1
|
Wang A, Li X, Luo X, He G, Huang D, Huang Q, Zhang XX, Chen W. Dissolved organic matter characteristics linked to bacterial community succession and nitrogen removal performance in woodchip bioreactors. J Environ Sci (China) 2025; 148:625-636. [PMID: 39095195 DOI: 10.1016/j.jes.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 08/04/2024]
Abstract
Woodchip bioreactors are an eco-friendly technology for removing nitrogen (N) pollution. However, there needs to be more clarity regarding the dissolved organic matter (DOM) characteristics and bacterial community succession mechanisms and their association with the N removal performance of bioreactors. The laboratory woodchip bioreactors were continuously operated for 360 days under three influent N level treatments, and the results showed that the average removal rate of TN was 45.80 g N/(m3·day) when the influent N level was 100 mg N/L, which was better than 10 mg N/L and 50 mg N/L. Dynamic succession of bacterial communities in response to influent N levels and DOM characteristics was an important driver of TN removal rates. Medium to high N levels enriched a copiotroph bacterial module (Module 1) detected by network analysis, including Phenylobacterium, Xanthobacteraceae, Burkholderiaceae, Pseudomonas, and Magnetospirillaceae, carrying N-cycle related genes for denitrification and ammonia assimilation by the rapid consumption of DOM. Such a process can increase carbon limitation to stimulate local organic carbon decomposition to enrich oligotrophs with fewer N-cycle potentials (Module 2). Together, this study reveals that the compositional change of DOM and bacterial community succession are closely related to N removal performance, providing an ecological basis for developing techniques for N-rich effluent treatment.
Collapse
Affiliation(s)
- Achen Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuesong Luo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangwen He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Daqing Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue-Xian Zhang
- School of Natural Sciences, Massey University at Albany, Auckland 0745, New Zealand
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Wang H, Strock J, Ranaivoson A, Ishii S. Bioremediation of nitrate in agricultural drainage ditches: Impacts of low-grade weirs on microbiomes and nitrogen cycle gene abundance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177070. [PMID: 39454790 DOI: 10.1016/j.scitotenv.2024.177070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Artificial drainage is essential for the success of modern agriculture, but it can also accelerate the movement of nutrients, especially nitrate, from soil to surrounding and downstream water bodies. Removal of nitrate from agricultural drainage by using controlled drainage systems, such as ditches installed with low-grade weirs, has been shown to help reduce nutrient loading into watersheds. However, the effect of low-grade weirs varies greatly, likely due to the differences in climate, system designs (e.g., hydraulic characteristics), and the resulting variation in microbial structures and functions in the ditch. In this study, we analyzed the temporal and spatial dynamics of microbiomes in a paired ditch system with weir-installed and uninstalled (control) channels over two years by using the 16S rRNA gene amplicon sequencing and the high-throughput quantitative PCR targeting various N cycle-associated genes [the Nitrogen Cycle Evaluation (NiCE) chip]. The installation of the low-grade weir had a significant impact on the microbiome structure and the distribution of denitrifiers. Microbiome structures also differed significantly between the ditch inlets and the outlets. Denitrification functional genes were more abundant in the inlets than in the other locations and in the channel installed with a low-grade weir. Additionally, oxygenic denitrifiers that use nitric oxide dismutase (nod) to produce N2 and O2 gases from nitric oxide were detected in the ditch channels, suggesting the occurrence of nitrate removal process that bypasses the production of nitrous oxide (N2O). The ditch microbiomes sampled during high-flow seasons (i.e., spring and fall) exhibited greater similarity to each other than microbiomes sampled during low-flow seasons (i.e., summer). Taken together, this study indicates that the low-grade weirs have the potential to foster a more favorable environment for denitrifiers, resulting in an increase in the abundance of denitrification functional genes. These findings could offer valuable insights into system management and optimization strategies.
Collapse
Affiliation(s)
- Hao Wang
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108, USA
| | - Jeffrey Strock
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108, USA; Southwest Research and Outreach Center, University of Minnesota, 23669 130th St., Lamberton, MN 56152, USA
| | - Andry Ranaivoson
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108, USA; Southwest Research and Outreach Center, University of Minnesota, 23669 130th St., Lamberton, MN 56152, USA
| | - Satoshi Ishii
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108, USA; BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave., St. Paul, MN 55108, USA.
| |
Collapse
|
3
|
Duggan DiDominic KL, Shapleigh JP, Walter MT, Wang YS, Reid MC, Regan JM. Microbial diversity and gene abundance in denitrifying bioreactors: A comparison of the woodchip surface biofilm versus the interior wood matrix. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:565-576. [PMID: 39014985 DOI: 10.1002/jeq2.20600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Excessive amounts of nitrogen (N) and phosphorus (P) can lead to eutrophication in water sources. Woodchip bioreactors have shown success in removing N from agricultural runoff, but less is known regarding P removal. Woodchip bioreactors are subsurface basins filled with woodchips installed downgradient of agricultural land to collect and treat drainage runoff. Microorganisms use the woodchips as a carbon (C) source to transform N in the runoff, with unresolved biological impacts on P. This study aims to explore microbial communities present in the bioreactor and determine whether milling woodchips to probe the microbial communities within them reveals hidden microbial diversities or potential activities. Metagenomic sequencing and bioinformatic analyses were performed on six woodchip samples (i.e., three unmilled and three milled) collected from a 10-year-old woodchip bioreactor treating agricultural tile drainage. All samples had similar DNA purity, yield, quality, and microbial diversity regardless of milling. However, when sequences were aligned against various protein libraries, our results indicated greater relative abundance of denitrification and P transformation proteins on the outside of the woodchips (unmilled), while the interior of woodchips (milled) exhibited more functional gene abundance for carbohydrate breakdown. Thus, it may be important to characterize microbial communities both within woodchips, and on woodchip surfaces, to gain a more holistic understanding of coupled biogeochemical cycles on N, P, and C in woodchip bioreactors. Based on these findings, we advise that future microbial research on woodchips (and potentially other permeable organic materials) examine both the surface biofilm and the interior organic material during initial studies. Once researchers determine where specific proteins or enzymes of interest are most prevalent, subsequent studies may then focus on either one or both aspects, as needed.
Collapse
Affiliation(s)
- Katie L Duggan DiDominic
- Department of Biological & Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - James P Shapleigh
- Deparment of Microbiology, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - M Todd Walter
- Department of Biological & Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Y Samuel Wang
- Department of Statistics & Data Science, College of Agriculture and Life Sciences & College of Computing and Information Science, Cornell University, Ithaca, New York, USA
| | - Matthew C Reid
- Department of Civil & Environmental Engineering, College of Engineering, Cornell University, Ithaca, New York, USA
| | - John M Regan
- Department of Civil & Environmental Engineering, College of Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Lu Z, Cheng X, Xie J, Li Z, Li X, Jiang X, Zhu D. Iron-based multi-carbon composite and Pseudomonas furukawaii ZS1 co-affect nitrogen removal, microbial community dynamics and metabolism pathways in low-temperature aquaculture wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119471. [PMID: 37913618 DOI: 10.1016/j.jenvman.2023.119471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Aerobic denitrification is the key process in the elimination of nitrogen from aquaculture wastewater, especially for wastewater with high dissolved oxygen and low carbon/nitrogen (C/N) ratio. However, a low C/N ratio, especially in low-temperature environments, restricts the activity of aerobic denitrifiers and decreases the nitrogen elimination efficiency. In this study, an iron-based multi-solid carbon source composite that immobilized aerobic denitrifying bacteria ZS1 (IMCSCP) was synthesized to treat aerobic (DO > 5 mg/L), low temperature (<15 °C) and low C/N ratio (C/N = 4) aquaculture wastewater. The results showed that the sequencing batch biofilm reactor (SBBR) packed with IMCSCP exhibited the highest nitrogen removal performance, with removal rates of 95.63% and 85.44% for nitrate nitrogen and total nitrogen, respectively, which were 33.03% and 30.75% higher than those in the reactor filled with multi-solid carbon source composite (MCSC). Microbial community and network analysis showed that Pseudomonas furukawaii ZS1 successfully colonized the SBBR filled with IMCSCP, and Exiguobacterium, Cellulomonas and Pseudomonas were essential for the nitrogen elimination. Metagenomic analysis showed that an increase in gene abundance related to carbon metabolism, nitrogen metabolism, extracellular polymer substance synthesis and electron transfer in the IMCSCP, enabling denitrification in the SBBR to be achieved via multiple pathways. The results of this study provided new insights into the microbial removal mechanism of nitrogen in SBBR packed with IMCSCP at low temperatures.
Collapse
Affiliation(s)
- Zhuoyin Lu
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China.
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhifei Li
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Xiangyang Li
- Guanghuiyuan Hydraulic Construction Engineering Co., Ltd., Shenzhen, 518020, China; Guangdong Engineering Technology Research Center of Smart and Ecological River, Guangzhou, 510640, China
| | - Xiaotian Jiang
- Guanghuiyuan Hydraulic Construction Engineering Co., Ltd., Shenzhen, 518020, China
| | - Dantong Zhu
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
5
|
Jang J, Ishii S. Whole-genome sequence of Bacillus pseudomycoides strain I32, a nitrous oxide-producing bacterium isolated from a woodchip bioreactor. Microbiol Resour Announc 2023; 12:e0080923. [PMID: 37982652 PMCID: PMC10720413 DOI: 10.1128/mra.00809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/20/2023] [Indexed: 11/21/2023] Open
Abstract
We report here the draft whole-genome sequence of Bacillus pseudomycoides strain I32, a bacterium isolated from the denitrifying woodchip bioreactor and showing rhizoidal colony morphology with filamentous swirling pattern on the agar medium plate. The isolate produced nitrous oxide without known nitric oxide reductase genes on the genome.
Collapse
Affiliation(s)
- Jeonghwan Jang
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, Jeonbuk National University, Iksan, Jeonbuk, South Korea
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
6
|
Wang H, Feyereisen GW, Wang P, Rosen C, Sadowsky MJ, Ishii S. Impacts of biostimulation and bioaugmentation on woodchip bioreactor microbiomes. Microbiol Spectr 2023; 11:e0405322. [PMID: 37747182 PMCID: PMC10581000 DOI: 10.1128/spectrum.04053-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 07/26/2023] [Indexed: 09/26/2023] Open
Abstract
IMPORTANCE Nitrate pollution is a serious problem in agricultural areas in the U.S. Midwest and other parts of the world. Woodchip bioreactor is a promising technology that uses microbial denitrification to remove nitrate from agricultural subsurface drainage, although the reactor's nitrate removal performance is limited under cold conditions. This study showed that the inoculation of cold-adapted denitrifiers (i.e., bioaugmentation) and the addition of labile carbon (i.e., biostimulation) can influence the microbial populations and enhance the reactor's performance under cold conditions. This finding will help establish a strategy to mitigate nitrate pollution.
Collapse
Affiliation(s)
- Hao Wang
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | - Gary W. Feyereisen
- USDA-ARS Soil and Water Management Research Unit, St. Paul, Minnesota, USA
| | - Ping Wang
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Carl Rosen
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | - Michael J. Sadowsky
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Satoshi Ishii
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
7
|
McGuire PM, Butkevich N, Saksena AV, Walter MT, Shapleigh JP, Reid MC. Oxic-anoxic cycling promotes coupling between complex carbon metabolism and denitrification in woodchip bioreactors. Environ Microbiol 2023; 25:1696-1712. [PMID: 37105180 DOI: 10.1111/1462-2920.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Denitrifying woodchip bioreactors (WBRs) are increasingly used to manage the release of non-point source nitrogen (N) by stimulating microbial denitrification. Woodchips serve as a renewable organic carbon (C) source, yet the recalcitrance of organic C in lignocellulosic biomass causes many WBRs to be C-limited. Prior studies have observed that oxic-anoxic cycling increased the mobilization of organic C, increased nitrate (NO3 - ) removal rates, and attenuated production of nitrous oxide (N2 O). Here, we use multi-omics approaches and amplicon sequencing of fungal 5.8S-ITS2 and prokaryotic 16S rRNA genes to elucidate the microbial drivers for enhanced NO3 - removal and attenuated N2 O production under redox-dynamic conditions. Transient oxic periods stimulated the expression of fungal ligninolytic enzymes, increasing the bioavailability of woodchip-derived C and stimulating the expression of denitrification genes. Nitrous oxide reductase (nosZ) genes were primarily clade II, and the ratio of clade II/clade I nosZ transcripts during the oxic-anoxic transition was strongly correlated with the N2 O yield. Analysis of metagenome-assembled genomes revealed that many of the denitrifying microorganisms also have a genotypic ability to degrade complex polysaccharides like cellulose and hemicellulose, highlighting the adaptation of the WBR microbiome to the ecophysiological niche of the woodchip matrix.
Collapse
Affiliation(s)
- Philip M McGuire
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Natalie Butkevich
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Aryaman V Saksena
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - M Todd Walter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - James P Shapleigh
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
Lee S, Cho M, Sadowsky MJ, Jang J. Denitrifying Woodchip Bioreactors: A Microbial Solution for Nitrate in Agricultural Wastewater-A Review. J Microbiol 2023; 61:791-805. [PMID: 37594681 DOI: 10.1007/s12275-023-00067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023]
Abstract
Nitrate (NO3-) is highly water-soluble and considered to be the main nitrogen pollutants leached from agricultural soils. Its presence in aquatic ecosystems is reported to cause various environmental and public health problems. Bioreactors containing microbes capable of transforming NO3- have been proposed as a means to remediate contaminated waters. Woodchip bioreactors (WBRs) are continuous flow, reactor systems located below or above ground. Below ground systems are comprised of a trench filled with woodchips, or other support matrices. The nitrate present in agricultural drainage wastewater passing through the bioreactor is converted to harmless dinitrogen gas (N2) via the action of several bacteria species. The WBR has been suggested as one of the most cost-effective NO3--removing strategy among several edge-of-field practices, and has been shown to successfully remove NO3- in several field studies. NO3- removal in the WBR primarily occurs via the activity of denitrifying microorganisms via enzymatic reactions sequentially reducing NO3- to N2. While previous woodchip bioreactor studies have focused extensively on its engineering and hydrological aspects, relatively fewer studies have dealt with the microorganisms playing key roles in the technology. This review discusses NO3- pollution cases originating from intensive farming practices and N-cycling microbial metabolisms which is one biological solution to remove NO3- from agricultural wastewater. Moreover, here we review the current knowledge on the physicochemical and operational factors affecting microbial metabolisms resulting in removal of NO3- in WBR, and perspectives to enhance WBR performance in the future.
Collapse
Affiliation(s)
- Sua Lee
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Min Cho
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Michael J Sadowsky
- BioTechnology Institute, Department of Soil, Water and Climate, and Department of Microbial and Plant Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jeonghwan Jang
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea.
| |
Collapse
|
9
|
Buyanjargal A, Kang J, Lee JH, Jeen SW. Nitrate removal rates, isotopic fractionation, and denitrifying bacteria in a woodchip-based permeable reactive barrier system: a long-term column experiment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36364-36376. [PMID: 36547843 DOI: 10.1007/s11356-022-24826-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
This study evaluated the effectiveness of using organic carbon materials (i.e., woodchips) to remove nitrate from groundwater. The results of our flow-through column experiment, which was conducted over 1.6 years, suggested that denitrifying bacteria reduce nitrate by using it as an electron acceptor and woodchips as an electron donor. The nitrate removal rates were sufficiently high (0.39-1.04 mmol L-1 day-1) during the operation of the column. Denitrification process was supported by fractionation of nitrogen and oxygen isotopes (δ15N and δ18O), with the δ15N and δ18O values enriched from 7.4‰ and 22.3‰ to 21.2‰ and 30.4‰, respectively. Enrichment factors ([Formula: see text]) for 15 N and 18O were calculated using the Rayleigh fractionation model, with values of - 13.2‰ for ε15N and - 7.1‰ for ε18O. The fractionation ratio of 15 N to 18O was 1.9:1, confirming denitrification. The most abundant bacterial genera in the soil used for inoculation were Enterobacter (86.7%), Nitrospira (1.8%), and Arthrobacter (1.5%), while those in the column effluent were Macrococcus (37.1%), Escherichia (14.7%), and Shigella (14.6%), indicating that bacterial communities changed in response to geochemical conditions in the column. This study suggests that nitrate in groundwater can be effectively removed using woodchip-based passive treatment systems and that information on isotopic fractionation and denitrifying bacteria can be key tools to understand denitrification.
Collapse
Affiliation(s)
- Altantsetseg Buyanjargal
- Department of Earth and Environmental Sciences & The Earth and Environmental Science System Research Center, Jeonbuk National University, Jeonju-Si, Jeollabuk-Do, 54896, Republic of Korea
- Milko Company, Teso Corporation, Ulaanbaatar, Mongolia
| | - Jiyoung Kang
- Department of Environment and Energy, Jeonbuk National University, Jeonju-Si, Jeollabuk-Do, 54896, Republic of Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, Jeonbuk National University, Jeonju-Si, Jeollabuk-Do, 54896, Republic of Korea
| | - Sung-Wook Jeen
- Department of Earth and Environmental Sciences & The Earth and Environmental Science System Research Center, Jeonbuk National University, Jeonju-Si, Jeollabuk-Do, 54896, Republic of Korea.
- Department of Environment and Energy, Jeonbuk National University, Jeonju-Si, Jeollabuk-Do, 54896, Republic of Korea.
| |
Collapse
|
10
|
Gibert O, Sánchez D, Cortina JL. Removal of nitrate and pesticides from groundwater by nano zero-valent iron injection pulses under biostimulation and bioaugmentation scenarios in continuous-flow packed soil columns. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115965. [PMID: 35981501 DOI: 10.1016/j.jenvman.2022.115965] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
This study evaluates the NO3- removal from groundwater through Heterotrophic Denitrification (HDN) (promoted by the addition of acetate and/or an inoculum rich in denitrifiers) and Abiotic Chemical Nitrate Reduction (ACNR) (promoted by pulse injection of zerovalent iron nanoparticles (nZVI)). HDN and ACNR were applied, separately or combined, in packed soil column experiments to complement the scarce research on pulse-injected nZVI in continuous-flow systems mimicking a Well-based Denitrification Barrier. Together with NO3-, the removal of two common pesticides (dieldrin and lindane) was evaluated. Results showed that total NO3- removal (>97%) could be achieved by either bioestimulation with acetate (converting NO3- to N2(g) via HDN) or by injecting nZVI (removing NO3- via ACNR). In the presence of nZVI, NO3- was partially converted to N2(g) and to a lower extent NO2-, with unreacted NO3- being likely adsorbed onto Fe-(oxy)hydroxides. Combination of both HDN and ACNR resulted in even a higher NO3- removal (>99%). Interestingly, nZVI did not seem to pose any toxic effect on denitrifiers. These results showed that both processes can be alterned or combined to take advantage of the benefits of each individual process while overcoming their disadvantages if applied alone. With regard to the target pesticides, the removal was high for dieldrin (>93%) and moderate for lindane (38%), and it was not due to biodegradation but to adsorption onto soil. When nZVI was applied, the removal increased (generally >91%) due to chemical degradation by nZVI and/or adsorption onto formed Fe-(oxy)hydroxides.
Collapse
Affiliation(s)
- Oriol Gibert
- Chemical Engineering Department, EEBE, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, c/Eduard Maristany 10-14, Barcelona, 08019, Spain; Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, c/Eduard Maristany 10-14, Barcelona, 08019, Spain.
| | - Damián Sánchez
- Cetaqua-Water Technology Centre, c/ Severo Ochoa 7, 29590, Málaga, Spain
| | - José Luis Cortina
- Chemical Engineering Department, EEBE, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, c/Eduard Maristany 10-14, Barcelona, 08019, Spain; Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, c/Eduard Maristany 10-14, Barcelona, 08019, Spain; Cetaqua-Water Technology Centre, Carretera d'Esplugues 75, 08940, Cornellà de Llobregat, Spain
| |
Collapse
|
11
|
Gerasimchuk AI, Ivasenko DA, Kasymova AA, Frank YA. Selective cultivation of bacterial strains with lipolytic and hydrocarbon-oxidizing activity from bottom sediments of the Ob River, Western Siberia. Vavilovskii Zhurnal Genet Selektsii 2022; 26:449-457. [PMID: 36128566 PMCID: PMC9450031 DOI: 10.18699/vjgb-22-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Bacteria play a key role in biogeochemical cycles in natural and anthropogenic ecosystems. In river ecosystems, bacteria intensively colonize silt sediments. Microorganisms are essential for energy conversion, biogeochemical nutrient cycling, pollutant degradation, and biotransformation of organic matter; therefore, bottom sediments can be a source of metabolically diverse microorganisms, including those with promise for industrial biotechnologies. The aim of this work was to isolate and study pure cultures of microorganisms – producers of industrially important enzymes and decomposers of organic matter – from bottom sediments of the Ob River. Pork fat and diesel fuel were used as substrates to obtain enrichment and pure cultures for selective cultivation of bacteria with lipolytic and hydrocarbon-oxidizing activity. A total of 21 pure cultures were isolated. The phylogenetic position of the obtained bacterial isolates was determined based on the analysis of 16S rRNA gene sequences. The strains isolated on selective media belonged to representatives of the genera Pseudomonas and Aeromonas (Gammaproteobacteria), and the genus Microvirgula (Betaproteobacteria). The ability of strains to grow on culture media containing pork fat, olive oil and diesel fuel was analyzed. The lipolytic activity of the isolates was evidenced by cultivation on a diagnostic medium containing 1 % tributyrin. The phylogenetic and metabolic diversity of the cultivated non-pathogenic bacterial strains with lipolytic and oil-oxidizing activity revealed in the study indicates the biotechnological potential of the isolates. The most promising strains were M. aerodenitrificans sp. LM1 and P. lini sp. KGS5K3, which not only exhibited lipolytic activity on the diagnostic medium with tributyrin in a wide temperature range, but also utilized diesel fuel, pork fat and olive oil.
Collapse
|
12
|
Fan X, Li J, He L, Wang Y, Zhou J, Zhou J, Liu C. Co-occurrence of autotrophic and heterotrophic denitrification in electrolysis assisted constructed wetland packing with coconut fiber as solid carbon source. CHEMOSPHERE 2022; 301:134762. [PMID: 35490751 DOI: 10.1016/j.chemosphere.2022.134762] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Aiming at the problems of lack of carbon sources for nitrogen removal and low phosphorus removal efficiency of constructed wetlands (CWs) in treating wastewater treatment plant (WWTP) effluent, an electrolysis assisted constructed wetland (E-CW) with coconut fiber as substrate and solid carbon sources was constructed. The synthetic secondary effluent was used as the influent of the E-CW with a wastewater treatment capacity of 140 L d-1. The total nitrogen (TN) and the total phosphorus (TP) removal efficiency of the E-CW with coconut fiber treating WWTP effluent were 69.4% and 93.3%, respectively, which were 54.3% and 88.2% higher than those of CW with coconut fiber and no electrolysis. The removal efficiency of TN was 39.9% higher than that of E-CW with gravel. The current intensity had significant effect on nitrogen removal efficiency and the release of carbon sources from coconut fiber. When current intensity increased from 0.25 A to 1.00 A, the TN removal efficiency and nitrate removal rate increased by 21.1% and 0.21 mg L-1 h-1, respectively, and the volatile fatty acids (VFAs) released from coconut fiber increased by 57.7 mg L-1. The 16S rRNA high-throughput sequencing results indicated that the main functional nitrogen-removing microbes were Hydrogenophaga, Thauera, Rhodanobacteraceae_norank, Xanthobacteraceae_norank, etc. Multiple paths including autotrophic denitrification with hydrogen and Fe2+ as electron donors and heterotrophic denitrification were achieved in the system. Meanwhile, the main functional lignocellulose degradation microbes were enriched in the system, including Cytophaga_xylanolytica_group, and Caldilineaceae. Because electrolysis created a favorable environment for them to release carbon sources from coconut fiber. This study provided a new perspective for advanced nutrients removal of WWTP effluent in CWs.
Collapse
Affiliation(s)
- Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jiao Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Jiong Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Caihong Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
13
|
Hong P, Yang K, Shu Y, Xiao B, Wu H, Xie Y, Gu Y, Qian F, Wu X. Efficacy of auto-aggregating aerobic denitrifiers with coaggregation traits for bioaugmentation performance in biofilm-formation and nitrogen-removal. BIORESOURCE TECHNOLOGY 2021; 337:125391. [PMID: 34139566 DOI: 10.1016/j.biortech.2021.125391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
To promote efficiency nitrogen-rich wastewater treatment from a sequencing batch biofilm reactor (SBBR), three aerobic denitrifiers (Pseudomonas mendocinaIHB602, Methylobacterium gregansDC-1 and Pseudomonas stutzeriIHB618) with dual-capacities of strong auto-aggregation and high nitrogen removal efficiency were studied. The aggregation index analysis indicated that coaggregation of the three strains co-existed was better when compared with one or two strains grown alone. Optimal coaggregation strains were used to bioaugmente a test reactor (SBBRT), which exhibited a shorter time for biofilm-formation than uninoculated control reactor (SBBRC). With different influent ammonia-N loads (150, 200 and 300 mg·L-1), the average ammonia-N and nitrate-N removal efficiency were all higher than that in SBBRC, as well as a lower nitrite-N accumulation. Microbial community structure analysis revealed coaggregation strains may successfully colonize in the bioreactor and be very tolerant of high nitrogen concentrations, and contribute to the high efficiency of inorganic nitrogen-removal and biofilm-formation.
Collapse
Affiliation(s)
- Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China; Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Keyin Yang
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Anhui Normal University, Wuhu 241000, China
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Bangding Xiao
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Yunyun Xie
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Yali Gu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Fangping Qian
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Xingqiang Wu
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
14
|
Jéglot A, Audet J, Sørensen SR, Schnorr K, Plauborg F, Elsgaard L. Microbiome Structure and Function in Woodchip Bioreactors for Nitrate Removal in Agricultural Drainage Water. Front Microbiol 2021; 12:678448. [PMID: 34421841 PMCID: PMC8377596 DOI: 10.3389/fmicb.2021.678448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Woodchip bioreactors are increasingly used to remove nitrate (NO3–) from agricultural drainage water in order to protect aquatic ecosystems from excess nitrogen. Nitrate removal in woodchip bioreactors is based on microbial processes, but the microbiomes and their role in bioreactor efficiency are generally poorly characterized. Using metagenomic analyses, we characterized the microbiomes from 3 full-scale bioreactors in Denmark, which had been operating for 4–7 years. The microbiomes were dominated by Proteobacteria and especially the genus Pseudomonas, which is consistent with heterotrophic denitrification as the main pathway of NO3– reduction. This was supported by functional gene analyses, showing the presence of the full suite of denitrification genes from NO3– reductases to nitrous oxide reductases. Genes encoding for dissimilatory NO3– reduction to ammonium were found only in minor proportions. In addition to NO3– reducers, the bioreactors harbored distinct functional groups, such as lignocellulose degrading fungi and bacteria, dissimilatory sulfate reducers and methanogens. Further, all bioreactors harbored genera of heterotrophic iron reducers and anaerobic iron oxidizers (Acidovorax) indicating a potential for iron-mediated denitrification. Ecological indices of species diversity showed high similarity between the bioreactors and between the different positions along the flow path, indicating that the woodchip resource niche was important in shaping the microbiome. This trait may be favorable for the development of common microbiological strategies to increase the NO3– removal from agricultural drainage water.
Collapse
Affiliation(s)
- Arnaud Jéglot
- Department of Agroecology, Aarhus University, Aarhus, Denmark.,Centre for Water Technology (WATEC), Aarhus University, Aarhus, Denmark
| | - Joachim Audet
- Centre for Water Technology (WATEC), Aarhus University, Aarhus, Denmark.,Department of Bioscience, Aarhus University, Silkeborg, Denmark
| | | | | | - Finn Plauborg
- Department of Agroecology, Aarhus University, Aarhus, Denmark.,Centre for Water Technology (WATEC), Aarhus University, Aarhus, Denmark
| | - Lars Elsgaard
- Department of Agroecology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Diversity and Evolution of Clostridium beijerinckii and Complete Genome of the Type Strain DSM 791T. Processes (Basel) 2021. [DOI: 10.3390/pr9071196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Clostridium beijerinckii is a relatively widely studied, yet non-model, bacterium. While 246 genome assemblies of its various strains are available currently, the diversity of the whole species has not been studied, and it has only been analyzed in part for a missing genome of the type strain. Here, we sequenced and assembled the complete genome of the type strain Clostridium beijerinckii DSM 791T, composed of a circular chromosome and a circular megaplasmid, and used it for a comparison with other genomes to evaluate diversity and capture the evolution of the whole species. We found that strains WB53 and HUN142 were misidentified and did not belong to the Clostridium beijerinckii species. Additionally, we filtered possibly misassembled genomes, and we used the remaining 237 high-quality genomes to define the pangenome of the whole species. By its functional annotation, we showed that the core genome contains genes responsible for basic metabolism, while the accessory genome has genes affecting final phenotype that may vary among different strains. We used the core genome to reconstruct the phylogeny of the species and showed its great diversity, which complicates the identification of particular strains, yet hides possibilities to reveal hitherto unreported phenotypic features and processes utilizable in biotechnology.
Collapse
|
16
|
Jéglot A, Sørensen SR, Schnorr KM, Plauborg F, Elsgaard L. Temperature Sensitivity and Composition of Nitrate-Reducing Microbiomes from a Full-Scale Woodchip Bioreactor Treating Agricultural Drainage Water. Microorganisms 2021; 9:1331. [PMID: 34207422 PMCID: PMC8235139 DOI: 10.3390/microorganisms9061331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Denitrifying woodchip bioreactors (WBR), which aim to reduce nitrate (NO3-) pollution from agricultural drainage water, are less efficient when cold temperatures slow down the microbial transformation processes. Conducting bioaugmentation could potentially increase the NO3- removal efficiency during these specific periods. First, it is necessary to investigate denitrifying microbial populations in these facilities and understand their temperature responses. We hypothesized that seasonal changes and subsequent adaptations of microbial populations would allow for enrichment of cold-adapted denitrifying bacterial populations with potential use for bioaugmentation. Woodchip material was sampled from an operating WBR during spring, fall, and winter and used for enrichments of denitrifiers that were characterized by studies of metagenomics and temperature dependence of NO3- depletion. The successful enrichment of psychrotolerant denitrifiers was supported by the differences in temperature response, with the apparent domination of the phylum Proteobacteria and the genus Pseudomonas. The enrichments were found to have different microbiomes' composition and they mainly differed with native woodchip microbiomes by a lower abundance of the genus Flavobacterium. Overall, the performance and composition of the enriched denitrifying population from the WBR microbiome indicated a potential for efficient NO3- removal at cold temperatures that could be stimulated by the addition of selected cold-adapted denitrifying bacteria.
Collapse
Affiliation(s)
- Arnaud Jéglot
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (F.P.); (L.E.)
- WATEC Centre for Water Technology, Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | - Kirk M. Schnorr
- Novozymes A/S, Biologiens Vej 2, 2800 Kongens Lyngby, Denmark; (S.R.S.); (K.M.S.)
| | - Finn Plauborg
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (F.P.); (L.E.)
- WATEC Centre for Water Technology, Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Lars Elsgaard
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (F.P.); (L.E.)
| |
Collapse
|
17
|
Aldossari N, Ishii S. Isolation of cold-adapted nitrate-reducing fungi that have potential to increase nitrate removal in woodchip bioreactors. J Appl Microbiol 2020; 131:197-207. [PMID: 33222401 DOI: 10.1111/jam.14939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 11/27/2022]
Abstract
AIMS The aim of this study was to obtain cold-adapted denitrifying fungi that could be used for bioaugmentation in woodchip bioreactors to remove nitrate from agricultural subsurface drainage water. METHODS AND RESULTS We isolated a total of 91 nitrate-reducing fungal strains belonging to Ascomycota and Mucoromycota from agricultural soil and a woodchip bioreactor under relatively cold conditions (5 and 15°C). When these strains were incubated with 15 N-labelled nitrate, 29 N2 was frequently produced, suggesting the occurrence of co-denitrification (microbially mediated nitrosation). Two strains also produced 30 N2 , indicating their ability to reduce N2 O. Of the 91 nitrate-reducing fungal strains, fungal nitrite reductase gene (nirK) and cytochrome P450 nitric oxide reductase gene (p450nor) were detected by PCR in 34 (37%) and 11 (12%) strains, respectively. Eight strains possessed both nirK and p450nor, further verifying their denitrification capability. In addition, most strains degraded cellulose under denitrification condition. CONCLUSIONS Diverse nitrate-reducing fungi were isolated from soil and a woodchip bioreactor. These fungi reduced nitrate to gaseous N forms at relatively low temperatures. These cold-adapted, cellulose-degrading and nitrate-reducing fungi could support themselves and other denitrifiers in woodchip bioreactors. SIGNIFICANCE AND IMPACT OF THE STUDY The cold-adapted, cellulose-degrading and nitrate-reducing fungi isolated in this study could be useful to enhance nitrate removal in woodchip bioreactors under low-temperature conditions.
Collapse
Affiliation(s)
- N Aldossari
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA
| | - S Ishii
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA.,BioTechnology Institute, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|