1
|
Murphy CM, Weller DL, Bardsley CA, Ingram DT, Chen Y, Oryang D, Rideout SL, Strawn LK. Survival of Twelve Pathogenic and Generic Escherichia coli Strains in Agricultural Soils as Influenced by Strain, Soil Type, Irrigation Regimen, and Soil Amendment. J Food Prot 2024; 87:100343. [PMID: 39147099 PMCID: PMC11537252 DOI: 10.1016/j.jfp.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Biological soil amendments of animal origin (BSAAO) play an important role in agriculture but can introduce pathogens into soils. Pathogen survival in soil is widely studied, but data are needed on the impacts of strain variability and field management practices. This study monitored the population of 12 Escherichia coli strains (generic, O157, and non-O157) in soils while evaluating the interactions of soil type, irrigation regimen, and soil amendment in three independent, greenhouse-based, randomized complete block design trials. Each E. coli strain (4-5 log10 CFU/g) was homogenized in bovine manure amended or nonamended sandy-loam or clay-loam soil. E. coli was enumerated in 25 g samples on 0, 0.167 (4 h), 1, 2, 4, 7, 10, 14, 21, 28, 56, 84, 112, 168, 210, 252, and 336 days postinoculation (dpi). Regression analyses were developed to understand the impact of strain, soil type, irrigation regimen, and soil amendment on inactivation rates. E. coli survived for 112 to 336 dpi depending on the treatment combination. Pathogenic and generic E. coli survived 46 days [95% Confidence interval (CI) = 20.85, 64.72; p = 0.001] longer in soils irrigated weekly compared to daily and 146 days (CI = 114.50, 184.50; p < 0.001) longer in amended soils compared to unamended soils. Pathogenic E. coli strains were nondetectable 69 days (CI = 39.58, 98.66, p = 0.015) earlier than generic E. coli strains. E. coli inactivation rates demonstrated a tri-phasic pattern, with breakpoints at 26 dpi (CI = 22.3, 29.2) and 130 dpi (CI = 121.0, 138.1). The study findings demonstrate that using bovine manure as BSAAO in soil enhances E. coli survival, regardless of strain, and adequate food safety practices are needed to reduce the risk of crop contamination. The findings of this study contribute data on E. coli concentrations in amended soils to assist stakeholders and regulators in making risk-based decisions on time intervals between the application of BSAAO and the production and harvest of fruits and vegetables.
Collapse
Affiliation(s)
- Claire M Murphy
- School of Food Science, Washington State University - Irrigated Agriculture Research and Extension Center, Prosser, Washington, USA; Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Daniel L Weller
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Cameron A Bardsley
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - David T Ingram
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - Yuhuan Chen
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - David Oryang
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - Steven L Rideout
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Laura K Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
2
|
Wang H, Shao L, Liu Y, Sun Y, Zou B, Zhao Y, Wang Y, Li X, Dai R. Changes in stresses sensitivity of ohmic heating-induced sublethally injured Staphylococcus aureus during repair: Potential mechanisms at the cellular and molecular levels. Int J Food Microbiol 2024; 422:110814. [PMID: 38972103 DOI: 10.1016/j.ijfoodmicro.2024.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Ohmic heating (OH), an emerging food processing technology employed in the food processing industry, raises potential food safety concerns due to the recovery of sublethally injured pathogens such as Staphylococcus aureus (S. aureus). In the present study, sensitivity to various stress conditions and the changes in cellular-related factors of OH-injured S. aureus during repair were investigated. The results indicated that liquid media differences (nutrient broth (NB), phosphate-buffered saline (PBS), milk, and cucumber juice) affected the recovery process of injured cells. Nutrient enrichment determines the bacterial repair rate, and the rates of repair for these media were milk > NB > cucumber juice > PBS. The sensitivity of injured cells to various stressors, including different acids, temperature, nisin, simulated gastric fluid, and bile salt, increased during the injury phase and subsequently diminished upon repair. Additionally, the intracellular ATP content, enzyme activities (Na+/K+-ATPase, Ca2+/Mg2+-ATPase, and T-ATPase) and ion concentrations (Mg2+, K+, and Ca2+) gradually increased during repair. After 5 h of repair, the intracellular substances content of cell's was significantly higher than that of the injured bacteria without repair, while some indicators (e.g., Na+/K+-ATPase, K+, and Ca2+) were not restored to the untreated level. The results of this study indicated that OH-injured S. aureus exhibited strengthened resistance post-recovery, potentially due to the restoration of cellular structures. These findings have implications for optimizing food storage conditions and advancing OH processes in the food industry.
Collapse
Affiliation(s)
- Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Lele Shao
- College of Tea & Food Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, PR China
| | - Yana Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yingying Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Bo Zou
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yijie Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yuhan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
3
|
Machado MAM, Castro VS, Monteiro MLG, Bernardo YADA, Figueiredo EEDS, Conte-Junior CA. Can Extraintestinal Pathogenic Escherichia coli with Heat Resistance Profile Overcome Nonthermal Technologies? Foodborne Pathog Dis 2024; 21:168-173. [PMID: 38090762 DOI: 10.1089/fpd.2023.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Ultraviolet-C light-emitting diode (UVC-LED) and ultrasound (US) are two nonthermal technologies with the potential to destroy pathogens. However, little is known about their effectiveness in strains with a history of heat resistance. Thus, this study aimed to evaluate the phenotype and genotype of heat-resistant extraintestinal pathogenic Escherichia coli (ExPEC) with heat resistance genes after the application of US, UVC-LED, and UVC-LED+US. For this, two central composite rotatable designs were used to optimize the UVC-LED and US conditions in four ExPEC isolated from beef. From the genome of these isolates obtained in a previous study, possible genes for UVC resistance were analyzed. Results showed that US was ineffective in reducing >0.30 log colony-forming unit/mL, and that when used after UVC-LED, it showed a nonsynergic or antagonistic effect. Also, UVC-LED had the greatest effect at the maximum dose (4950 mJ/cm2 from 1.65 mW/cm2 for 50 min). However, the strains showed some recovery after that, which could be implicated in the expression of genes included in SOS system genes, some others present in the transmissible Locus of Stress Tolerance (trxBC and degP), and others (terC). Thus, ExPEC can overcome the conditions used in this study for US, UVC-LED, and UVC-LED+US, probably due to the history of resistance to other cellular damage. The result of this study will contribute to future studies that aim to find better treatment conditions for each food product.
Collapse
Affiliation(s)
- Maxsueli Aparecida Moura Machado
- Postgraduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
| | - Vinicius Silva Castro
- Postgraduate Program in Animal Science (PPGCA). Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - Maria Lúcia Guerra Monteiro
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Postgraduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
| | - Yago Alves de Aguiar Bernardo
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Postgraduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
| | - Eduardo Eustáquio de Souza Figueiredo
- Postgraduate Program in Animal Science (PPGCA). Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
- Postgraduate Program in Nutrition, Food and Metabolism (PPGNAM), Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - Carlos Adam Conte-Junior
- Postgraduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Postgraduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
| |
Collapse
|
4
|
Nunes NB, dos Reis JO, Castro VS, Machado MAM, da Cunha-Neto A, Figueiredo EEDS. Optimizing the Antimicrobial Activity of Sodium Hypochlorite (NaClO) over Exposure Time for the Control of Salmonella spp. In Vitro. Antibiotics (Basel) 2024; 13:68. [PMID: 38247627 PMCID: PMC10812646 DOI: 10.3390/antibiotics13010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Fish is a nutritionally rich product; however, it is easily contaminated by pathogenic microorganisms, such as Salmonella spp. Therefore, this study aimed to identify the best concentration of sodium hypochlorite (NaClO), exposure time, and water temperature that allow the most effective antimicrobial effect on the viable population of Salmonella spp. Thus, Salmonella Enteritidis ATCC 13076 and Salmonella Schwarzengrund were exposed to different time frames, ranging from 5 min to 38.5 min, temperatures between 5 and 38.5 °C, and NaClO concentrations ranging from 0.36 to 6.36 ppm, through a central composite rotational design experiment (CCRD). The results demonstrated that the ATCC strain exhibited a quadratic response to sodium hypochlorite when combined with exposure time, indicating that initial contact would already be sufficient for the compound's action to inhibit the growth of the mentioned bacteria. However, for S. Schwarzengrund (isolated directly from fish cultivated in aquaculture), both NaClO concentration and exposure time significantly influenced inactivation, following a linear pattern. This suggests that increasing the exposure time of NaClO could be an alternative to enhance Salmonella elimination rates in fish slaughterhouses. Thus, the analysis indicates that the Salmonella spp. strains used in in vitro experiments were sensitive to concentrations equal to or greater than the recommended ones, requiring a longer exposure time combined with the recommended NaClO concentration in the case of isolates from aquaculture.
Collapse
Affiliation(s)
- Nathaly Barros Nunes
- Faculty of Agronomy and Zootechnics, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil; (N.B.N.); (J.O.d.R.)
| | - Jaqueline Oliveira dos Reis
- Faculty of Agronomy and Zootechnics, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil; (N.B.N.); (J.O.d.R.)
| | - Vinicius Silva Castro
- Faculty of Agronomy and Zootechnics, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil; (N.B.N.); (J.O.d.R.)
- Faculty of Nutrition, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil;
| | | | - Adelino da Cunha-Neto
- Faculty of Nutrition, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil;
| | - Eduardo Eustáquio de Souza Figueiredo
- Faculty of Agronomy and Zootechnics, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil; (N.B.N.); (J.O.d.R.)
- Faculty of Nutrition, Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, MT, Brazil;
| |
Collapse
|
5
|
Murphy CM, Hamilton AM, Waterman K, Rock C, Schaffner D, Strawn LK. Sanitizer Type and Contact Time Influence Salmonella Reductions in Preharvest Agricultural Water Used on Virginia Farms. J Food Prot 2023; 86:100110. [PMID: 37268194 DOI: 10.1016/j.jfp.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
No Environmental Protection Agency (EPA) chemical treatments for preharvest agricultural water are currently labeled to reduce human health pathogens. The goal of this study was to examine the efficacy of peracetic acid- (PAA) and chlorine (Cl)-based sanitizers against Salmonella in Virginia irrigation water. Water samples (100 mL) were collected at three time points during the growing season (May, July, September) and inoculated with either the 7-strain EPA/FDA-prescribed cocktail or a 5-strain Salmonella produce-borne outbreak cocktail. Experiments were conducted in triplicate for 288 unique combinations of time point, residual sanitizer concentration (low: PAA, 6 ppm; Cl, 2-4 ppm or high: PAA, 10 ppm; Cl, 10-12 ppm), water type (pond, river), water temperature (12°C, 32°C), and contact time (1, 5, 10 min). Salmonella were enumerated after each treatment combination and reductions were calculated. A log-linear model was used to characterize how treatment combinations influenced Salmonella reductions. Salmonella reductions by PAA and Cl ranged from 0.0 ± 0.1 to 5.6 ± 1.3 log10 CFU/100 mL and 2.1 ± 0.2 to 7.1 ± 0.2 log10 CFU/100 mL, respectively. Physicochemical parameters significantly varied by untreated water type; however, Salmonella reductions did not (p = 0.14), likely due to adjusting the sanitizer amounts needed to achieve the target residual concentrations regardless of source water quality. Significant differences (p < 0.05) in Salmonella reductions were observed for treatment combinations, with sanitizer (Cl > PAA) and contact time (10 > 5 > 1 min) having the greatest effects. The log-linear model also revealed that outbreak strains were more treatment-resistant. Results demonstrate that certain treatment combinations with PAA- and Cl-based sanitizers were effective at reducing Salmonella populations in preharvest agricultural water. Awareness and monitoring of water quality parameters are essential for ensuring adequate dosing for the effective treatment of preharvest agricultural water.
Collapse
Affiliation(s)
- Claire M Murphy
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Alexis M Hamilton
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Kim Waterman
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Channah Rock
- Department of Environmental Science, University of Arizona - Maricopa Agricultural Center, Maricopa, Arizona, USA
| | - Donald Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Laura K Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
6
|
Castro VS, Ngo S, Stanford K. Influence of temperature and pH on induction of Shiga toxin Stx1a in Escherichia coli. Front Microbiol 2023; 14:1181027. [PMID: 37485504 PMCID: PMC10359099 DOI: 10.3389/fmicb.2023.1181027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Shiga toxin-producing strains represent pathogenic group that is of concern in food production. The present study evaluated forty-eight E. coli isolates (11 with intact stx gene, while remaining isolates presented only stx-fragments) for Shiga toxin production. The four most expressive stx-producers (O26, O103, O145, and O157) were selected to evaluate effects of pH (3.5, 4.5, and 7) and temperature (35, 40, and 50°C). After determining acid stress effects in media on Stx-induction, we mimicked "in natura" conditions using milk, apple, and orange juices. Only isolates that showed the presence of intact stx gene (11/48) produced Shiga toxin. In addition, acid pH had a role in down-regulating the production of Shiga toxin, in both lactic acid and juices. In contrast, non-lethal heating (40°C), when in neutral pH and milk was a favorable environment to induce Shiga toxin. Lastly, two isolates (O26 and O103) showed a higher capacity to produce Shiga toxin and were included in a genomic cluster with other E. coli involved in worldwide foodborne outbreaks. The induction of this toxin when subjected to 40°C may represent a potential risk to the consumer, since the pathogenic effect of oral ingestion of Shiga toxin has already been proved in an animal model.
Collapse
|
7
|
Machado MAM, Castro VS, da Cunha-Neto A, Vallim DC, Pereira RDCL, Dos Reis JO, de Almeida PV, Galvan D, Conte-Junior CA, Figueiredo EEDS. Heat-resistant and biofilm-forming Escherichia coli in pasteurized milk from Brazil. Braz J Microbiol 2023; 54:1035-1046. [PMID: 36811769 PMCID: PMC10235242 DOI: 10.1007/s42770-023-00920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Escherichia coli harboring a transmissible locus of stress tolerance (tLST) and the ability to form biofilms represent a serious risk in dairy production. Thus, we aimed to evaluate the microbiological quality of pasteurized milk from two dairy producers in Mato Grosso, Brazil, with a focus on determining the possible presence of E. coli with heat resistance (60 °C/6 min), biofilm-forming potential phenotypes and genotypes, and antimicrobial susceptibility. For this, fifty pasteurized milk samples from producers named A and B were obtained for 5 weeks to investigate the presence of Enterobacteriaceae members, coliforms, and E. coli. For heat resistance, E. coli isolates were exposed to a water bath at 60 °C for 0 and 6 min. In antibiogram analysis, eight antibiotics belonging to six antimicrobial classes were analyzed. The potential to form biofilms was quantified at 570 nm, and curli expression by Congo Red was analyzed. To determine the genotypic profile, we performed PCR for the tLST and rpoS genes, and pulsed-field gel electrophoresis (PFGE) was used to investigate the clonal profile of the isolates. Thus, producer A presented unsatisfactory microbiological conditions regarding Enterobacteriaceae and coliforms for weeks 4 and 5, while all samples analyzed for producer B were contaminated at above-the-limit levels established by national and international legislation. These unsatisfactory conditions enabled us to isolate 31 E. coli from both producers (7 isolates from producer A and 24 isolates from producer B). In this way, 6 E. coli isolates (5 from producer A and 1 from producer B) were highly heat resistant. However, although only 6 E. coli showed a highly heat-resistant profile, 97% (30/31) of all E. coli were tLST-positive. In contrast, all isolates were sensitive to all antimicrobials tested. In addition, moderate or weak biofilm potential was verified in 51.6% (16/31), and the expression of curli and presence of rpoS was not always related to this biofilm potential. Therefore, the results emphasize the spreading of heat-resistant E. coli with tLST in both producers and indicate the biofilm as a possible source of contamination during milk pasteurization. However, the possibility of E. coli producing biofilm and surviving pasteurization temperatures cannot be ruled out, and this should be investigated.
Collapse
Affiliation(s)
- Maxsueli Aparecida Moura Machado
- Graduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adelino da Cunha-Neto
- Department of Food and Nutrition, Federal University of Mato Grosso - Campus Cuiabá, Fernando Correa da Costa. Avenue, Boa Esperança, Mato Grosso, 78060-900, Brazil
| | | | | | | | | | - Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Eustáquio de Souza Figueiredo
- Department of Food and Nutrition, Federal University of Mato Grosso - Campus Cuiabá, Fernando Correa da Costa. Avenue, Boa Esperança, Mato Grosso, 78060-900, Brazil.
- Graduate Program in Animal Science, Federal University of Mato Grosso, Mato Grosso, Brazil.
| |
Collapse
|
8
|
Machado MAM, Castro VS, Monteiro MLG, Bernardo YADA, Figueiredo EEDS, Conte‐Junior CA. Effect of
UVC‐LED
and ultrasound alone and combined on heat‐resistant
Escherichia coli
isolated from pasteurised milk. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Maxsueli Aparecida Moura Machado
- Postgraduate Program in Food Science (PPGCAL) Chemistry Institute, Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro 21941‐909 RJ Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria Rio de Janeiro 21941‐598 RJ Brazil
- Department of Biochemistry, Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM) Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria Rio de Janeiro 21941‐909 RJ Brazil
| | - Vinicius Silva Castro
- University of Lethbridge, 4401 University Drive Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - Maria Lúcia Guerra Monteiro
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria Rio de Janeiro 21941‐598 RJ Brazil
- Department of Biochemistry, Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM) Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria Rio de Janeiro 21941‐909 RJ Brazil
- Postgraduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine Fluminense Federal University (UFF) Niterói 24230‐340 RJ Brazil
| | - Yago Alves de Aguiar Bernardo
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria Rio de Janeiro 21941‐598 RJ Brazil
- Department of Biochemistry, Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM) Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria Rio de Janeiro 21941‐909 RJ Brazil
- Postgraduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine Fluminense Federal University (UFF) Niterói 24230‐340 RJ Brazil
| | | | - Carlos Adam Conte‐Junior
- Postgraduate Program in Food Science (PPGCAL) Chemistry Institute, Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro 21941‐909 RJ Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC) Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria Rio de Janeiro 21941‐598 RJ Brazil
- Department of Biochemistry, Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM) Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria Rio de Janeiro 21941‐909 RJ Brazil
- Postgraduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine Fluminense Federal University (UFF) Niterói 24230‐340 RJ Brazil
| |
Collapse
|
9
|
|
10
|
Monteiro MLG, Rosário DK, de Carvalho APA, Conte-Junior CA. Application of UV-C light to improve safety and overall quality of fish: A systematic review and meta-analysis. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Rosario AILS, Castro VS, Santos LF, Lisboa RC, Vallim DC, Silva MCA, Figueiredo EES, Conte-Junior CA, Costa MP. Shiga toxin-producing Escherichia coli isolated from pasteurized dairy products from Bahia, Brazil. J Dairy Sci 2021; 104:6535-6547. [PMID: 33741165 DOI: 10.3168/jds.2020-19511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
The presence of pathogenic Shiga toxin-producing Escherichia coli (STEC) in dairy products represents a public health concern because of its ability to produce the toxins Stx1 and Stx2, which cause intestinal diseases. Monitoring the stages of milk production and checking dairy products for contamination are crucial steps to ensure dairy safety. This study aimed to report the occurrence of thermotolerant coliforms, E. coli, and STEC strains in pasteurized dairy products and to evaluate the antibiotic resistance profiles, serotypes, and characterizations of the STEC isolates by pulsed-field gel electrophoresis. We obtained a total of 138 pasteurized dairy products from 15 processing plants in Bahia, Brazil, to examine coliforms, E. coli, and STEC strains. We found that 43% of samples (59/138) contained thermotolerant coliforms, and 30% (42/138) did not comply with Brazilian regulations. Overall, 6% (9/138) were positive for E. coli and 4% (5/138) were positive for STEC. We recovered 9 STEC isolates from pasteurized cream (2/9), Minas Padrão cheese (2/9), Minas Frescal cheese (4/9), and ricotta (1/9). All isolates were stx2-positive, and 2 were eae-positive. All isolates were negative for the "big 6" STEC serogroups, belonging instead to serotypes ONT:HNT, ONT:H12, O148:H-, OR:H40, OR:HNT, and O148:HNT. Pulsed-field gel electrophoresis revealed 100% genetic similarity among 3 isolates from 2 different samples produced in the same production facility, which may suggest cross-contamination. As well, we found isolates that were 98% similar but in samples produced in different production facilities, suggesting a mutual source of contamination or a circulating strain. Two STEC strains exhibited resistance to streptomycin. Although the isolates presented a low resistance profile and no strain belonged to the "big 6" pathogenic group, the circulation of stx2-positive STEC strains in ready-to-eat products highlights the importance of epidemiological surveillance inside the Brazilian dairy chain.
Collapse
Affiliation(s)
- Anisio I L S Rosario
- Graduate Program in Food Science (PGAli), Faculty of Pharmacy, Federal University of Bahia (UFBA), Salvador, BA, 40170-115, Brazil; Laboratório de Inspeção e Tecnologia de Leite e Derivados (LAITLACTEOS), Federal University of Bahia (UFBA), Salvador, BA, 40170-110, Brazil; Center for Food Analysis (NAL), Technological Development Support, Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil
| | - Vinicius S Castro
- Center for Food Analysis (NAL), Technological Development Support, Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Luis F Santos
- Núcleo de Doenças Entéricas e Infecções por Patógenos Especiais, Adolfo Lutz Institute, São Paulo, SP, 01246-902, Brazil
| | - Rodrigo C Lisboa
- Laboratório de Zoonoses Bacterianas, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
| | - Deyse C Vallim
- Laboratório de Zoonoses Bacterianas, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil
| | - Maurício C A Silva
- Laboratório de Inspeção e Tecnologia de Carnes e Derivados (LABCARNE), Federal University of Bahia (UFBA), Salvador, BA, 40170-110, Brazil
| | - Eduardo E S Figueiredo
- Laboratório de Microbiologia Molecular de Alimentos, Federal University of Mato Grosso (UFMT), Cuiabá, MT, 78060-900, Brazil
| | - Carlos A Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support, Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, 24230-340, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Marion P Costa
- Graduate Program in Food Science (PGAli), Faculty of Pharmacy, Federal University of Bahia (UFBA), Salvador, BA, 40170-115, Brazil; Laboratório de Inspeção e Tecnologia de Leite e Derivados (LAITLACTEOS), Federal University of Bahia (UFBA), Salvador, BA, 40170-110, Brazil.
| |
Collapse
|
12
|
Comparative transcriptomic study of Escherichia coli O157:H7 in response to ohmic heating and conventional heating. Food Res Int 2021; 140:109989. [PMID: 33648224 DOI: 10.1016/j.foodres.2020.109989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/29/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
In this study, the high-throughput Illumina HiSeq 2000 mRNA sequencing technique was used to investigate the transcriptome response of Escherichia coli O157:H7 exposed to ohmic heating (OH) and water bath heating (WB). Compared to untreated samples, a total of 293, 516, and 498 genes showed differential expression after HVOH (high voltage short time ohmic heating), LVOH (low voltage long time ohmic heating), and WB, respectively. Therefore, LVOH had the potential to cause comparable effects on the transcriptome of E. coli O157:H7 as compared to WB, but not HVOH. These results indicated that additional non-thermal effects were not reflected on transcriptome of E. coli O157:H7 using both HVOH and LVOH, in particular the HVOH. Most of differentially expressed genes involved in information storage and processing, and cellular processes and signaling showed up-regulation whereas most of genes related to the metabolism were down-regulated after HVOH, LVOH, and WB. In addition, more attention needs to be paid to the up-regulation of a large number of virulence genes, which might increase the ability of surviving E. coli O157:H7 to infect host cells after HVOH, LVOH, and WB. This transcriptomic study on the response of E. coli O157:H7 to OH protomes the understanding of inactivation mechanism of OH on the molecular level and opens the door to future studies for OH.
Collapse
|
13
|
Castro VS, Mutz YDS, Rosario DKA, Cunha-Neto A, Figueiredo EEDS, Conte-Junior CA. Inactivation of Multi-Drug Resistant Non-Typhoidal Salmonella and Wild-Type Escherichia coli STEC Using Organic Acids: A Potential Alternative to the Food Industry. Pathogens 2020; 9:E849. [PMID: 33081230 PMCID: PMC7602699 DOI: 10.3390/pathogens9100849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/06/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022] Open
Abstract
Salmonella and Escherichia coli are the main bacterial species involved in food outbreaks worldwide. Recent reports showed that chemical sanitizers commonly used to control these pathogens could induce antibiotic resistance. Therefore, this study aimed to describe the efficiency of chemical sanitizers and organic acids when inactivating wild and clinical strains of Salmonella and E. coli, targeting a 4-log reduction. To achieve this goal, three methods were applied. (i) Disk-diffusion challenge for organic acids. (ii) Determination of MIC for two acids (acetic and lactic), as well as two sanitizers (quaternary compound and sodium hypochlorite). (iii) The development of inactivation models from the previously defined concentrations. In disk-diffusion, the results indicated that wild strains have higher resistance potential when compared to clinical strains. Regarding the models, quaternary ammonium and lactic acid showed a linear pattern of inactivation, while sodium hypochlorite had a linear pattern with tail dispersion, and acetic acid has Weibull dispersion to E. coli. The concentration to 4-log reduction differed from Salmonella and E. coli in acetic acid and sodium hypochlorite. The use of organic acids is an alternative method for antimicrobial control. Our study indicates the levels of organic acids and sanitizers to be used in the inactivation of emerging foodborne pathogens.
Collapse
Affiliation(s)
- Vinicius Silva Castro
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (V.S.C.); (Y.d.S.M.); (D.K.A.R.)
- Faculdade de Agronomia e Zootecnia, Universidade Federal de Mato Grosso, Mato Grosso 78060-900, Brazil;
- Faculdade de Nutrição, Universidade Federal de Mato Grosso, Mato Grosso 78060-900, Brazil;
- Departamento de Tecnologia de Alimentos, Faculdade de Veterinária, Universidade Federal Fluminense, Rio de Janeiro 24230-340, Brazil
| | - Yhan da Silva Mutz
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (V.S.C.); (Y.d.S.M.); (D.K.A.R.)
- Departamento de Tecnologia de Alimentos, Faculdade de Veterinária, Universidade Federal Fluminense, Rio de Janeiro 24230-340, Brazil
| | - Denes Kaic Alves Rosario
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (V.S.C.); (Y.d.S.M.); (D.K.A.R.)
- Departamento de Tecnologia de Alimentos, Faculdade de Veterinária, Universidade Federal Fluminense, Rio de Janeiro 24230-340, Brazil
| | - Adelino Cunha-Neto
- Faculdade de Nutrição, Universidade Federal de Mato Grosso, Mato Grosso 78060-900, Brazil;
| | - Eduardo Eustáquio de Souza Figueiredo
- Faculdade de Agronomia e Zootecnia, Universidade Federal de Mato Grosso, Mato Grosso 78060-900, Brazil;
- Faculdade de Nutrição, Universidade Federal de Mato Grosso, Mato Grosso 78060-900, Brazil;
| | - Carlos Adam Conte-Junior
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (V.S.C.); (Y.d.S.M.); (D.K.A.R.)
- Departamento de Tecnologia de Alimentos, Faculdade de Veterinária, Universidade Federal Fluminense, Rio de Janeiro 24230-340, Brazil
- Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
14
|
Dos Santos Rosario AIL, da Silva Mutz Y, Castro VS, da Silva MCA, Conte-Junior CA, da Costa MP. Everybody loves cheese: crosslink between persistence and virulence of Shiga-toxin Escherichia coli. Crit Rev Food Sci Nutr 2020; 61:1877-1899. [PMID: 32519880 DOI: 10.1080/10408398.2020.1767033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
General cheese manufacturing involves high temperatures, fermentation and ripening steps that function as hurdles to microbial growth. On the other hand, the application of several different formulations and manufacturing techniques may create a bacterial protective environment. In cheese, the persistent behavior of Shiga toxin-producing Escherichia coli (STEC) relies on complex mechanisms that enable bacteria to respond to stressful conditions found in cheese matrix. In this review, we discuss how STEC manages to survive to high and low temperatures, hyperosmotic conditions, exposure to weak organic acids, and pH decreasing related to cheese manufacturing, the cheese matrix itself and storage. Moreover, we discuss how these stress responses interact with each other by enhancing adaptation and consequently, the persistence of STEC in cheese. Further, we show how virulence genes eae and tir are affected by stress response mechanisms, increasing either cell adherence or virulence factors production, which leads to a selection of more resistant and virulent pathogens in the cheese industry, leading to a public health issue.
Collapse
Affiliation(s)
- Anisio Iuri Lima Dos Santos Rosario
- Postgraduate Program in Food Science, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador, Brazil.,Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| | - Yhan da Silva Mutz
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Vinícius Silva Castro
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurício Costa Alves da Silva
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| | - Carlos Adam Conte-Junior
- Postgraduate Program in Food Science, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil.,National Institute for Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marion Pereira da Costa
- Postgraduate Program in Food Science, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador, Brazil.,Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics of Veterinary, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
15
|
Rosario DKA, Rodrigues BL, Bernardes PC, Conte-Junior CA. Principles and applications of non-thermal technologies and alternative chemical compounds in meat and fish. Crit Rev Food Sci Nutr 2020; 61:1163-1183. [PMID: 32319303 DOI: 10.1080/10408398.2020.1754755] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods of food preservation have demonstrated several disadvantages and limitations in the efficiency of the microbial load reduction and maintain food quality. Hence, non-thermal preservation technologies (NTPT) and alternative chemical compounds (ACC) have been considered a high promissory replacer to decontamination, increasing the shelf life and promoting low levels of physicochemical, nutritional and sensorial alterations of meat and fish products. The combination of these methods can be a potential alternative to the food industry. This review deals with the most critical aspects of the mechanisms of action under microbial, physicochemical, nutritional and sensorial parameters and the efficiency of the different NTPT (ultrasound, high pressure processing, gamma irradiation and UV-C radiation) and ACC (peracetic acid, bacteriocins, nanoparticles and essential oils) applied in meat and fish products. The NTPT and ACC present a high capacity of microorganisms inactivation, ensuring low alterations level in the matrix and high reduction of environmental impact. However, the application conditions of the different methods as exposition time, energy intensity and concentration thresholds of chemical compounds need to be specifically established and continuously improved for each matrix type to reduce to the maximum the physicochemical, nutritional and sensorial changes. In addition, the combination of the methods (hurdle concept) may be an alternative to enhance the matrix decontamination. In this way, undesirable changes in meat and fish products can be further reduced without a decrease in the efficiency of the decontamination.
Collapse
Affiliation(s)
- Denes K A Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, Rio de Janeiro, RJ, Brazil
| | - Bruna L Rodrigues
- Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, Rio de Janeiro, RJ, Brazil
| | - Patricia C Bernardes
- Department of Food Engineering, Federal University of Espírito Santo, Alegre, Brazil
| | - Carlos A Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Avenida Horácio Macedo, Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Food Science Program, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, Rio de Janeiro, RJ, Brazil.,National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
Mutz YS, Rosario DKA, Bernardes PC, Paschoalin VMF, Conte-Junior CA. Modeling Salmonella Typhimurium Inactivation in Dry-Fermented Sausages: Previous Habituation in the Food Matrix Undermines UV-C Decontamination Efficacy. Front Microbiol 2020; 11:591. [PMID: 32322246 PMCID: PMC7156554 DOI: 10.3389/fmicb.2020.00591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/18/2020] [Indexed: 01/12/2023] Open
Abstract
The effects of previous Salmonella Typhimurium habituation to an Italian-style salami concerning pathogen resistance against ultraviolet-C light (UV-C) treatment were modeled in order to establish treatment feasibility for the decontamination of dry-fermented sausage. S. Typhimurium following 24 h habituation in fermented sausage (habituated cells) or non-habituation (non-habituated cells) were exposed to increasing UV-C radiation treatment times. The Weibull model was the best fit for describing S. Typhimurium UV-C inactivation. Heterogeneity in UV-C treatment susceptibilities within the S. Typhimurium population was observed, revealing intrinsic persistence in a sub-population. UV-C radiation up to 1.50 J/cm2 was a feasible treatment for dry-fermented sausage decontamination, as the matrices retained instrumental color and lipid oxidation physiochemical characteristics. However, habituation in the sausage matrix led to a 14-fold increase in the UV-C dose required to achieve the first logarithm reduction (δ value) in S. Typhimurium population. The results indicate that, although UV-C radiation might be considered an efficient method for dry-fermented sausage decontamination, effective doses should be reconsidered in order to reach desirable food safety parameters while preserving matrix quality.
Collapse
Affiliation(s)
- Yhan S. Mutz
- Post Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Analytical and Molecular Laboratory Center, Faculty of Veterinary Medicine, Fluminense Federal University, Niterói, Brazil
- Center for Food Analysis, Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denes K. A. Rosario
- Post Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Analytical and Molecular Laboratory Center, Faculty of Veterinary Medicine, Fluminense Federal University, Niterói, Brazil
- Center for Food Analysis, Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia C. Bernardes
- Department of Food Engineering, Federal University of Espirito Santo, Alto Universitário, Alegre, Brazil
| | - Vania M. F. Paschoalin
- Post Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A. Conte-Junior
- Post Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Analytical and Molecular Laboratory Center, Faculty of Veterinary Medicine, Fluminense Federal University, Niterói, Brazil
- Center for Food Analysis, Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Health Quality Control, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|