1
|
Sandez Penidez SH, Velasco Manini MA, Gerez CL, Rollán GC. Quinoa sourdough fermented with Lactiplantibacillus plantarum CRL 1964, a powerful tool to enhance the nutritional features of quinoa snacks. J Food Sci 2024. [PMID: 39437230 DOI: 10.1111/1750-3841.17435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/14/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024]
Abstract
The remarkable nutritional attributes and potential health advantages of quinoa make it an important candidate for developing innovative ready-to-eat food products. This work aimed to develop a functional ready-to-eat snack based on quinoa sourdough fermented by Lactiplantibacillus (L.) plantarum CRL 1964. Phytate, phosphates, and soluble mineral content (Fe, Mn, Zn, Mg, Ca, and P) were determined in snacks formulated with sourdough and control doughs. An in vitro digestion model was performed on quinoa snacks to assess their mineral bioaccessibility and dialyzability. Phytate content was significantly lower (ca. 42.3%) while phosphates were higher (ca. eightfold) in quinoa-based sourdough and sourdough-based snacks (S1964) than in controls. Soluble minerals were higher (10.2%-32.0%) in S1964 than in controls. Mineral bioaccessibility and mineral dialyzability were also higher (ca. 24.5%) among S1964 and control snacks. The developed quinoa snack made from sourdough fermented by L. plantarum CRL 1964 had less phytate concentration and high bioaccessibility of minerals. These findings underscore the relevance of this innovative technology in creating food products that are not only highly nutritious but also represent a valuable contribution to the market of healthy foods. PRACTICAL APPLICATION: In this study, a novel snack based on quinoa sourdough with improved nutritional properties was developed. The addition of quinoa sourdough fermented by Lactiplantibacillus plantarum CRL 1964 to the preparation of quinoa snacks resulted in a product with a lower concentration of phytate and a higher content of phosphates and minerals (soluble, bioaccessible, and dialyzable). These results underline the efficacy of the new snack as a promising alternative to conventional mineral fortification methods. This innovative approach holds promise for addressing nutritional deficiencies and the demand for healthy snack options in today's market.
Collapse
Affiliation(s)
| | | | - Carla Luciana Gerez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| | | |
Collapse
|
2
|
Cho H, Yang J, Kang JY, Kim KE. Inhibitory Effects of Fermented Sprouted Oat Extracts on Oxidative Stress and Melanin Overproduction. Antioxidants (Basel) 2024; 13:544. [PMID: 38790649 PMCID: PMC11117960 DOI: 10.3390/antiox13050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Hyperpigmentation occurs due to irregular secretion of melanin pigment in the skin. This can affect quality of life depending on its severity, so prevention and management are essential. Oats (Avena sativa L.), a grain consumed worldwide, are known to offer improved health benefits upon germination and fermentation. This study is aimed to investigate the protective effects of lactobacilli-fermented sprouted oat extracts on oxidative stress and melanin overproduction in vitro. The anti-melanogenic effect was investigated using melanin content and tyrosinase activity assays in B16F10 cells, as well as a mushroom tyrosinase-based enzyme inhibition assay. The results showed that L. casei-fermented oat extracts were the most effective for reducing melanin formation by reducing the mRNA expression of microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 2. Furthermore, L. casei fermentation was effective in improving the total phenolic, flavonoid, and avenanthramide A contents of sprouted oat extracts. The results also demonstrated the antioxidant effects of L. casei-fermented sprouted oat extracts in promoting DPPH radical-scavenging activity, superoxide dismutase-like activity, and reduction in reactive oxygen species levels. Overall, the findings indicate that fermented sprouted oat extracts are promising candidates for antioxidant and anti-hyperpigmentation treatments.
Collapse
Affiliation(s)
- Hyeijin Cho
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.C.); (J.Y.K.)
| | - Jisun Yang
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| | - Ji Young Kang
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.C.); (J.Y.K.)
| | - Kyung Eun Kim
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.C.); (J.Y.K.)
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| |
Collapse
|
3
|
Cui H, Li S, Roy D, Guo Q, Ye A. Modifying quinoa protein for enhanced functional properties and digestibility: A review. Curr Res Food Sci 2023; 7:100604. [PMID: 37840699 PMCID: PMC10570007 DOI: 10.1016/j.crfs.2023.100604] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a pseudocereal plant that originally came from South America. The trend of consuming quinoa is propelled by its well‒balanced amino acid profile compared to that of other plants. In addition, its gluten‒free nature makes quinoa a promising diet option for celiac disease patients. Protein accounts for approximately 17% of the quinoa seed composition and quinoa protein possesses excellent quality. Quinoa protein is mainly composed of 11S globulins (37%) and 2S albumins (35%), both of which are stabilized by disulfide bonds. To date, the alkaline extraction method is the most commonly used method to extract quinoa protein. The functional properties and digestibility of quinoa protein can be improved with the help of various modification methods, and as a result, the application of quinoa protein will be extended. In this review, the extraction method, modification of functional properties and digestibility of quinoa protein are thoroughly discussed, providing insights into the application of quinoa protein in plant‒based foods.
Collapse
Affiliation(s)
- Hao Cui
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Siqi Li
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Debashree Roy
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Qing Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| |
Collapse
|
4
|
Sandez Penidez SH, Velasco Manini MA, Gerez CL, Rollan GC. Consortia of lactic acid bacteria strains increase the antioxidant activity and bioactive compounds of quinoa sourdough - based biscuits. World J Microbiol Biotechnol 2023; 39:95. [PMID: 36759385 DOI: 10.1007/s11274-023-03538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
The aim of this work was to use consortia (two or three strains) of lactic acid bacteria (LAB) [Lactiplantibacillus plantarum CRL 1964 and CRL 1973, and Leuconostoc mesenteroides subsp. mesenteroides CRL 2131] to obtain quinoa sourdoughs (QS) for further manufacturing of quinoa sourdough-based biscuits (QB). Microbial grow and acidification were evaluated in QS while antioxidant activity (AOA), total phenolic compounds (TPC) and total flavonoid compounds (TFC) were determined in QS and QB. QS inoculated with LAB consortia respect to monocultures showed higher growth and acidification, AOA (7.9?42.6%), TPC (19.9?35.0%) and TFC (6.1?31.6%). QB prepared with QS inoculated by LAB consortia showed higher AOA (5.0-81.1%), TPC (22.5?57.5%) and TFC (14.0-79.9%) than biscuits inoculated by monocultures sourdoughs. These results were attributed to a synergic effect from LAB consortia. Principal component analysis showed the highest scores of the evaluated characteristics for biscuits made with consortia sourdough of two (CRL1964?+?CRL2131) and three (CRL1964?+?CRL1973?+?CRL2131) strains.
Collapse
Affiliation(s)
- S H Sandez Penidez
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina
| | - M A Velasco Manini
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina
| | - C L Gerez
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina
| | - G C Rollan
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145 (4000) - San Miguel de Tucumán, San Miguel de Tucumán, Argentina.
| |
Collapse
|
5
|
Liu C, Ma R, Tian Y. An overview of the nutritional profile, processing technologies, and health benefits of quinoa with an emphasis on impacts of processing. Crit Rev Food Sci Nutr 2022; 64:5533-5550. [PMID: 36510748 DOI: 10.1080/10408398.2022.2155796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Consumers are becoming increasingly conscious of adopting a healthy lifestyle and demanding food with high nutritional values. Quinoa (Chenopodium quinoa Willd.) has attracted considerable attention and is consumed worldwide in the form of a variety of whole and processed products owing to its excellent nutritional features, including richness in micronutrients and bioactive phytochemicals, well-balanced amino acids composition, and gluten-free properties. Recent studies have indicated that the diverse utilization and final product quality of this pseudo-grain are closely related to the processing technologies used, which can result in variations in nutritional profiles and health benefits. This review comprehensively summarizes the nutritional properties, processing technologies, and potential health benefits of quinoa, suggesting that quinoa plays a promising role in enhancing the nutrition of processed food. In particular, the effects of different processing technologies on the nutritional profile and health benefits of quinoa are highlighted, which can provide a foundation for the updating and upgrading of the quinoa processing industry. It further discusses the present quinoa-based food products containing quinoa as partial or whole substitute for traditional grains.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Özdemir N. A multi-functional survey of the properties of Lacticaseibacillus paracasei subsp. tolerans NOC-122, Levilactobacillus parabrevis NOC-111 and Latilactobacillus curvatus NOC-110. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36129827 DOI: 10.1099/mic.0.001239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study aimed to reveal the physicochemical and organoleptic effects of three functional lactic acid bacteria (LAB) isolates in a milk medium: Lacticaseibacillus paracasei subsp. tolerans NOC-122, Levilactobacillus parabrevis NOC-111 and Latilactobacillus curvatus NOC-110. A total of 200 indigenous LAB strains isolated from artisanal tulum cheeses were screened for potential proteolytic and lipolytic activity, citrate-lyase-synthesizing and exopolysaccharide-producing ability. Furthermore, a total of six fermented products were produced using these strains as a single culture or as a co-culture. The physicochemical and microbiological properties, angiotensin-converting-enzyme (ACE) inhibitor activity, and the amino acid and volatile aroma compound profiles were determined. According to the results, NOC-110 and NOC-122 were effective in increasing ACE-inhibitory activity. On the other hand, NOC-122 was responsible for a fresh cheesy, slightly oily flavour when used as a single culture. NOC-111 gave a fresh, fruity and slightly herbal flavour; NOC-110 gave a flavour similar to that of NOC-122 when they were used as a single culture. Also, co-cultures of the strains were investigated. The results of the study provide a guide to the usability of these isolates as single or co-cultures in the production of dairy-based food. These findings can be of value for many future studies and innovative food products.
Collapse
Affiliation(s)
- Nilgün Özdemir
- Ondokuz Mayıs University, Engineering Faculty, Department of Food Engineering, Samsun, Turkey
| |
Collapse
|
7
|
Lancetti RP, Salvucci E, Paesani C, Pérez GT, Sciarini LS. Sourdough on quinoa and buckwheat gluten‐free breads: Evaluation of autochthonous starter fermentation on bread nutritional and technological properties. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Romina Paola Lancetti
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) Universidad Nacional de Córdoba (UNC) CONICET Juan Filloy s/n Córdoba 5000 Argentina
| | - Emiliano Salvucci
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) Universidad Nacional de Córdoba (UNC) CONICET Juan Filloy s/n Córdoba 5000 Argentina
| | - Candela Paesani
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) Universidad Nacional de Córdoba (UNC) CONICET Juan Filloy s/n Córdoba 5000 Argentina
| | - Gabriela Teresa Pérez
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) Universidad Nacional de Córdoba (UNC) CONICET Juan Filloy s/n Córdoba 5000 Argentina
- Facultad de Ciencias Agropecuarias Universidad Nacional de Córdoba Argentina
| | - Lorena Susana Sciarini
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) Universidad Nacional de Córdoba (UNC) CONICET Juan Filloy s/n Córdoba 5000 Argentina
| |
Collapse
|