1
|
Zorkot M, Viana ALS, Brasil FL, Da Silva ALP, Borges GF, Do Espirito Santo CC, Morya E, Micera S, Shokur S, Bouri M. Immediate Effect of Ankle Exoskeleton on Spatiotemporal Parameters and Center of Pressure Trajectory After Stroke. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941280 DOI: 10.1109/icorr58425.2023.10304816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Gait impairments is a common condition in post-stroke subjects. We recently presented a wearable ankle exoskeleton called G-Exos, which showed that the device assisted in the ankle's dorsiflexion and inversion/reversion movements. The aim of the current pilot study was to explore spatiotemporal gait parameters and center of pressure trajectories associated with the use of the G-Exos in stroke participants. Three post-stroke subjects (52-63 years, 2 female/1 male) walked 160-meter using the G-Exos on the affected limb, on a protocol divided into 4 blocks of 40-meters: (I) without the exoskeleton, (II) with systems hybrid system, (III) active only and (IV) passive only. The results showed that the use of the exoskeleton improved swing and stance phases on both limbs, reduced stride width on the paretic limb, increased stance COP distances, and made single support COP distances more similar between the paretic and non-paretic limb. This suggests that all G-Exos systems contributed to improving body weight bearing on the paretic limb and symmetry in the gait cycle.
Collapse
|
2
|
Duis J, Skinner A, Carson R, Gouelle A, Annoussamy M, Silverman JL, Apkon S, Servais L, Carollo J. Quantitative measures of motor development in Angelman syndrome. Am J Med Genet A 2023; 191:1711-1721. [PMID: 37019838 PMCID: PMC11068498 DOI: 10.1002/ajmg.a.63192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023]
Abstract
Angelman Syndrome is a rare neurodevelopmental disorder characterized by developmental delay, lack of speech, seizures, intellectual disability, characteristic behavior, and movement disorders. Clinical gait analysis provides the opportunity for movement quantification to investigate an observed maladaptive change in gait pattern and offers an objective outcome of change. Pressure-sensor-based technology, inertial and activity monitoring, and instrumented gait analysis (IGA) were employed to define motor abnormalities in Angelman syndrome. Temporal-spatial gait parameters of persons with Angelman Syndrome (pwAS) show deficiencies in gait performance through walking speed, step length, step width, and walk ratio. pwAS walk with reduced step lengths, increased step width, and greater variability. Three-dimensional motion kinematics showed increased anterior pelvic tilt, hip flexion, and knee flexion. PwAS have a walk ratio more than two standard deviations below controls. Dynamic electromyography showed prolonged activation of knee extensors, which was associated with a decreased range of motion and the presence of hip flexion contractures. Use of multiple gait tracking modalities revealed that pwAS exhibit a change in gait pattern to a flexed knee gait pattern. Cross-sectional studies of individuals with AS show a regression toward this maladaptive gait pattern over development in pwAS ages 4-11. PwAS unexpectedly did not have spasticity associated with change in gait pattern. Multiple quantitative measures of motor patterning may offer early biomarkers of gait decline consistent with critical periods of intervention, insight into appropriate management strategies, objective primary outcomes, and early indicators of adverse events.
Collapse
Affiliation(s)
- Jessica Duis
- Center for Gait & Movement Analysis (CGMA), Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Section of Genetics and Inherited Metabolic Disease, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Section of Pediatrics, Special Care Clinic, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Austin Skinner
- Center for Gait & Movement Analysis (CGMA), Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Robert Carson
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Arnaud Gouelle
- Université de Reims Champagne-Ardenne, PSMS (Performance, Santé, Métrologie, Société), Reims, France
- Gait and Balance Academy, ProtoKinetics, Havertown, Pennsylvania, USA
| | | | - Jill L. Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Susan Apkon
- Department of Physical Medicine & Rehabilitation, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laurent Servais
- Department of Paediatrics, Oxford University, Oxford, UK
- Division of Child Neurology, Centre de References des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liege & University of Liege, Liege, Belgium
| | - James Carollo
- Center for Gait & Movement Analysis (CGMA), Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Physical Medicine & Rehabilitation, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Gaudin-Drouelle D, Houx L, Lempereur M, Brochard S, Pons C. Improvement in Gait and Participation in a Child with Angelman Syndrome after Translingual Neurostimulation Associated with Goal-Oriented Therapy: A Case Report. CHILDREN 2022; 9:children9050719. [PMID: 35626896 PMCID: PMC9139481 DOI: 10.3390/children9050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
Abstract
Angelman syndrome is a genetic neurobehavioral syndrome characterized by motor and cognitive developmental delay, with a severe reduction in activity and participation. Treatments are limited and the effects of rehabilitation have not been studied. We report on the progress made by a 7-year-old boy with Angelman syndrome following an innovative synergic intervention involving translingual neurostimulation (TLNS) and goal-oriented rehabilitation to improve gait. The parents were interviewed regarding the child’s abilities and participation level and three-dimensional gait analysis was performed before and after the 4-week intervention (five days per week, 4 h per day) and 6 months later. Spatiotemporal and kinematic gait variables improved considerably at 4 weeks, with a reduction in lower limb agonist-antagonist co-contractions, and a large increase in walking distance (from 500 m to 2 km). The child’s engagement and ability to perform activities of daily living improved, as well as several functions not targeted by the intervention. Six months after cessation of the intervention, improvements were partially sustained. The rapid and considerable improvement in motor ability was likely due to potentiation of the rehabilitation by the TLNS. Further studies are required to understand the mechanisms underlying this effect and to determine if it is generalizable to other children with similar disorders.
Collapse
Affiliation(s)
- Delphine Gaudin-Drouelle
- LaTim UMR 1101, Team Beachild, INSERM, 29200 Brest, France; (L.H.); (M.L.); (S.B.); (C.P.)
- Department of Pediatric Rehabilitation, Brest University Hospital, 29200 Brest, France
- Correspondence: or ; Tel.: +33-631471583
| | - Laetitia Houx
- LaTim UMR 1101, Team Beachild, INSERM, 29200 Brest, France; (L.H.); (M.L.); (S.B.); (C.P.)
- Department of Pediatric Rehabilitation, Brest University Hospital, 29200 Brest, France
- Department of Pediatric Rehabilitation, Ildys Fondation, 29200 Brest, France
| | - Mathieu Lempereur
- LaTim UMR 1101, Team Beachild, INSERM, 29200 Brest, France; (L.H.); (M.L.); (S.B.); (C.P.)
- Department of Pediatric Rehabilitation, Brest University Hospital, 29200 Brest, France
- Faculty of Medicine, University of Western Brittany UBO, 29200 Brest, France
| | - Sylvain Brochard
- LaTim UMR 1101, Team Beachild, INSERM, 29200 Brest, France; (L.H.); (M.L.); (S.B.); (C.P.)
- Department of Pediatric Rehabilitation, Brest University Hospital, 29200 Brest, France
- Department of Pediatric Rehabilitation, Ildys Fondation, 29200 Brest, France
- Faculty of Medicine, University of Western Brittany UBO, 29200 Brest, France
| | - Christelle Pons
- LaTim UMR 1101, Team Beachild, INSERM, 29200 Brest, France; (L.H.); (M.L.); (S.B.); (C.P.)
- Department of Pediatric Rehabilitation, Brest University Hospital, 29200 Brest, France
- Department of Pediatric Rehabilitation, Ildys Fondation, 29200 Brest, France
| |
Collapse
|
4
|
Petkova SP, Adhikari A, Berg EL, Fenton TA, Duis J, Silverman JL. Gait as a quantitative translational outcome measure in Angelman syndrome. Autism Res 2022; 15:821-833. [PMID: 35274462 PMCID: PMC9311146 DOI: 10.1002/aur.2697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/05/2023]
Abstract
Angelman syndrome (AS) is a genetic neurodevelopmental disorder characterized by developmental delay, lack of speech, seizures, intellectual disability, hypotonia, and motor coordination deficits. Motor abilities are an important outcome measure in AS as they comprise a broad repertoire of metrics including ataxia, hypotonia, delayed ambulation, crouched gait, and poor posture, and motor dysfunction affects nearly every individual with AS. Guided by collaborative work with AS clinicians studying gait, the goal of this study was to perform an in‐depth gait analysis using the automated treadmill assay, DigiGait. Our hypothesis is that gait presents a strong opportunity for a reliable, quantitative, and translational metric that can serve to evaluate novel pharmacological, dietary, and genetic therapies. In this study, we used an automated gait analysis system, in addition to standard motor behavioral assays, to evaluate components of motor, exploration, coordination, balance, and gait impairments across the lifespan in an AS mouse model. Our study demonstrated marked global motoric deficits in AS mice, corroborating previous reports. Uniquely, this is the first report of nuanced aberrations in quantitative spatial and temporal components of gait in AS mice compared to sex‐ and age‐matched wildtype littermates followed longitudinally using metrics that are analogous in AS individuals. Our findings contribute evidence toward the use of nuanced motor outcomes (i.e., gait) as valuable and translationally powerful metrics for therapeutic development for AS, as well as other genetic neurodevelopmental syndromes.
Collapse
Affiliation(s)
- Stela P Petkova
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Anna Adhikari
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Elizabeth L Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Timothy A Fenton
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Jessica Duis
- Section of Genetics & Inherited Metabolic Disease, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anshutz Medical Campus, Aurora, Colorado, USA
| | - Jill L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
5
|
Using a Portable Pressure-Sensing Walkway to Detect Age-Related Alternations in Foot Integrated Pressure During Multiple Obstacle Negotiation. J Aging Phys Act 2022; 30:963-971. [PMID: 35231881 DOI: 10.1123/japa.2021-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/07/2022] [Accepted: 01/30/2022] [Indexed: 11/18/2022]
Abstract
Multiple obstacle avoidance induces a higher potential of falls among older adults. This study attempted to add other important measurements by investigating the pressure-related gait parameters when stepping over multiple obstacles on a portable pressure-sensing walkway. Twenty-six young and 26 older participants were recruited in this study. A portable pressure-sensing Zeno walkway and cyclogram intersection point analysis method was introduced to collect both spatial-temporal and pressure-related gait parameters. Older adults significantly reduced foot integrated pressure of the leading leg when stepping over the second obstacle compared with young adults (p = .0078). A significantly larger cyclogram intersection point shift in medial-lateral direction was found in older adults than in young adults (p = .024) when stepping over the second obstacle, especially in the lateral direction. The results of this study showed that a pressure-sensing walking combined with cyclogram intersection point method could detect foot pressure distribution differences caused by aging.
Collapse
|
6
|
Duis J, Nespeca M, Summers J, Bird L, Bindels‐de Heus KG, Valstar MJ, de Wit MY, Navis C, ten Hooven‐Radstaake M, van Iperen‐Kolk BM, Ernst S, Dendrinos M, Katz T, Diaz‐Medina G, Katyayan A, Nangia S, Thibert R, Glaze D, Keary C, Pelc K, Simon N, Sadhwani A, Heussler H, Wheeler A, Woeber C, DeRamus M, Thomas A, Kertcher E, DeValk L, Kalemeris K, Arps K, Baym C, Harris N, Gorham JP, Bohnsack BL, Chambers RC, Harris S, Chambers HG, Okoniewski K, Jalazo ER, Berent A, Bacino CA, Williams C, Anderson A. A multidisciplinary approach and consensus statement to establish standards of care for Angelman syndrome. Mol Genet Genomic Med 2022; 10:e1843. [PMID: 35150089 PMCID: PMC8922964 DOI: 10.1002/mgg3.1843] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Angelman syndrome (AS) is a rare neurogenetic disorder present in approximately 1/12,000 individuals and characterized by developmental delay, cognitive impairment, motor dysfunction, seizures, gastrointestinal concerns, and abnormal electroencephalographic background. AS is caused by absent expression of the paternally imprinted gene UBE3A in the central nervous system. Disparities in the management of AS are a major problem in preparing for precision therapies and occur even in patients with access to experts and recognized clinics. AS patients receive care based on collective provider experience due to limited evidence-based literature. We present a consensus statement and comprehensive literature review that proposes a standard of care practices for the management of AS at a critical time when therapeutics to alter the natural history of the disease are on the horizon. METHODS We compiled the key recognized clinical features of AS based on consensus from a team of specialists managing patients with AS. Working groups were established to address each focus area with committees comprised of providers who manage >5 individuals. Committees developed management guidelines for their area of expertise. These were compiled into a final document to provide a framework for standardizing management. Evidence from the medical literature was also comprehensively reviewed. RESULTS Areas covered by working groups in the consensus document include genetics, developmental medicine, psychology, general health concerns, neurology (including movement disorders), sleep, psychiatry, orthopedics, ophthalmology, communication, early intervention and therapies, and caregiver health. Working groups created frameworks, including flowcharts and tables, to help with quick access for providers. Data from the literature were incorporated to ensure providers had review of experiential versus evidence-based care guidelines. CONCLUSION Standards of care in the management of AS are keys to ensure optimal care at a critical time when new disease-modifying therapies are emerging. This document is a framework for providers of all familiarity levels.
Collapse
Affiliation(s)
- Jessica Duis
- Section of Genetics & Inherited Metabolic DiseaseSection of Pediatrics, Special CareDepartment of PediatricsChildren’s Hospital ColoradoUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Mark Nespeca
- Department of NeurologyRady Children’s HospitalSan DiegoCaliforniaUSA
| | - Jane Summers
- Department of PsychiatryThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Lynne Bird
- Department of PediatricsClinical Genetics / DysmorphologyUniversity of California, San DiegoRady Children’s Hospital San DiegoSan DiegoCaliforniaUSA
| | - Karen G.C.B. Bindels‐de Heus
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands,ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands
| | - M. J. Valstar
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands
| | - Marie‐Claire Y. de Wit
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands,Department of Neurology and Pediatric NeurologyErasmus MCRotterdamThe Netherlands
| | - C. Navis
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands,Department of ENT (Speech & Language Pathology)Erasmus MCRotterdamThe Netherlands
| | - Maartje ten Hooven‐Radstaake
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands,ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Bianca M. van Iperen‐Kolk
- ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands,Department of Physical TherapyErasmus MCRotterdamThe Netherlands
| | - Susan Ernst
- Department of Obstetrics and GynecologyUniversity of MichiganAnn ArborMichiganUSA
| | - Melina Dendrinos
- Department of Obstetrics and GynecologyUniversity of MichiganAnn ArborMichiganUSA
| | - Terry Katz
- Developmental PediatricsDepartment of PediatricsChildren’s Hospital ColoradoUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Gloria Diaz‐Medina
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| | - Akshat Katyayan
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| | - Srishti Nangia
- Department of PediatricsDivision of Child NeurologyWeill Cornell MedicineNew York‐Presbyterian HospitalNew YorkNew YorkUSA
| | - Ronald Thibert
- Angelman Syndrome ProgramLurie Center for AutismMassachusetts General Hospital for ChildrenBostonMassachusettsUSA
| | - Daniel Glaze
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| | - Christopher Keary
- Angelman Syndrome ProgramLurie Center for AutismMassachusetts General Hospital for ChildrenBostonMassachusettsUSA
| | - Karine Pelc
- Department of NeurologyHôpital Universitaire des Enfants Reine FabiolaUniversité Libre de Bruxelles (ULB)BrusselsBelgium
| | - Nicole Simon
- Department of PsychiatryBoston Children’s HospitalBostonMAUSA
| | - Anjali Sadhwani
- Department of PsychiatryBoston Children’s HospitalBostonMAUSA
| | - Helen Heussler
- UQ Child Health Research CentreFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Anne Wheeler
- Center for Newborn ScreeningRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Caroline Woeber
- Audiology, Speech & Learning ServicesChildren’s Hospital ColoradoAuroraColoradoUSA
| | - Margaret DeRamus
- Department of PsychiatryCarolina Institute for Developmental DisabilitiesUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Amy Thomas
- New York League for Early Learning William O'connor SchoolNew YorkNew YorkUSA
| | | | - Lauren DeValk
- Occupational TherapyChildren’s Hospital ColoradoAuroraColoradoUSA
| | - Kristen Kalemeris
- Department of Pediatric RehabilitationMonroe Carell Jr. Children's Hospital at VanderbiltNashvilleTennesseeUSA
| | - Kara Arps
- Department of Physical TherapyChildren’s Hospital ColoradoUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Carol Baym
- Physical TherapyChildren’s Hospital ColoradoAuroraColoradoUSA
| | - Nicole Harris
- Physical TherapyChildren’s Hospital ColoradoAuroraColoradoUSA
| | - John P. Gorham
- Department of Ophthalmology and Visual SciencesUniversity of MichiganAnn ArboMichiganUSA
| | - Brenda L. Bohnsack
- Division of OphthalmologyDepartment of OphthalmologyAnn & Robert H. Lurie Children’s Hospital of ChicagoNorthwestern University Feinberg School of MedicineAnn ArboMichiganUSA
| | - Reid C. Chambers
- Department of Orthopedic Surgery Nationwide Children’s HospitalColumbusOhioUSA
| | - Sarah Harris
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| | - Henry G. Chambers
- Orthopedic SurgerySan Diego Department of Pediatric OrthopedicsUniversity of CaliforniaRady Children’s HospitalSan DiegoCaliforniaUSA
| | - Katherine Okoniewski
- Center for Newborn ScreeningRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | | | - Allyson Berent
- Foundation for Angelman Syndrome TherapeuticsChicagoIllinoisUSA
| | - Carlos A. Bacino
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
| | - Charles Williams
- Raymond C. Philips UnitDivision of Genetics and MetabolismDepartment of PediatricsUniversity of FloridaGainesvilleFloridaUSA
| | - Anne Anderson
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| |
Collapse
|
7
|
Carson RP, Herber DL, Pan Z, Phibbs F, Key AP, Gouelle A, Ergish P, Armour EA, Patel S, Duis J. Nutritional Formulation for Patients with Angelman Syndrome: A Randomized, Double-Blind, Placebo-Controlled Study of Exogenous Ketones. J Nutr 2021; 151:3628-3636. [PMID: 34510212 PMCID: PMC10103907 DOI: 10.1093/jn/nxab284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/22/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Angelman syndrome (AS) patients often respond to low glycemic index therapy to manage refractory seizures. These diets significantly affect quality of life and are challenging to implement. These formulations may have benefits in AS even in the absence of biomarkers suggesting ketosis. OBJECTIVES We aimed to compare an exogenous medical food ketone formulation (KF) with placebo for the dietary management of AS. METHODS This randomized, double-blind, placebo-controlled, crossover clinical trial was conducted in an academic center from 15 November, 2018 to 6 January, 2020. Thirteen participants with molecularly confirmed AS aged 4-11 y met the criteria and completed the 16-wk study. The study consisted of four 4-wk phases: a baseline phase, a blinded KF or placebo phase, a washout phase, and the crossover phase with alternate blinded KF or placebo. Primary outcomes were safety and tolerability rated by retention in the study and adherence to the formulation. Additional secondary outcomes of safety in this nonverbal population included blood chemistry, gastrointestinal health, seizure burden, cortical irritability, cognition, mobility, sleep, and developmental staging. RESULTS Data were compared between the baseline, KF, and placebo epochs. One participant exited the trial owing to difficulty consuming the formulation. Adverse events included an increase in cholesterol in 1 subject when consuming KF and a decrease in albumin in 1 subject when consuming placebo. Stool consistency improved with KF consumption, from 6.04 ± 1.61 at baseline and 6.35 ± 1.55 during placebo to 4.54 ± 1.19 during KF (P = 0.0027). Electroencephalograph trends showed a decrease in Δ frequency power during the KF arm and event-related potentials suggested a change in the frontal memory response. Vineland-3 showed improved fine motor skills in the KF arm. CONCLUSIONS The exogenous KF appears safe. More data are needed to determine the utility of exogenous ketones as a nutritional approach in children with AS.This trial was registered at clinicaltrials.gov as NCT03644693.
Collapse
Affiliation(s)
- Robert P Carson
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Zhaoxing Pan
- Biostatistics Core, Children's Hospital Colorado Research Institute, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| | - Fenna Phibbs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandra P Key
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arnaud Gouelle
- Gait and Balance Academy, ProtoKinetics, Havertown, PA, USA.,Laboratory Performance, Health, Metrology, Society (PSMS), Reims, France
| | - Patience Ergish
- Clinical Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric A Armour
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shital Patel
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jessica Duis
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
8
|
Excessive Laughter-like Vocalizations, Microcephaly, and Translational Outcomes in the Ube3a Deletion Rat Model of Angelman Syndrome. J Neurosci 2021; 41:8801-8814. [PMID: 34475199 PMCID: PMC8528495 DOI: 10.1523/jneurosci.0925-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder characterized by intellectual disabilities, motor and balance deficits, impaired communication, and a happy, excitable demeanor with frequent laughter. We sought to elucidate a preclinical outcome measure in male and female rats that addressed communication abnormalities of AS and other neurodevelopmental disorders in which communication is atypical and/or lack of speech is a core feature. We discovered, and herein report for the first time, excessive laughter-like 50 kHz ultrasonic emissions in the Ube3a mat-/pat+ rat model of AS, which suggests an excitable, playful demeanor and elevated positive affect, similar to the demeanor of individuals with AS. Also in line with the AS phenotype, Ube3a mat-/pat+ rats demonstrated aberrant social interactions with a novel partner, distinctive gait abnormalities, impaired cognition, an underlying LTP deficit, and profound reductions in brain volume. These unique, robust phenotypes provide advantages compared with currently available mouse models and will be highly valuable as outcome measures in the evaluation of therapies for AS.SIGNIFICANCE STATEMENT Angelman syndrome (AS) is a severe neurogenetic disorder for which there is no cure, despite decades of research using mouse models. This study used a recently developed rat model of AS to delineate disease-relevant outcome measures to facilitate therapeutic development. We found the rat to be a strong model of AS, offering several advantages over mouse models by exhibiting numerous AS-relevant phenotypes, including overabundant laughter-like vocalizations, reduced hippocampal LTP, and volumetric anomalies across the brain. These findings are unconfounded by detrimental motor abilities and background strain, issues plaguing mouse models. This rat model represents an important advancement in the field of AS, and the outcome metrics reported herein will be central to the therapeutic pipeline.
Collapse
|
9
|
Berg EL, Petkova SP, Born HA, Adhikari A, Anderson AE, Silverman JL. Insulin-like growth factor-2 does not improve behavioral deficits in mouse and rat models of Angelman Syndrome. Mol Autism 2021; 12:59. [PMID: 34526125 PMCID: PMC8444390 DOI: 10.1186/s13229-021-00467-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Angelman Syndrome (AS) is a rare neurodevelopmental disorder for which there is currently no cure or effective therapeutic. Since the genetic cause of AS is known to be dysfunctional expression of the maternal allele of ubiquitin protein ligase E3A (UBE3A), several genetic animal models of AS have been developed. Both the Ube3a maternal deletion mouse and rat models of AS reliably demonstrate behavioral phenotypes of relevance to AS and therefore offer suitable in vivo systems in which to test potential therapeutics. One promising candidate treatment is insulin-like growth factor-2 (IGF-2), which has recently been shown to ameliorate behavioral deficits in the mouse model of AS and improve cognitive abilities across model systems. METHODS We used both the Ube3a maternal deletion mouse and rat models of AS to evaluate the ability of IGF-2 to improve electrophysiological and behavioral outcomes. RESULTS Acute systemic administration of IGF-2 had an effect on electrophysiological activity in the brain and on a metric of motor ability; however the effects were not enduring or extensive. Additional metrics of motor behavior, learning, ambulation, and coordination were unaffected and IGF-2 did not improve social communication, seizure threshold, or cognition. LIMITATIONS The generalizability of these results to humans is difficult to predict and it remains possible that dosing schemes (i.e., chronic or subchronic dosing), routes, and/or post-treatment intervals other than that used herein may show more efficacy. CONCLUSIONS Despite a few observed effects of IGF-2, our results taken together indicate that IGF-2 treatment does not profoundly improve behavioral deficits in mouse or rat models of AS. These findings shed cautionary light on the potential utility of acute systemic IGF-2 administration in the treatment of AS.
Collapse
Affiliation(s)
- Elizabeth L. Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Stela P. Petkova
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Heather A. Born
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX USA
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Anna Adhikari
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Anne E. Anderson
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX USA
| | - Jill L. Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| |
Collapse
|
10
|
Copping NA, McTighe SM, Fink KD, Silverman JL. Emerging Gene and Small Molecule Therapies for the Neurodevelopmental Disorder Angelman Syndrome. Neurotherapeutics 2021; 18:1535-1547. [PMID: 34528170 PMCID: PMC8608975 DOI: 10.1007/s13311-021-01082-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Angelman syndrome (AS) is a rare (~1:15,000) neurodevelopmental disorder characterized by severe developmental delay and intellectual disability, impaired communication skills, and a high prevalence of seizures, sleep disturbances, ataxia, motor deficits, and microcephaly. AS is caused by loss-of-function of the maternally inherited UBE3A gene. UBE3A is located on chromosome 15q11-13 and is biallelically expressed throughout the body but only maternally expressed in the brain due to an RNA antisense transcript that silences the paternal copy. There is currently no cure for AS, but advancements in small molecule drugs and gene therapies offer a promising approach for the treatment of the disorder. Here, we review AS and how loss-of-function of the maternal UBE3A contributes to the disorder. We also discuss the strengths and limitations of current animal models of AS. Furthermore, we examine potential small molecule drug and gene therapies for the treatment of AS and associated challenges faced by the therapeutic design. Finally, gene therapy offers the opportunity for precision medicine in AS and advancements in the treatment of this disorder can serve as a foundation for other single-gene neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nycole A Copping
- School of Medicine, Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Research II Building 96, 4625 2nd Avenue, Suite 1001B, Davis, Sacramento, CA, 95817, USA
- Stem Cell Program and Gene Therapy Center, Department of Neurology, MIND Institute, University of California, Davis, Sacramento, CA, USA
| | | | - Kyle D Fink
- Stem Cell Program and Gene Therapy Center, Department of Neurology, MIND Institute, University of California, Davis, Sacramento, CA, USA
| | - Jill L Silverman
- School of Medicine, Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Research II Building 96, 4625 2nd Avenue, Suite 1001B, Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
11
|
Adhikari A, Copping NA, Beegle J, Cameron DL, Deng P, O'Geen H, Segal DJ, Fink KD, Silverman JL, Anderson JS. Functional rescue in an Angelman syndrome model following treatment with lentivector transduced hematopoietic stem cells. Hum Mol Genet 2021; 30:1067-1083. [PMID: 33856035 PMCID: PMC8188406 DOI: 10.1093/hmg/ddab104] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by impaired communication skills, ataxia, motor and balance deficits, intellectual disabilities, and seizures. The genetic cause of AS is the neuronal loss of UBE3A expression in the brain. A novel approach, described here, is a stem cell gene therapy which uses lentivector-transduced hematopoietic stem and progenitor cells to deliver functional UBE3A to affected cells. We have demonstrated both the prevention and reversal of AS phenotypes upon transplantation and engraftment of human CD34+ cells transduced with a Ube3a lentivector in a novel immunodeficient Ube3amat−/pat+ IL2rg−/y mouse model of AS. A significant improvement in motor and cognitive behavioral assays as well as normalized delta power measured by electroencephalogram was observed in neonates and adults transplanted with the gene modified cells. Human hematopoietic profiles observed in the lymphoid organs by detection of human immune cells were normal. Expression of UBE3A was detected in the brains of the adult treatment group following immunohistochemical staining illustrating engraftment of the gene-modified cells expressing UBE3A in the brain. As demonstrated with our data, this stem cell gene therapy approach offers a promising treatment strategy for AS, not requiring a critical treatment window.
Collapse
Affiliation(s)
- Anna Adhikari
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Nycole A Copping
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Julie Beegle
- Stem Cell Program, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - David L Cameron
- Stem Cell Program, Department of Neurology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Peter Deng
- Stem Cell Program, Department of Neurology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Henriette O'Geen
- Department of Biochemistry and Medical Microbiology, UC Davis Genome Center, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - David J Segal
- Department of Biochemistry and Medical Microbiology, UC Davis Genome Center, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Kyle D Fink
- Stem Cell Program, Department of Neurology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jill L Silverman
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Joseph S Anderson
- Stem Cell Program, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
12
|
Podobnik J, Kraljić D, Zadravec M, Munih M. Centre of Pressure Estimation during Walking Using Only Inertial-Measurement Units and End-To-End Statistical Modelling. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6136. [PMID: 33126671 PMCID: PMC7662683 DOI: 10.3390/s20216136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Estimation of the centre of pressure (COP) is an important part of the gait analysis, for example, when evaluating the functional capacity of individuals affected by motor impairment. Inertial measurement units (IMUs) and force sensors are commonly used to measure gait characteristic of healthy and impaired subjects. We present a methodology for estimating the COP solely from raw gyroscope, accelerometer, and magnetometer data from IMUs using statistical modelling. We demonstrate the viability of the method using an example of two models: a linear model and a non-linear Long-Short-Term Memory (LSTM) neural network model. Models were trained on the COP ground truth data measured using an instrumented treadmill and achieved the average intra-subject root mean square (RMS) error between estimated and ground truth COP of 12.3 mm and the average inter-subject RMS error of 23.7 mm which is comparable or better than similar studies so far. We show that the calibration procedure in the instrumented treadmill can be as short as a couple of minutes without the decrease in our model performance. We also show that the magnetic component of the recorded IMU signal, which is most sensitive to environmental changes, can be safely dropped without a significant decrease in model performance. Finally, we show that the number of IMUs can be reduced to five without deterioration in the model performance.
Collapse
Affiliation(s)
- Janez Podobnik
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (D.K.); (M.M.)
| | - David Kraljić
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (D.K.); (M.M.)
| | - Matjaž Zadravec
- Research and Development Unit, University Rehabilitation Institute Republic of Slovenia, SI-1000 Ljubljana, Slovenia;
| | - Marko Munih
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (D.K.); (M.M.)
| |
Collapse
|
13
|
Wilson RB, Elashoff D, Gouelle A, Smith BA, Wilson AM, Dickinson A, Safari T, Hyde C, Jeste SS. Quantitative Gait Analysis in Duplication 15q Syndrome and Nonsyndromic ASD. Autism Res 2020; 13:1102-1110. [PMID: 32282133 DOI: 10.1002/aur.2298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/23/2020] [Accepted: 03/14/2020] [Indexed: 01/12/2023]
Abstract
Motor impairments occur frequently in genetic syndromes highly penetrant for autism spectrum disorder (syndromic ASD) and in individuals with ASD without a genetic diagnosis (nonsyndromic ASD). In particular, abnormalities in gait in ASD have been linked to language delay, ASD severity, and likelihood of having a genetic disorder. Quantitative measures of motor function can improve our ability to evaluate motor differences in individuals with syndromic and nonsyndromic ASD with varying levels of intellectual disability and adaptive skills. To evaluate this methodology, we chose to use quantitative gait analysis to study duplication 15q syndrome (dup15q syndrome), a genetic disorder highly penetrant for motor delays, intellectual disability, and ASD. We evaluated quantitative gait variables in individuals with dup15q syndrome (n = 39) and nonsyndromic ASD (n = 21) and compared these data to a reference typically developing cohort. We found a gait pattern of slow pace, poor postural control, and large gait variability in dup15q syndrome. Our findings improve characterization of motor function in dup15q syndrome and nonsyndromic ASD. Quantitative gait analysis can be used as a translational method and can improve our identification of clinical endpoints to be used in treatment trials for these syndromes. Autism Res 2020, 13: 1102-1110. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Motor impairments, particularly abnormalities in walking, occur frequently in genetic syndromes highly penetrant for autism spectrum disorder (syndromic ASD). Here, using quantitative gait analysis, we find that individuals with duplication 15q syndrome have an atypical gait pattern that differentiates them from typically developing and nonsyndromic ASD individuals. Our findings improve motor characterization in dup15q syndrome and nonsyndromic ASD.
Collapse
Affiliation(s)
- Rujuta B Wilson
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, Los Angeles, California, USA
| | - Arnaud Gouelle
- Gait and Balance Academy, Protokinetics, Havertown, Pennsylvania, USA.,Laboratory Performance, Sante, Metrologie, Societe (PSMS), UFR STAPS, Reims, France
| | - Beth A Smith
- Division of Biokinesiology and Physical Therapy and Department of Pediatrics, University of Southern California, Los Angeles, California, USA
| | - Andrew M Wilson
- Greater Los Angeles VA HealthCare System, Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Abigail Dickinson
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Tabitha Safari
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Carly Hyde
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Shafali S Jeste
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
14
|
Dodge A, Peters MM, Greene HE, Dietrick C, Botelho R, Chung D, Willman J, Nenninger AW, Ciarlone S, Kamath SG, Houdek P, Sumová A, Anderson AE, Dindot SV, Berg EL, O'Geen H, Segal DJ, Silverman JL, Weeber EJ, Nash KR. Generation of a Novel Rat Model of Angelman Syndrome with a Complete Ube3a Gene Deletion. Autism Res 2020; 13:397-409. [PMID: 31961493 PMCID: PMC7787396 DOI: 10.1002/aur.2267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 11/08/2022]
Abstract
Angelman syndrome (AS) is a rare genetic disorder characterized by severe intellectual disability, seizures, lack of speech, and ataxia. The gene responsible for AS was identified as Ube3a and it encodes for E6AP, an E3 ubiquitin ligase. Currently, there is very little known about E6AP's mechanism of action in vivo or how the lack of this protein in neurons may contribute to the AS phenotype. Elucidating the mechanistic action of E6AP would enhance our understanding of AS and drive current research into new avenues that could lead to novel therapeutic approaches that target E6AP's various functions. To facilitate the study of AS, we have generated a novel rat model in which we deleted the rat Ube3a gene using CRISPR. The AS rat phenotypically mirrors human AS with loss of Ube3a expression in the brain and deficits in motor coordination as well as learning and memory. This model offers a new avenue for the study of AS. Autism Res 2020, 13: 397-409. © 2020 International Society for Autism Research,Wiley Periodicals, Inc. LAY SUMMARY: Angelman syndrome (AS) is a rare genetic disorder characterized by severe intellectual disability, seizures, difficulty speaking, and ataxia. The gene responsible for AS was identified as UBE3A, yet very little is known about its function in vivo or how the lack of this protein in neurons may contribute to the AS phenotype. To facilitate the study of AS, we have generated a novel rat model in which we deleted the rat Ube3a gene using CRISPR. The AS rat mirrors human AS with loss of Ube3a expression in the brain and deficits in motor coordination as well as learning and memory. This model offers a new avenue for the study of AS.
Collapse
Affiliation(s)
- Andie Dodge
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Melinda M Peters
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Hayden E Greene
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Clifton Dietrick
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Robert Botelho
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Diana Chung
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Jonathan Willman
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Austin W Nenninger
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Stephanie Ciarlone
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- PTC Therapeutics Inc., Plainfield, 07080, New Jersey
| | - Siddharth G Kamath
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Pavel Houdek
- Department of Neurohumoral Regulations, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Sumová
- Department of Neurohumoral Regulations, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Anne E Anderson
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Scott V Dindot
- Department of Veterinary Pathobiology, Texas A&M, College Station, Texas
| | - Elizabeth L Berg
- School of Medicine, MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California - Davis, Sacramento, California
| | - Henriette O'Geen
- Genome Center and MIND Institute, University of California - Davis, Davis, California
| | - David J Segal
- Genome Center and MIND Institute, University of California - Davis, Davis, California
| | - Jill L Silverman
- School of Medicine, MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California - Davis, Sacramento, California
| | - Edwin J Weeber
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- PTC Therapeutics Inc., Plainfield, 07080, New Jersey
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| |
Collapse
|
15
|
Rotaru DC, Mientjes EJ, Elgersma Y. Angelman Syndrome: From Mouse Models to Therapy. Neuroscience 2020; 445:172-189. [PMID: 32088294 DOI: 10.1016/j.neuroscience.2020.02.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
The UBE3A gene is part of the chromosome 15q11-q13 region that is frequently deleted or duplicated, leading to several neurodevelopmental disorders (NDD). Angelman syndrome (AS) is caused by the absence of functional maternally derived UBE3A protein, while the paternal UBE3A gene is present but silenced specifically in neurons. Patients with AS present with severe neurodevelopmental delay, with pronounced motor deficits, absence of speech, intellectual disability, epilepsy, and sleep problems. The pathophysiology of AS is still unclear and a treatment is lacking. Animal models of AS recapitulate the genotypic and phenotypic features observed in AS patients, and have been invaluable for understanding the disease process as well as identifying apropriate drug targets. Using these AS mouse models we have learned that loss of UBE3A probably affects many areas of the brain, leading to increased neuronal excitability and a loss of synaptic spines, along with changes in a number of distinct behaviours. Inducible AS mouse models have helped to identify the critical treatment windows for the behavioral and physiological phenotypes. Additionally, AS mouse models indicate an important role for the predominantly nuclear UBE3A isoform in generating the characteristic AS pathology. Last, but not least, the AS mice have been crucial in guiding Ube3a gene reactivation treatments, which present a very promising therapy to treat AS.
Collapse
Affiliation(s)
- Diana C Rotaru
- Department of Neuroscience, The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Edwin J Mientjes
- Department of Neuroscience, The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ype Elgersma
- Department of Neuroscience, The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Berg EL, Pride MC, Petkova SP, Lee RD, Copping NA, Shen Y, Adhikari A, Fenton TA, Pedersen LR, Noakes LS, Nieman BJ, Lerch JP, Harris S, Born HA, Peters MM, Deng P, Cameron DL, Fink KD, Beitnere U, O'Geen H, Anderson AE, Dindot SV, Nash KR, Weeber EJ, Wöhr M, Ellegood J, Segal DJ, Silverman JL. Translational outcomes in a full gene deletion of ubiquitin protein ligase E3A rat model of Angelman syndrome. Transl Psychiatry 2020; 10:39. [PMID: 32066685 PMCID: PMC7026078 DOI: 10.1038/s41398-020-0720-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022] Open
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by developmental delay, impaired communication, motor deficits and ataxia, intellectual disabilities, microcephaly, and seizures. The genetic cause of AS is the loss of expression of UBE3A (ubiquitin protein ligase E6-AP) in the brain, typically due to a deletion of the maternal 15q11-q13 region. Previous studies have been performed using a mouse model with a deletion of a single exon of Ube3a. Since three splice variants of Ube3a exist, this has led to a lack of consistent reports and the theory that perhaps not all mouse studies were assessing the effects of an absence of all functional UBE3A. Herein, we report the generation and functional characterization of a novel model of Angelman syndrome by deleting the entire Ube3a gene in the rat. We validated that this resulted in the first comprehensive gene deletion rodent model. Ultrasonic vocalizations from newborn Ube3am-/p+ were reduced in the maternal inherited deletion group with no observable change in the Ube3am+/p- paternal transmission cohort. We also discovered Ube3am-/p+ exhibited delayed reflex development, motor deficits in rearing and fine motor skills, aberrant social communication, and impaired touchscreen learning and memory in young adults. These behavioral deficits were large in effect size and easily apparent in the larger rodent species. Low social communication was detected using a playback task that is unique to rats. Structural imaging illustrated decreased brain volume in Ube3am-/p+ and a variety of intriguing neuroanatomical phenotypes while Ube3am+/p- did not exhibit altered neuroanatomy. Our report identifies, for the first time, unique AS relevant functional phenotypes and anatomical markers as preclinical outcomes to test various strategies for gene and molecular therapies in AS.
Collapse
Affiliation(s)
- E L Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - M C Pride
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - S P Petkova
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - R D Lee
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - N A Copping
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Y Shen
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - A Adhikari
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - T A Fenton
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - L R Pedersen
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - L S Noakes
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - B J Nieman
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - J P Lerch
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
| | - S Harris
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX, USA
| | - H A Born
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX, USA
| | - M M Peters
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - P Deng
- Stem Cell Program, Institute for Regenerative Cures, and Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - D L Cameron
- Stem Cell Program, Institute for Regenerative Cures, and Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - K D Fink
- Stem Cell Program, Institute for Regenerative Cures, and Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - U Beitnere
- MIND Institute, Genome Center, and Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - H O'Geen
- MIND Institute, Genome Center, and Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - A E Anderson
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX, USA
| | - S V Dindot
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - K R Nash
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - E J Weeber
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - M Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - J Ellegood
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - D J Segal
- MIND Institute, Genome Center, and Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - J L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
17
|
Gait Recognition via Deep Learning of the Center-of-Pressure Trajectory. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030774] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fact that every human has a distinctive walking style has prompted a proposal to use gait recognition as an identification criterion. Using end-to-end learning, I investigated whether the center-of-pressure (COP) trajectory is sufficiently unique to identify a person with high certainty. Thirty-six adults walked for 30 min on a treadmill equipped with a force platform that continuously recorded the positions of the COP. The raw two-dimensional signals were sliced into segments of two gait cycles. A set of 20,250 segments from 30 subjects was used to configure and train convolutional neural networks (CNNs). The best CNN classified a separate set containing 2250 segments with an overall accuracy of 99.9%. A second set of 4500 segments from the six remaining subjects was then used for transfer learning. Several small subsamples of this set were selected randomly and used to fine tune the pretrained CNNs. Training with two segments per subject was sufficient to achieve 100% accuracy. The results suggest that every person produces a unique trajectory of underfoot pressures while walking and that CNNs can learn the distinctive features of these trajectories. By applying a pretrained CNN (transfer learning), a couple of strides seem enough to learn and identify new gaits. However, these promising results should be confirmed in a larger sample under realistic conditions.
Collapse
|
18
|
Shin C, Ahn TB. Asymmetric dynamic center-of-pressure in Parkinson's disease. J Neurol Sci 2020; 408:116559. [PMID: 31710970 DOI: 10.1016/j.jns.2019.116559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Gait disturbance gradually worsens as Parkinson's disease (PD) progresses, which significantly affects the quality of life of PD patients. Treadmill-based gait analysis systems can measure gait parameters including the dynamic center-of-pressure (COP) trajectory during ambulation. In this study, we hypothesized that altered dynamic COP changes are new gait characteristics for PD patients. METHODS Dynamic COP parameters and classic spatiotemporal parameters were obtained for each patient using a treadmill-based system at the maximal comfortable treadmill speed (MCTS). We compared dynamic COP parameters between 44 PD patients and 31 controls, correlated these parameters with clinical and spatiotemporal data, and adjusted for age and MCTS to determine whether the parameters were independent from the treadmill speed. We also evaluated characteristics of COP parameters in relation to the more and less affected sides in PD patients. RESULTS During treadmill walking the length of the COP trajectory in the stance phase was decreased, an effect that was more prominent on the more affected side in PD patients. COP parameters related to this change were significantly altered in patients when compared to controls. Asymmetry of the COP trajectories compared between both feet was identified as a significant gait characteristic after adjusting for age and MCTS. The overlaid graphical display of dynamic COP trajectory in PD patients showed "distorted butterfly with asymmetric wing" feature. CONCLUSION Dynamic COP asymmetry provides a new and intuitive way to analyze gait abnormalities of PD patients. Further studies with prospective designs will substantiate the clinical usefulness of this feature of gait.
Collapse
Affiliation(s)
- Chaewon Shin
- Department of Neurology, Chungnam National University Hospital, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Tae-Beom Ahn
- Department of Neurology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Shi L, Duan F, Yang Y, Sun Z. The Effect of Treadmill Walking on Gait and Upper Trunk through Linear and Nonlinear Analysis Methods. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2204. [PMID: 31086054 PMCID: PMC6540218 DOI: 10.3390/s19092204] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/24/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022]
Abstract
Treadmills are widely used to recover walking function in the rehabilitation field for those patients with gait disorders. Nevertheless, the ultimate goal of walking function recovery is to walk on the ground rather than on the treadmill. This study aims to determine the effect of treadmill walking on gait and upper trunk movement characteristics using wearable sensors. Eight healthy male subjects are recruited to perform 420-m straight overground walking (OW) and 5 min treadmill walking (TW), wearing 3 inertial measurement units and a pair of insole sensors. In addition to common linear features, nonlinear features, which contains sample entropy, maximal Lyapunov exponent and fractal dynamic of stride intervals (detrended fluctuation analysis), are used to compare the difference between TW and OW condition. Canonical correlation analysis is also used to indicate the correlation between upper trunk movement characteristics and gait features in the aspects of spatiotemporal parameters and gait dynamic features. The experimental results show that the treadmill can cause a shorter stride length, less stride time and worsen long-range correlation of stride intervals. And the treadmill can significantly increase the stability for both gait and upper trunk, while it can significantly reduce gait regularity during swing phase. Canonical correlation analysis results show that treadmill can reduce the correlation between gait and upper trunk features. One possible interpretation of these results is that people tend to walk more cautiously to prevent the risk of falling and neglect the coordination between gait and upper trunk when walking on the treadmill. This study can provide fundamental insightful information about the effect of treadmill walking on gait and upper trunk to support future similar studies.
Collapse
Affiliation(s)
- Liang Shi
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China.
| | - Feng Duan
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China.
| | - Yikang Yang
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China.
| | - Zhe Sun
- Computational Engineering Applications Unit, Head Office for Information Systems and Cybersecurity, RIKEN, Saitama 351-0198, Japan.
| |
Collapse
|