1
|
Lee DH, Eom YB. Auranofin enhances the antibacterial effects of ertapenem against carbapenem-resistant Escherichia coli. Diagn Microbiol Infect Dis 2024; 110:116413. [PMID: 38924836 DOI: 10.1016/j.diagmicrobio.2024.116413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
The prevalence of carbapenem-resistant Escherichia coli (CREC) is increasing worldwide, and infections caused by CREC are associated with substantial morbidity and mortality rates. It is within this context that combination therapy has been reported as an effective strategy for treating resistant bacteria. Auranofin was approved by the FDA for treating rheumatoid arthritis. We confirmed that auranofin restored the susceptibility of ertapenem to CREC through synergy checkerboard and time-kill analyses. We also demonstrated that sub-MIC levels of auranofin significantly inhibited the expression of carbapenemase (blaKPC) and efflux pump (acrA, acrD, and tolC) genes. The combination of auranofin and ertapenem suppressed the expression levels of motility (motA and flhD) genes, decreasing motility, which is a known pathogenic factor in CREC. Taken together, our results indicate that auranofin exerted a synergistic effect with ertapenem by suppressing the expression of carbapenemase and efflux pump genes and reducing the motility and virulence factors against CREC.
Collapse
Affiliation(s)
- Da-Huin Lee
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Yong-Bin Eom
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea; Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea.
| |
Collapse
|
2
|
Coscione F, Zineddu S, Vitali V, Fondi M, Messori L, Perrin E. The Many Lives of Auranofin: How an Old Anti-Rheumatic Agent May Become a Promising Antimicrobial Drug. Antibiotics (Basel) 2024; 13:652. [PMID: 39061334 PMCID: PMC11274207 DOI: 10.3390/antibiotics13070652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Auranofin (AF) is a gold-based compound with a well-known pharmacological and toxicological profile, currently used in the treatment of some severe forms of rheumatoid arthritis. Over the last twenty years, AF has also been repurposed as antiviral, antitumor, and antibacterial drug. In this review we focused on the antibacterial properties of AF, specifically researching the minimal inhibitory concentrations (MIC) of AF in both mono- and diderm bacteria reported so far in literature. AF proves to be highly effective against monoderm bacteria, while diderm are far less susceptible, probably due to the outer membrane barrier. We also reported the current mechanistic hypotheses concerning the antimicrobial properties of AF, although a conclusive description of its antibacterial mode of action is not yet available. Even if its mechanism of action has not been fully elucidated yet and further studies are required to optimize its delivery strategy, AF deserves additional investigation because of its unique mode of action and high efficacy against a wide range of pathogens, which could lead to potential applications in fighting antimicrobial resistance and improving therapeutic outcomes in infectious diseases.
Collapse
Affiliation(s)
- Francesca Coscione
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (F.C.); (M.F.)
| | - Stefano Zineddu
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy; (S.Z.); (V.V.)
| | - Valentina Vitali
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy; (S.Z.); (V.V.)
| | - Marco Fondi
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (F.C.); (M.F.)
| | - Luigi Messori
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy; (S.Z.); (V.V.)
| | - Elena Perrin
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (F.C.); (M.F.)
| |
Collapse
|
3
|
Zhang Y, Chew BLA, Wang J, Yuan M, Yam JKH, Luo D, Yang L. Structural basis for the inhibitory mechanism of auranofin and gold(I) analogues against Pseudomonas aeruginosa global virulence factor regulator Vfr. Comput Struct Biotechnol J 2023; 21:2137-2146. [PMID: 37007650 PMCID: PMC10060147 DOI: 10.1016/j.csbj.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired infections. Treatment of P. aeruginosa infections is difficult given its multiple virulence mechanisms, intrinsic antibiotic resistance mechanisms, and biofilm-forming ability. Auranofin, an approved oral gold compound for rheumatoid arthritis treatment, was recently reported to inhibit the growth of multiple bacterial species. Here, we identify P. aeruginosa's global virulence factor regulator Vfr as one target of auranofin. We report the mechanistic insights into the inhibitory mechanism of auranofin and gold(I) analogues to Vfr through structural, biophysical, and phenotypic inhibition studies. This work suggests that auranofin and gold(I) analogues have potential to be developed as anti-virulence drugs against P. aeruginosa.
Collapse
Affiliation(s)
- Yingdan Zhang
- Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, Shenzhen 518112, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Bing Liang Alvin Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, 636921, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Jing Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Mingjun Yuan
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
- Guanghua Science and Technology Research Institute (Guangdong) Co., Ltd, China
| | - Joey Kuok Hoong Yam
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, 636921, Singapore
- Corresponding author at: Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore.
| | - Liang Yang
- Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, Shenzhen 518112, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
- Corresponding author at: Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, Shenzhen 518112, China.
| |
Collapse
|
4
|
Kim HR, Eom YB. Auranofin promotes antibacterial effect of doripenem against carbapenem-resistant Acinetobacter baumannii. J Appl Microbiol 2022; 133:1422-1433. [PMID: 35633297 DOI: 10.1111/jam.15644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/10/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
AIMS This study was performed to identify the potential for repurposing auranofin as an antibiotic adjuvant against carbapenemase-producing A. baumannii. METHODS AND RESULTS The clinically isolated A. baumannii strains used in this study were all resistant to carbapenems and harbored the blaOXA-23 gene. The synergistic effect of auranofin and doripenem against carbapenemase-producing A. baumannii was confirmed through checkerboard and growth kinetic analyses. This study also demonstrated the inhibitory effects of auranofin against A. baumannii biofilms. The anti-biofilm effects of auranofin were visualized by confocal laser scanning microscopy (CLSM). Furthermore, auranofin inhibited motility, one of the virulence factors. Additionally, the changes in the expression of carbapenemase-, biofilm- and efflux pump-related genes induced by auranofin were confirmed via quantitative polymerase chain reaction (qPCR). CONCLUSIONS Our results demonstrated that auranofin has an antibacterial effect with doripenem and an inhibitory effect on several factors related to carbapenem resistance. SIGNIFICANCE AND IMPACT OF THE STUDY This study suggests that auranofin is a promising antibiotic adjuvant that can be used to prevent antibiotic resistance in carbapenem-resistant A. baumannii.
Collapse
Affiliation(s)
- H-R Kim
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Y-B Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea.,Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| |
Collapse
|
5
|
Liu Y, Lu Y, Xu Z, Ma X, Chen X, Liu W. Repurposing of the gold drug auranofin and a review of its derivatives as antibacterial therapeutics. Drug Discov Today 2022; 27:1961-1973. [DOI: 10.1016/j.drudis.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/22/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022]
|
6
|
Synergistic Activity of Equol and Meropenem against Carbapenem-Resistant Escherichia coli. Antibiotics (Basel) 2021; 10:antibiotics10020161. [PMID: 33562526 PMCID: PMC7914716 DOI: 10.3390/antibiotics10020161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
The emergence of carbapenem-resistant Enterobacterales (CRE) seriously limits treatment options for bacterial infections. Combined drugs are an effective strategy to treat these resistant strains. This study aimed to evaluate the synergistic effect of equol and meropenem against carbapenem-resistant Escherichia coli. First, this study investigated the antibacterial activity of carbapenems on clinically isolated E. coli strains by analyzing the minimum inhibitory concentrations (MICs). The E. coli strains were all resistant to carbapenem antibiotics. Therefore, we confirmed the cause of carbapenem resistance by detecting blaKPC and blaOXA-48 among the carbapenemase genes using polymerase chain reaction (PCR) analysis. Checkerboard and time-kill analyses confirmed that equol restored the susceptibility of carbapenem-resistant E. coli to meropenem. Also, the transcription levels of specific carbapenemase genes in E. coli were significantly suppressed by equol. The study also evaluated the anti-virulence effects of equol on bacterial biofilm and motility through phenotypic and genotypic analyses. In conclusion, our results revealed that equol had a synergistic effect with meropenem on carbapenem-resistant E. coli. Therefore, this study suggests that equol is a promising antibiotic adjuvant that prevents the expression of carbapenemases and virulence factors in carbapenem-resistant E. coli.
Collapse
|
7
|
Kim HR, Eom YB. Antifungal and anti-biofilm effects of 6-shogaol against Candida auris. J Appl Microbiol 2020; 130:1142-1153. [PMID: 32981148 DOI: 10.1111/jam.14870] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 12/18/2022]
Abstract
AIMS This study aimed to assess the antifungal and anti-biofilm effects of 6-shogaol against Candida auris using in vitro phenotypic and genotypic analyses. METHODS AND RESULTS Our results showed that 6-shogaol exhibited antifungal as well as anti-biofilm activity by inhibiting biofilm formation and eradicating the preformed biofilms of C. auris. The rate and extent of antifungal activity were further confirmed by a time-kill assay. The XTT reduction assay confirmed that 6-shogaol decreased cellular metabolic activity in the biofilm. The effect of 6-shogaol on established C. auris biofilms was visualized by confocal laser scanning microscopy. Also, this study demonstrated that 6-shogaol reduced the levels of aspartyl proteinases and downregulated the expression of the efflux pump-related CDR1 gene in C. auris. CONCLUSIONS The data indicated that 6-shogaol extracted from ginger had antifungal and anti-biofilm effects on C. auris. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrated the value of the plant-derived 6-shogaol as a promising and potent bioactive compound. The mode of action of this compound against C. auris biofilm was also proposed.
Collapse
Affiliation(s)
- H-R Kim
- Department of Medical Sciences, College of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Y-B Eom
- Department of Medical Sciences, College of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea.,Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
8
|
Khan F, Tabassum N, Pham DTN, Oloketuyi SF, Kim YM. Molecules involved in motility regulation in Escherichia coli cells: a review. BIOFOULING 2020; 36:889-908. [PMID: 33028083 DOI: 10.1080/08927014.2020.1826939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The initial colonization of the host organism by commensal, probiotic, and pathogenic Escherichia coli strains is an important step in the development of infections and biofilms. Sensing and colonization of host cell surfaces are governed by flagellar and fimbriae/pili appendages, respectively. Biofilm formation confers great advantages on pathogenic E. coli cells such as protection against the host immune system, antimicrobial agents, and several environmental stress factors. The transition from planktonic to sessile physiological states involves several signaling cascades and factors responsible for the regulation of flagellar motility in E. coli cells. These regulatory factors have thus become important targets to control pathogenicity. Hence, attenuation of flagellar motility is considered a potential therapy against pathogenic E. coli. The present review describes signaling pathways and proteins involved in direct or indirect regulation of flagellar motility. Furthermore, application strategies for antimotility natural or synthetic compounds are discussed also.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, Republic of Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
9
|
Jang HI, Rhee KJ, Eom YB. Antibacterial and antibiofilm effects of α-humulene against Bacteroides fragilis. Can J Microbiol 2020; 66:389-399. [PMID: 32073898 DOI: 10.1139/cjm-2020-0004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rapid increase in antibiotic resistance has prompted the discovery of drugs that reduce antibiotic resistance or new drugs that are an alternative to antibiotics. Plant extracts have health benefits and may also exhibit antibacterial and antibiofilm activities against pathogens. This study determined the antibacterial and antibiofilm effects of α-humulene extracted from plants against enterotoxigenic Bacteroides fragilis, which causes inflammatory bowel disease. The minimum inhibitory concentration and biofilm inhibitory concentration of α-humulene for B. fragilis were 2 μg/mL, and the biofilm eradication concentration was in the range of 8-32 μg/mL. The XTT reduction assay confirmed that the cellular metabolic activity in biofilm rarely occurred at the concentration of 8-16 μg/mL. In addition, biofilm inhibition by α-humulene was also detected via confocal laser scanning microcopy. Quantitative real-time polymerase chain reaction (qPCR) was also used to investigate the effect of α-humulene on the expression of resistance-nodulation-cell division type multidrug efflux pump genes (bmeB1 and bmeB3). According to the results of qPCR, α-humulene significantly reduced the expression of bmeB1 and bmeB3 genes. This study demonstrates the potential therapeutic application of α-humulene for inhibiting the growth of B. fragilis cells and biofilms, and it expands the knowledge about biofilm medicine.
Collapse
Affiliation(s)
- Hye-In Jang
- Department of Medical Sciences, College of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju 26493, Republic of Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, College of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|