Bioaugmentation microcosm (SB). The statistical results of this research proved that there is a significant relationship between the type of method chosen for biodegradation with the sampling time and the quantity of marine bacteria. The results of this research confirm that crude oil pollution in the Persian Gulf sediments can be reduced by choosing the proper bioremediation method.
Collapse
Affiliation(s)
- Mahasti Mohammadi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Zeynab Bayat
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Hassanshahian
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Maryam Mousavi
- Departments of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Farnoosh Shekarchizadeh
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
3
|
Zhou Y, Wang Y, Yang L, Kong Q, Zhang H. Microbial degradation mechanisms of surface petroleum contaminated seawater in a typical oil trading port. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121420. [PMID: 36906058 DOI: 10.1016/j.envpol.2023.121420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/14/2023] [Accepted: 03/04/2023] [Indexed: 05/25/2023]
Abstract
Petroleum hydrocarbons are significant new persistent organic pollutants for marine oil spill risk areas. Oil trading ports, in turn, have become major bearers of the risk of offshore oil pollution. However, studies on the molecular mechanisms of microbial degradation of petroleum pollutants by natural seawater are limited. Here, an in situ microcosm study was conducted. Combined with metagenomics, differences in metabolic pathways and in the gene abundances of total petroleum hydrocarbons (TPH) are revealed under different conditions. About 88% degradation of TPH was shown after 3 weeks of treatment. The positive responders to TPH were concentrated in the genera Cycloclasticus, Marivita and Sulfitobacter of the orders Rhodobacterales and Thiotrichales. The genera Marivita, Roseobacter, Lentibacter and Glaciecola were key degradation species when mixing dispersants with oil, and all of the above are from the Proteobacteria phylum. The analysis showed that the biodegradability of aromatic compounds, polycyclic aromatic hydrocarbon and dioxin were enhanced after the oil spill, and genes with higher abundances of bphAa, bsdC, nahB, doxE and mhpD were found, but the photosynthesis-related mechanism was inhibited. The dispersant treatment effectively stimulated the microbial degradation of TPH and then accelerated the succession of microbial communities. Meanwhile, functions such as bacterial chemotaxis and carbon metabolism (cheA, fadeJ and fadE) were better developed, but the degradation of persistent organic pollutants such as polycyclic aromatic hydrocarbons was weakened. Our study provides insights into the metabolic pathways and specific functional genes for oil degradation by marine microorganisms and will help improve the application and practice of bioremediation.
Collapse
Affiliation(s)
- Yumiao Zhou
- College of Geography and Environment, Shandong Normal University, Jinan, 250000, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Likun Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan, 250000, China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250000, China.
| |
Collapse
|
4
|
Hafez T, Ortiz-Zarragoitia M, Cagnon C, Cravo-Laureau C, Duran R. Cold sediment microbial community shifts in response to crude oil water-accommodated fraction with or without dispersant: a microcosm study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44640-44656. [PMID: 36694068 DOI: 10.1007/s11356-023-25264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
In cold environments, the low temperature slows down microbial metabolisms, such as the biodegradation processes of hydrocarbons, which are often stimulated by the addition of dispersants in oil spill disasters. In this study, we investigated the effects of hydrocarbon water-accommodated fraction (WAF) prepared with and without dispersant on benthic microbial communities in a microcosm experiment in which hydrocarbon removal was observed. Both WAFs contained similar polycyclic aromatic hydrocarbon (PAH) content. The microcosm experiment, set up with either pristine or contaminated sediments, was conducted for 21 days at 4 °C under WAF and WAF + dispersant conditions. The behavior of bacterial communities in response to WAF and WAF + dispersant was examined at both DNA and RNA levels, revealing the effect of WAF and WAF + dispersant on the resident and active communities respectively. The contaminated sediment showed less taxa responsive to the addition of both WAF and WAF + dispersant than the pristine sediment, indicating the legacy effect by the presence hydrocarbon-degrading and dispersant-resistant taxa inhabiting the contaminated sediment.
Collapse
Affiliation(s)
- Tamer Hafez
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Pau, France
- CBET Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology and Research Center for Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Z/G, 48620, Plentzia (Bizkaia), Basque Country, Spain
| | - Maren Ortiz-Zarragoitia
- CBET Research Group, Department of Zoology and Cell Biology, Faculty of Science and Technology and Research Center for Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Z/G, 48620, Plentzia (Bizkaia), Basque Country, Spain
| | - Christine Cagnon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Pau, France
| | | | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Pau, France.
| |
Collapse
|
5
|
Michán C, Blasco J, Alhama J. High-throughput molecular analyses of microbiomes as a tool to monitor the wellbeing of aquatic environments. Microb Biotechnol 2021; 14:870-885. [PMID: 33559398 PMCID: PMC8085945 DOI: 10.1111/1751-7915.13763] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Aquatic environments are the recipients of many sources of environmental stress that trigger both local and global changes. To evaluate the associated risks to organisms and ecosystems more sensitive and accurate strategies are required. The analysis of the microbiome is one of the most promising candidates for environmental diagnosis of aquatic systems. Culture-independent interconnected meta-omic approaches are being increasing used to fill the gaps that classical microbial approaches cannot resolve. Here, we provide a prospective view of the increasing application of these high-throughput molecular technologies to evaluate the structure and functional activity of microbial communities in response to changes and disturbances in the environment, mostly of anthropogenic origin. Some relevant topics are reviewed, such as: (i) the use of microorganisms for water quality assessment, highlighting the incidence of antimicrobial resistance as an increasingly serious threat to global public health; (ii) the crucial role of microorganisms and their complex relationships with the ongoing climate change, and other stress threats; (iii) the responses of the environmental microbiome to extreme pollution conditions, such as acid mine drainage or oil spills. Moreover, protists and viruses, due to their huge impacts on the structure of microbial communities, are emerging candidates for the assessment of aquatic environmental health.
Collapse
Affiliation(s)
- Carmen Michán
- Departamento de Bioquímica y Biología MolecularCampus de Excelencia Internacional Agroalimentario CeiA3Universidad de CórdobaCampus de Rabanales, Edificio Severo OchoaCórdobaE‐14071Spain
| | - Julián Blasco
- Department of Ecology and Coastal ManagementICMAN‐CSICCampus Rio San PedroPuerto Real (Cádiz)E‐11510Spain
| | - José Alhama
- Departamento de Bioquímica y Biología MolecularCampus de Excelencia Internacional Agroalimentario CeiA3Universidad de CórdobaCampus de Rabanales, Edificio Severo OchoaCórdobaE‐14071Spain
| |
Collapse
|
6
|
Zhou A, Xie S, Sun D, Zhang P, Dong H, Zuo Z, Li X, Zou J. A First Insight into the Structural and Functional Comparison of Environmental Microbiota in Freshwater Turtle Chinemys reevesii at Different Growth Stages under Pond and Greenhouse Cultivation. Microorganisms 2020; 8:E1277. [PMID: 32825672 PMCID: PMC7564371 DOI: 10.3390/microorganisms8091277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 02/01/2023] Open
Abstract
The microbial community structure of water is an important indicator for evaluating the water quality of the aquaculture environment. In this study, the investigation and comparison of the bacterial communities of pond cultivation (PC) and greenhouse cultivation (GC) between hatchling, juvenile, and adult growth stages of C. reevesii were performed. In addition, the V4 regions of the 16S rRNA gene were sequenced. The Chao1 richness estimator of the PC group was significantly higher than that of the GC group. The beta diversity showed that the microbiotas of the two groups were isolated from each other. The dominant phyla were Cyanobacteria, Proteobacteria, Actinobacteria, Bacteroidetes, Verrucomicrobia, and Planctomycetes in the PC group and Proteobacteria, Bacteroidetes, Firmicutes, Cyanobacteria, Chloroflexi, and Actinobacteria in the GC group. Both the numbers and the types of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations differed between the PC and GC groups. The prediction of bacterial phenotype implied that the GC environment is more likely to deteriorate, and turtles are more susceptible to pathogens than those of the PC environment. In addition, a total of nine potential pathogenic bacteria were identified and the correlation of environmental factors analyses showed significant differences of bacterial species between the PC and GC groups, while the potential pathogenic bacteria showed significant correlation with the stocking density, temperature, pH, orthophosphate (PO4-P), and dissolved oxygen (DO) in both the PC and GC groups. Noticeably, this is the first report to describe the different microbiota characteristics of the different cultivation environments in the different growth stages of C. reevesii, which will provide valuable data for water quality adjustment, disease prevention, and the healthy breeding of turtles.
Collapse
Affiliation(s)
- Aiguo Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (A.Z.); (S.X.); (D.S.); (P.Z.); (H.D.); (Z.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PE C1A 5T1, Canada;
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (A.Z.); (S.X.); (D.S.); (P.Z.); (H.D.); (Z.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Di Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (A.Z.); (S.X.); (D.S.); (P.Z.); (H.D.); (Z.Z.)
| | - Pan Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (A.Z.); (S.X.); (D.S.); (P.Z.); (H.D.); (Z.Z.)
| | - Han Dong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (A.Z.); (S.X.); (D.S.); (P.Z.); (H.D.); (Z.Z.)
| | - Zhiheng Zuo
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (A.Z.); (S.X.); (D.S.); (P.Z.); (H.D.); (Z.Z.)
| | - Xiang Li
- Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PE C1A 5T1, Canada;
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (A.Z.); (S.X.); (D.S.); (P.Z.); (H.D.); (Z.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|