1
|
Cheng L, Low SY, Boon Y, Goh C, Ng A, Ng AJY, Teo J, Johari NH, Pua YH, Chua MT, Kuan WS. Antimicrobial surface coating in the emergency department as protective technology for infection control (ASEPTIC): a pilot randomized controlled trial. Antimicrob Resist Infect Control 2024; 13:129. [PMID: 39468577 PMCID: PMC11520898 DOI: 10.1186/s13756-024-01481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024] Open
Abstract
STUDY OBJECTIVE We examined the effectiveness of an antimicrobial surface coating for continual disinfection of high touch-frequency surfaces in the emergency department (ED). METHODS Following a preliminary observation identifying stretcher rails as the surface with highest touch-frequency in the ED, we conducted a pilot randomized controlled trial involving 96 stretcher rails. The stretchers were randomized to receive an antimicrobial surface coating or placebo coating. Routine cleaning of stretchers subsequently continued as per hospital protocol in both arms. Sampling for total aerobic, gram-positive halophilic, gram-negative and methicillin-resistant Staphylococcus aureus bacteria was performed pre- and post-treatment at 24 h, 7 days and 180 days. Individuals who applied the coating and outcome assessors were blinded to the allocated arms. The primary outcome is contamination of antimicrobial versus placebo rails measured as colony forming units per cm2(CFU/cm2). RESULTS Baseline total aerobic bacteria was comparable between placebo and intervention arms (0.84 versus 1.32 CFU/cm2, P = 0.235). Total aerobic bacteria contamination was significantly lower on antimicrobial versus placebo rails at 24 h (0.61 versus 1.01 CFU/cm2, median difference 0.40 CFU/cm2, 95% confidence interval [CI] 0.01 to 1.01 CFU/cm2). There was a non-statistically significant tendency for contamination to be lower on antimicrobial versus placebo rails at 7 days (1.15 versus 1.50 CFU/cm2, median difference 0.35 CFU/cm2, 95% CI -0.64 to 1.28 CFU/cm2), but higher at 180 days (2.06 versus 1.84 CFU/cm2, median difference - 0.22 CFU/cm2, 95% CI -1.19 to 0.78 CFU/cm2). CONCLUSION This is the first double-blinded, placebo-controlled, randomized trial to evaluate an antimicrobial surface coating on high touch-frequency surfaces in the emergency department. Total aerobic bacteria found on antimicrobial-coated patient transport stretcher rails was significantly lower than placebo rails at 24 h.
Collapse
Affiliation(s)
- Lenard Cheng
- Emergency Medicine Department, National University Hospital, National University Health System, Level 4, National University Centre for Oral Health Singapore (NUCOHS), 9 Lower Kent Ridge Road, Singapore, 119085, Singapore.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Tower Block, 1E Kent Ridge Road Level 8, Singapore, 119228, Singapore.
| | - Shun Yee Low
- Department of Emergency Medicine, Sengkang General Hospital, 110 Sengkang East Way, Singapore, 544886, Singapore
- Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Singapore
| | - Yuru Boon
- Emergency Medicine Department, National University Hospital, National University Health System, Level 4, National University Centre for Oral Health Singapore (NUCOHS), 9 Lower Kent Ridge Road, Singapore, 119085, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Tower Block, 1E Kent Ridge Road Level 8, Singapore, 119228, Singapore
| | - Carmen Goh
- Department of Emergency Medicine, Ng Teng Fong General Hospital, 1 Jurong East Street 21, Singapore, 609606, Singapore
| | - Abigail Ng
- Emergency Medicine Department, National University Hospital, National University Health System, Level 4, National University Centre for Oral Health Singapore (NUCOHS), 9 Lower Kent Ridge Road, Singapore, 119085, Singapore
| | - Alexander Jet Yue Ng
- Emergency Medicine Department, National University Hospital, National University Health System, Level 4, National University Centre for Oral Health Singapore (NUCOHS), 9 Lower Kent Ridge Road, Singapore, 119085, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Tower Block, 1E Kent Ridge Road Level 8, Singapore, 119228, Singapore
| | - Joshua Teo
- Environmental Health Institute, National Environment Agency (NEA), 11 Biopolis Way, Singapore, 138667, Singapore
- Consumer Chemicals Technology Centre, Department for Technology, Innovation and Enterprise, Singapore Polytechnic, Level 4, T11A, 500 Dover Road, Singapore, 139651, Singapore
| | - Nur Humaira Johari
- Consumer Chemicals Technology Centre, Department for Technology, Innovation and Enterprise, Singapore Polytechnic, Level 4, T11A, 500 Dover Road, Singapore, 139651, Singapore
- Hilleman Laboratories Pte. Ltd., 21 Biopolis Road, Nucleos North Tower, #04-06/12, Singapore, 138567, Singapore
| | - Yong Hao Pua
- Department of Physiotherapy, Singapore General Hospital, Singapore General Hospital, Outram Rd, Singapore, 169608, Singapore
- Medicine Academic Programme, Duke-NUS Graduate Medical School, Outram Rd, Singapore, 169608, Singapore
| | - Mui Teng Chua
- Emergency Medicine Department, National University Hospital, National University Health System, Level 4, National University Centre for Oral Health Singapore (NUCOHS), 9 Lower Kent Ridge Road, Singapore, 119085, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Tower Block, 1E Kent Ridge Road Level 8, Singapore, 119228, Singapore
| | - Win Sen Kuan
- Emergency Medicine Department, National University Hospital, National University Health System, Level 4, National University Centre for Oral Health Singapore (NUCOHS), 9 Lower Kent Ridge Road, Singapore, 119085, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Tower Block, 1E Kent Ridge Road Level 8, Singapore, 119228, Singapore
| |
Collapse
|
2
|
Zivna N, Hympanova M, Dolezal R, Markova A, Pulkrabkova L, Strakova H, Sleha R, Prchal L, Brozkova I, Motkova P, Sefrankova L, Soukup O, Marek J. Synthesis and broad-spectrum biocidal effect of novel gemini quaternary ammonium compounds. Bioorg Chem 2024; 151:107646. [PMID: 39032408 DOI: 10.1016/j.bioorg.2024.107646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Since the discovery of antimicrobial agents, the misuse of antibiotics has led to the emergence of bacterial strains resistant to both antibiotics and common disinfectants like quaternary ammonium compounds (QACs). A new class, 'gemini' QACs, which contain two polar heads, has shown promise. Octenidine (OCT), a representative of this group, is effective against resistant microorganisms but has limitations such as low solubility and high cytotoxicity. In this study, we developed 16 novel OCT derivatives. These compounds were subjected to in silico screening to predict their membrane permeation. Testing against nosocomial bacterial strains (G+ and G-) and their biofilms revealed that most compounds were highly effective against G+ bacteria, while compounds 7, 8, and 10-12 were effective against G- bacteria. Notably, compounds 6-8 were significantly more effective than OCT and BAC standards across the bacterial panel. Compound 12 stood out due to its low cytotoxicity and broad-spectrum antimicrobial activity, comparable to OCT. It also demonstrated impressive antifungal activity. Compound 1 was highly selective to fungi and four times more effective than OCT without its cytotoxicity. Several compounds, including 4, 6, 8, 9, 10, and 12, showed strong virucidal activity against murine cytomegalovirus and herpes simplex virus 1. In conclusion, these gemini QACs, especially compound 12, offer a promising alternative to current disinfectants, addressing emerging resistances with their enhanced antimicrobial, antifungal, and virucidal properties.
Collapse
Affiliation(s)
- Natalie Zivna
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Michaela Hympanova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Aneta Markova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Hospital Pharmacy, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lenka Pulkrabkova
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Hana Strakova
- Department of Epidemiology, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic
| | - Radek Sleha
- Department of Epidemiology, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Iveta Brozkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Petra Motkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Laura Sefrankova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jan Marek
- Department of Epidemiology, Military Faculty of Medicine, University of Defence, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
3
|
Hardison RL, Lee SD, Limmer R, Marx J, Taylor BM, Barriga D, Nelson SW, Feliciano-Ruiz N, Stewart MJ, Calfee MW, James RR, Ryan SP, Howard MW. Sampling and recovery of infectious SARS-CoV-2 from high-touch surfaces by sponge stick and macrofoam swab. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2023; 20:506-519. [PMID: 37382490 DOI: 10.1080/15459624.2023.2231516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Effective sampling for severe acute respiratory syndrome 2 (SARS-CoV-2) is a common approach for monitoring disinfection efficacy and effective environmental surveillance. This study evaluated sampling efficiency and limits of detection (LODs) of macrofoam swab and sponge stick sampling methods for recovering infectious SARS-CoV-2 and viral RNA (vRNA) from surfaces. Macrofoam swab and sponge stick methods were evaluated for collection of SARS-CoV-2 suspended in a soil load from 6-in2 coupons composed of four materials: stainless steel (SS), acrylonitrile butadiene styrene (ABS) plastic, bus seat fabric, and Formica. Recovery of infectious SARS-CoV-2 was more efficient than vRNA recovery on all materials except Formica (macrofoam swab sampling) and ABS (sponge stick sampling). Macrofoam swab sampling recovered significantly more vRNA from Formica than ABS and SS, and sponge stick sampling recovered significantly more vRNA from ABS than Formica and SS, suggesting that material and sampling method choice can affect surveillance results. Time since initial contamination significantly affected infectious virus recovery from all materials, with vRNA recovery showing limited to no difference, suggesting that SARS-CoV-2 vRNA can remain detectable after viral infectivity has dissipated. This study showed that a complex relationship exists between sampling method, material, time from contamination to sampling, and recovery of SARS-CoV-2. In conclusion, data show that careful consideration be used when selecting surface types for sampling and interpreting SARS-CoV-2 vRNA recovery with respect to presence of infectious virus.
Collapse
Affiliation(s)
| | - Sang Don Lee
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | | | - Joel Marx
- Battelle Memorial Institute, Columbus, Ohio
| | | | | | | | | | - Michael J Stewart
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - M Worth Calfee
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | | | - Shawn P Ryan
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | | |
Collapse
|
4
|
Donskey CJ. Continuous surface and air decontamination technologies: Current concepts and controversies. Am J Infect Control 2023; 51:A144-A150. [PMID: 37890945 DOI: 10.1016/j.ajic.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 10/29/2023]
Abstract
Effective and safe continuous surface and air decontamination technologies could be a useful adjunct to routine cleaning and disinfection in health care settings. Continuously active quaternary ammonium disinfectants that provide residual antimicrobial activity on undisturbed surfaces for up to 24.ßhours have been shown to reduce the recovery of clinically important pathogens in some but not all real-world studies. Although quaternary ammonium-based supplemental coatings have been reported to provide prolonged residual efficacy in patient care settings, there is concern that some of these products may be removed by routine cleaning and disinfection. To address this concern, the Environmental Protection Agency has recently issued updated guidance requiring demonstration of efficacy after multiple abrasion and chemical exposures for registration of supplemental residual antimicrobial coatings. Far-ultraviolet-C and direct irradiation below exposure limits are promising technologies for continuous air and surface decontamination in occupied spaces, but additional studies are needed to evaluate their long-term safety and efficacy. Given the increasing use of electronic air cleaning technologies in community and health care settings, there is a need for studies to assess real-world efficacy and safety.
Collapse
Affiliation(s)
- Curtis J Donskey
- Geriatric Research, Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH.
| |
Collapse
|
5
|
Aranega-Bou P, Brown N, Stigling A, D’Costa W, Verlander NQ, Pottage T, Bennett A, Moore G. Laboratory Evaluation of a Quaternary Ammonium Compound-Based Antimicrobial Coating Used in Public Transport during the COVID-19 Pandemic. Appl Environ Microbiol 2023; 89:e0174422. [PMID: 36856438 PMCID: PMC10057021 DOI: 10.1128/aem.01744-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/19/2023] [Indexed: 03/02/2023] Open
Abstract
The virucidal activity of the Zoono Z71 Microbe Shield surface sanitizer and protectant, a quaternary ammonium compound (QAC)-based antimicrobial coating that was used by the United Kingdom rail industry during the COVID-19 pandemic, was evaluated, using the bacteriophage ɸ6 as a surrogate for SARS-CoV-2. Immediately after application and in the absence of interfering substances, the product effectively reduced (>3 log10) the viability of ɸ6 on some materials that are typically used in rail carriages (stainless steel, high-pressure laminate, plastic). If, after the application of the product, these surfaces remained undisturbed, the antimicrobial coating retained its efficacy for at least 28 days. However, efficacy depended on the material being coated. The product provided inconsistent results when applied to glass surfaces and was ineffective (i.e., achieved <3 log10 reduction) when applied to a train arm rest that was made of Terluran 22. Regardless of the material that was coated or the time since application, the presence of organic debris (fetal bovine serum) significantly reduced the viricidal activity of the coating. Wiping the surface with a wetted cloth after the deposition of organic debris was not sufficient to restore efficacy. We conclude that the product is likely to be of limited effectiveness in a busy, multiuser environment, such as public transport. IMPORTANCE This study evaluated the performance of a commercially available antimicrobial coating that was used by the transport industry in the United Kingdom during the COVID-19 pandemic. While the product was effective against ɸ6, the efficacy of the coating depended upon the material to which it was applied. Similarly, and regardless of the surface material, the presence of organic debris severely impaired viricidal activity, and efficacy could not be recovered through wiping (cleaning) the surface. This highlights the importance of including relevant materials and conditions when evaluating antimicrobial coatings in the laboratory. Further efforts are required to identify suitable infection prevention and control practices for the transport industry.
Collapse
Affiliation(s)
- Paz Aranega-Bou
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Natalie Brown
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Abigail Stigling
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Wilhemina D’Costa
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Neville Q. Verlander
- Statistics, Modelling and Economics Department, United Kingdom Health Security Agency, United Kingdom
| | - Thomas Pottage
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Allan Bennett
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - Ginny Moore
- Biosafety, Air and Water Microbiology Group, United Kingdom Health Security Agency, Salisbury, United Kingdom
| |
Collapse
|
6
|
Nelson S, Hardison R, Limmer R, Marx J, Taylor B, James R, Stewart M, Lee S, Calfee M, Ryan S, Howard M. Efficacy of detergent-based cleaning and wiping against SARS-CoV-2 on high-touch surfaces. Lett Appl Microbiol 2023; 76:ovad033. [PMID: 36906280 PMCID: PMC11417498 DOI: 10.1093/lambio/ovad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Efficacy of cleaning methods against SARS-CoV-2 suspended in either 5% soil load (SARS-soil) or simulated saliva (SARS-SS) was evaluated immediately (hydrated virus, T0) or 2 hours post-contamination (dried virus, T2). Hard water dampened wiping (DW) of surfaces, resulted in 1.77-3.91 log reduction (T0) or 0.93-2.41 log reduction (T2). Incorporating surface pre-wetting by spraying with a detergent solution (D + DW) or hard water (W + DW) just prior to dampened wiping did not unilaterally increase efficacy against infectious SARS-CoV-2, however, the effect was nuanced with respect to surface, viral matrix, and time. Cleaning efficacy on porous surfaces (seat fabric, SF) was low. W + DW on stainless steel (SS) was as effective as D + DW for all conditions except SARS-soil at T2 on SS. DW was the only method that consistently resulted in > 3-log reduction of hydrated (T0) SARS-CoV-2 on SS and ABS plastic. These results suggest that wiping with a hard water dampened wipe can reduce infectious virus on hard non-porous surfaces. Pre-wetting surfaces with surfactants did not significantly increase efficacy for the conditions tested. Surface material, presence or absence of pre-wetting, and time post-contamination affect efficacy of cleaning methods.
Collapse
Affiliation(s)
- S.W. Nelson
- Bioscience Center, Battelle Memorial Institute, Columbus, OH 43201, USA
| | - R.L. Hardison
- Bioscience Center, Battelle Memorial Institute, Columbus, OH 43201, USA
| | - R. Limmer
- Battelle Eastern Science and Technology Center, Aberdeen, MD 21001, USA
| | - J. Marx
- Battelle Eastern Science and Technology Center, Aberdeen, MD 21001, USA
| | - B.M. Taylor
- Battelle Eastern Science and Technology Center, Aberdeen, MD 21001, USA
| | - R.R. James
- Bioscience Center, Battelle Memorial Institute, Columbus, OH 43201, USA
| | - M.J. Stewart
- U.S. EPA, Office of Research and Development, Durham, NC 27711, USA
| | - S.D. Lee
- U.S. EPA, Office of Research and Development, Durham, NC 27711, USA
| | - M.W. Calfee
- U.S. EPA, Office of Research and Development, Durham, NC 27711, USA
| | - S.P. Ryan
- U.S. EPA, Office of Research and Development, Durham, NC 27711, USA
| | - M.W. Howard
- Bioscience Center, Battelle Memorial Institute, Columbus, OH 43201, USA
| |
Collapse
|
7
|
Hardiso RL, Nelson SW, Limmer R, Marx J, Taylor BM, James RR, Stewart MJ, Lee SDD, Calfee MW, Ryan SP, Howard MW. Efficacy of chemical disinfectants against SARS-CoV-2 on high-touch surface materials. J Appl Microbiol 2022; 134:lxac020. [PMID: 36626793 PMCID: PMC10577401 DOI: 10.1093/jambio/lxac020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 01/12/2023]
Abstract
AIMS This study aimed to provide operationally relevant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface disinfection efficacy information. METHODS AND RESULTS Three EPA-registered disinfectants (Vital Oxide, Peroxide, and Clorox Total 360) and one antimicrobial formulation (CDC bleach) were evaluated against SARS-CoV-2 on material coupons and were tested using Spray (no touch with contact time) and Spray & Wipe (wipe immediately post-application) methods immediately and 2 h post-contamination. Efficacy was evaluated for infectious virus, with a subset tested for viral RNA (vRNA) recovery. Efficacy varied by method, disinfectant, and material. CDC bleach solution showed low efficacy against SARS-CoV-2 (log reduction < 1.7), unless applied via Spray & Wipe. Additionally, mechanical wiping increased the efficacy of treatments against SARS-CoV-2. The recovery of vRNA post-disinfection suggested that vRNA may overestimate infectious virus remaining. CONCLUSIONS Efficacy depends on surface material, chemical, and disinfection procedure, and suggests that mechanical wiping alone has some efficacy at removing SARS-CoV-2 from surfaces. We observed that disinfectant treatment biased the recovery of vRNA over infectious virus. SIGNIFICANCE AND IMPACT OF STUDY These data are useful for developing effective, real-world disinfection procedures, and inform public health experts on the utility of PCR-based surveillance approaches.
Collapse
Affiliation(s)
| | | | - Rebecca Limmer
- Battelle Eastern Science & Technology Center, Aberdeen, MD 21001, USA
| | - Joel Marx
- Battelle Eastern Science & Technology Center, Aberdeen, MD 21001, USA
| | - Brian M. Taylor
- Battelle Eastern Science & Technology Center, Aberdeen, MD 21001, USA
| | - Ryan R. James
- Battelle Memorial Institute, Columbus, OH 43201, USA
| | | | | | | | | | | |
Collapse
|
8
|
Tong L, Xiao X, Li M, Fang S, Ma E, Yu X, Zhu Y, Wu C, Tian D, Yang F, Sun J, Qu J, Zheng N, Liao S, Tai W, Feng S, Zhang L, Li Y, Wang L, Han X, Sun S, Yang L, Zhong H, Zhao J, Liu W, Liu X, Wang P, Li L, Zhao G, Zhang R, Cheng G. A glucose-like metabolite deficient in diabetes inhibits cellular entry of SARS-CoV-2. Nat Metab 2022; 4:547-558. [PMID: 35534727 DOI: 10.1038/s42255-022-00567-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/29/2022] [Indexed: 12/28/2022]
Abstract
The severity and mortality of COVID-19 are associated with pre-existing medical comorbidities such as diabetes mellitus. However, the underlying causes for increased susceptibility to viral infection in patients with diabetes is not fully understood. Here we identify several small-molecule metabolites from human blood with effective antiviral activity against SARS-CoV-2, one of which, 1,5-anhydro-D-glucitol (1,5-AG), is associated with diabetes mellitus. The serum 1,5-AG level is significantly lower in patients with diabetes. In vitro, the level of SARS-CoV-2 replication is higher in the presence of serum from patients with diabetes than from healthy individuals and this is counteracted by supplementation of 1,5-AG to the serum from patients. Diabetic (db/db) mice undergo SARS-CoV-2 infection accompanied by much higher viral loads and more severe respiratory tissue damage when compared to wild-type mice. Sustained supplementation of 1,5-AG in diabetic mice reduces SARS-CoV-2 loads and disease severity to similar levels in nondiabetic mice. Mechanistically, 1,5-AG directly binds the S2 subunit of the SARS-CoV-2 spike protein, thereby interrupting spike-mediated virus-host membrane fusion. Our results reveal a mechanism that contributes to COVID-19 pathogenesis in the diabetic population and suggest that 1,5-AG supplementation may be beneficial to diabetic patients against severe COVID-19.
Collapse
Affiliation(s)
- Liangqin Tong
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaoping Xiao
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Shisong Fang
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Enhao Ma
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xi Yu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yibin Zhu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Chunli Wu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Deyu Tian
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fan Yang
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Qu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Nianzhen Zheng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shumin Liao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Shengyong Feng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Liming Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yuhan Li
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Lin Wang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Liu
- School of Life Science, Tsinghua University, Beijing, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, CT, USA
| | - Liang Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.
| | - Renli Zhang
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|