1
|
Bang NN, Hayes BJ, Lyons RE, Randhawa IAS, Gaughan JB, Trach NX, McNeill DM. Genomic Prediction and Genome-Wide Association Studies for Productivity, Conformation and Heat Tolerance Traits in Tropical Smallholder Dairy Cows. J Anim Breed Genet 2024. [PMID: 39462234 DOI: 10.1111/jbg.12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Genomic selection (GS) and genome-wide association studies (GWAS) have not been investigated in Vietnamese dairy cattle, even for basic milk production traits, largely due to the scarcity of individual phenotype recording in smallholder dairy farms (SDFs). This study aimed to estimate heritability (h2) and test the applicability of GS and GWAS for milk production, body conformation and novel heat tolerance traits using single test day phenotypic data. Thirty-two SDFs located in either the north (a lowland vs. a highland) or the south (a lowland vs. a highland) of Vietnam were each visited for an afternoon and the next morning to collect phenotype data of all lactating cows (n = 345). Tail hair from each cow was sampled for subsequent genotyping with a 50K SNP chip at that same visit. Milk production traits (single-test day) were milk yield (MILK, kg/cow/day), energy corrected milk yield adjusted for body weight (ECMbw, kg/100 kg BW/day), fat (mFA, %), protein (mPR, %) and dry matter (mDM, %). Conformation traits were body weight (BW, kg) and body condition score (BCS, 1 = thin to 5 = obese). Heat tolerance traits were panting score (PS, 0 = normal to 4.5 = extremely heat-stressed) and infrared temperatures (IRTs, °C) at 11 areas on the external body surface of the cow (inner vulval lip, outer vulval surface, inner tail base surface, ocular area, muzzle, armpit area, paralumbar fossa area, fore udder, rear udder, forehoof and hind hoof), assessed by an Infrared Camera. Univariate linear mixed models and a 10-fold cross-validation approach were applied for GS. Univariate single SNP mixed linear models were applied for the GWAS. Estimated h2 (using the genotype information to build relationships among animals) were moderate (0.20-0.37) for ECMbw, mFA, mPR, mRE, BW, BCS and IRT at rear udder; low (0.08-0.19) for PS and other IRTs; and very low (≤ 0.07) for MILK, ECM and mDM. Accuracy of genomic estimated breeding values (GEBVs) was low (≤ 0.12) for MILK, ECM, mDM and IRT at hind hoof; and moderate to high (0.32-0.46) for all other traits. The most significant regions on chromosomes (BTA) associated with milk production traits were 0.47-1.18 Mb on BTA14. Moderate to high h2 and moderate accuracies of GEBVs for mFA, mPR, ECMbw, BCS, BW, PS and IRTs at rear udder and outer vulval surface suggested that GS using single test day phenotypic data could be applied for these traits. However, a greater sample size is required to decrease the bias of GEBVs by GS and increase the power of detecting significant quantitative trait loci (QTLs) by GWAS.
Collapse
Affiliation(s)
- Nguyen N Bang
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia
| | - Russell E Lyons
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Imtiaz A S Randhawa
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - John B Gaughan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Nguyen X Trach
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - David M McNeill
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
2
|
Dutta G, Alex R, Singh A, Gowane GR, Vohra V, De S, Verma A, Ludri A. Functional transcriptome analysis revealed upregulation of MAPK-SMAD signalling pathways in chronic heat stress in crossbred cattle. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1371-1385. [PMID: 38720050 DOI: 10.1007/s00484-024-02672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 07/26/2024]
Abstract
Animal geneticists and breeders have the impending challenge of enhancing the resilience of Indian livestock to heat stress through better selection strategies. Climate change's impact on livestock is more intense in tropical countries like India where dairy cattle crossbreeds are more sensitive to heat stress. The main reason for this study was to find the missing relative changes in transcript levels in thermo-neutral and heat stress conditions in crossbred cattle through whole-transcriptome analysis of RNA-Seq data. Differentially expressed genes (DEGs) identified based on the minimum log twofold change value and false discovery rate 0.05 revealed 468 up-regulated genes and 2273 down-regulated significant genes. Functional annotation and pathway analysis of these significant DEGs were compared based on Gene Ontology (Biological process), Kyoto Encyclopedia of Genes and Genome (KEGG), and Reactome pathways using g: Profiler, ShinyGO v0.76, and iDEP.951 web tools. On finding network visualization, the most over-represented and correlated pathways were neuronal and sensory organ development, calcium signalling pathway, Mitogen-activated protein kinase (MAPK) and Smad signalling pathway, Ras-proximate-1, or Ras-related protein 1 (Rap 1) signalling pathway, apoptosis, and oxidative stress. Similarly, down-regulated genes were most expressed in mRNA processing, immune system, B-cell receptor signalling pathway, Nucleotide oligomerization domain (NOD)-like receptors (NLRs) signalling pathway and nonsense-mediated decay (NMD) pathway. The heat stress-responsive genes identified in this study will facilitate our understanding of the molecular basis for climate resilience and heat tolerance in Indian dairy crossbreeds.
Collapse
Affiliation(s)
- Gaurav Dutta
- Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rani Alex
- Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Ayushi Singh
- Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Gopal R Gowane
- Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Vikas Vohra
- Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sachidanandan De
- Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Archana Verma
- Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ashutosh Ludri
- Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
3
|
Yang T, Luo H, Lou W, Chang Y, Brito LF, Zhang H, Ma L, Hu L, Wang A, Li S, Guo G, Wang Y. Genetic background of hematological parameters in Holstein cattle based on genome-wide association and RNA sequencing analyses. J Dairy Sci 2024; 107:4772-4792. [PMID: 38428498 DOI: 10.3168/jds.2023-24345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/30/2024] [Indexed: 03/03/2024]
Abstract
Hematological parameters refer to the assessment of changes in the number and distribution of blood cells, including leukocytes (LES), erythrocytes (ERS), and platelets (PLS), which are essential for the early diagnosis of hematological system disorders and other systemic diseases in livestock. In this context, the primary objectives of this study were to investigate the genomic background of 19 hematological parameters in Holstein cattle, focusing on LES, ERS, and PLS blood components. Genetic and phenotypic (co)variances of hematological parameters were calculated based on the average information restricted maximum likelihood method and 1,610 genotyped individuals and 5,499 hematological parameter records from 4,543 cows. Furthermore, we assessed the genetic relationship between these hematological parameters and other economically important traits in dairy cattle breeding programs. We also carried out genome-wide association studies and candidate gene analyses. Blood samples from 21 primiparous cows were used to identify candidate genes further through RNA sequencing (RNA-seq) analyses. Hematological parameters generally exhibited low-to-moderate heritabilities ranging from 0.01 to 0.29, with genetic correlations between them ranging from -0.88 ± 0.09 (between mononuclear cell ratio and lymphocyte cell ratio) to 0.99 ± 0.01 (between white blood cell count and granulocyte cell count). Furthermore, low-to-moderate approximate genetic correlations between hematological parameters with one longevity, 4 fertility, and 5 health traits were observed. One hundred ninety-nine significant SNP located primarily on the Bos taurus autosomes (BTA) BTA4, BTA6, and BTA8 were associated with 16 hematological parameters. Based on the RNA-seq analyses, 6,687 genes were significantly downregulated and 4,119 genes were upregulated when comparing 2 groups of cows with high and low phenotypic values. By integrating genome-wide association studies (GWAS), RNA-seq, and previously published results, the main candidate genes associated with hematological parameters in Holstein cattle were ACRBP, ADAMTS3, CANT1, CCM2L, CNN3, CPLANE1, GPAT3, GRIP2, PLAGL2, RTL6, SOX4, WDFY3, and ZNF614. Hematological parameters are heritable and moderately to highly genetically correlated among themselves. The large number of candidate genes identified based on GWAS and RNA-seq indicate the polygenic nature and complex genetic determinism of hematological parameters in Holstein cattle.
Collapse
Affiliation(s)
- Tongtong Yang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hanpeng Luo
- School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Wenqi Lou
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yao Chang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Hailiang Zhang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Longgang Ma
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lirong Hu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Ao Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shanshan Li
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Gang Guo
- Beijing Sunlon Livestock Development Company Limited, Beijing, 100029, China
| | - Yachun Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Luna-Azuara CG, Montaño-Bermúdez M, Calderón-Chagoya R, Ríos-Utrera Á, Martínez-Velázquez G, Vega-Murillo VE. Genetic diversity of SNPs associated with candidate genes for heat stress in Coreño Creole cattle in Mexico. Trop Anim Health Prod 2024; 56:71. [PMID: 38326660 DOI: 10.1007/s11250-024-03917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Mexican Coreño Creole cattle are an important genetic resource adapted to local environmental conditions, so the study of their genetic diversity is essential to know their status and implement conservation programs and their use for crossbreeding. This study evaluated the genetic diversity of heat stress tolerance characteristics of Coreño Creole cattle, and a gene ontology enrichment was performed to know the biological processes in which candidate genes are involved. A total of 48 samples from three localities of Nayarit were genotyped using 777 K Illumina BovineHD BeadChip and 34 single nucleotide polymorphisms associated with candidate genes were selected. Genetic diversity was analyzed using allelic frequencies, expected heterozygosity (He), and Wright's fixation index (FST) using PLINK v1.9 software. Candidate genes were uploaded to the open-source GOnet for pathway analysis and linkage to biological processes. Coreño Creole cattle showed low genetic diversity (He = 0.35), the average FST obtained was 0.044, and only eight markers had allele frequencies higher than 0.80 in the three locations. We found that the genes GOT1 and NCAD are related in the biological processes of stress response, cell differentiation, and homeostatic process. The results revealed that Coreño Creole cattle have low genetic diversity; this could be due to the isolation of these populations.
Collapse
Affiliation(s)
- César G Luna-Azuara
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, Ver, Mexico
| | - Moisés Montaño-Bermúdez
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal INIFAP, Ajuchitlán, Querétaro, Mexico
| | - René Calderón-Chagoya
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal INIFAP, Ajuchitlán, Querétaro, Mexico
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Ángel Ríos-Utrera
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, Ver, Mexico
| | | | - Vicente E Vega-Murillo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, Ver, Mexico.
| |
Collapse
|
5
|
Worku D, Hussen J, De Matteis G, Schusser B, Alhussien MN. Candidate genes associated with heat stress and breeding strategies to relieve its effects in dairy cattle: a deeper insight into the genetic architecture and immune response to heat stress. Front Vet Sci 2023; 10:1151241. [PMID: 37771947 PMCID: PMC10527375 DOI: 10.3389/fvets.2023.1151241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
The need for food products of animal origin is increasing worldwide. Satisfying these needs in a way that has minimal impact on the environment requires cutting-edge technologies and techniques to enhance the genetic quality of cattle. Heat stress (HS), in particular, is affecting dairy cattle with increasing frequency and severity. As future climatic challenges become more evident, identifying dairy cows that are more tolerant to HS will be important for breeding dairy herds that are better adapted to future environmental conditions and for supporting the sustainability of dairy farming. While research into the genetics of HS in the context of the effect of global warming on dairy cattle is gaining momentum, the specific genomic regions involved in heat tolerance are still not well documented. Advances in omics information, QTL mapping, transcriptome profiling and genome-wide association studies (GWAS) have identified genomic regions and variants associated with tolerance to HS. Such studies could provide deeper insights into the genetic basis for response to HS and make an important contribution to future breeding for heat tolerance, which will help to offset the adverse effects of HS in dairy cattle. Overall, there is a great interest in identifying candidate genes and the proportion of genetic variation associated with heat tolerance in dairy cattle, and this area of research is currently very active worldwide. This review provides comprehensive information pertaining to some of the notable recent studies on the genetic architecture of HS in dairy cattle, with particular emphasis on the identified candidate genes associated with heat tolerance in dairy cattle. Since effective breeding programs require optimal knowledge of the impaired immunity and associated health complications caused by HS, the underlying mechanisms by which HS modulates the immune response and renders animals susceptible to various health disorders are explained. In addition, future breeding strategies to relieve HS in dairy cattle and improve their welfare while maintaining milk production are discussed.
Collapse
Affiliation(s)
- Destaw Worku
- Department of Animal Science, College of Agriculture, Food and Climate Sciences, Injibara University, Injibara, Ethiopia
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Giovanna De Matteis
- Council for Agricultural Research and Economics, CREA Research Centre for Animal Production and Aquaculture, Monterotondo, Rome, Italy
| | - Benjamin Schusser
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mohanned Naif Alhussien
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Luna-Ramirez RI, Limesand SW, Goyal R, Pendleton AL, Rincón G, Zeng X, Luna-Nevárez G, Reyna-Granados JR, Luna-Nevárez P. Blood Transcriptomic Analyses Reveal Functional Pathways Associated with Thermotolerance in Pregnant Ewes Exposed to Environmental Heat Stress. Genes (Basel) 2023; 14:1590. [PMID: 37628641 PMCID: PMC10454332 DOI: 10.3390/genes14081590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Environmental heat stress triggers a series of compensatory mechanisms in sheep that are dependent on their genetic regulation of thermotolerance. Our objective was to identify genes and regulatory pathways associated with thermotolerance in ewes exposed to heat stress. We performed next-generation RNA sequencing on blood collected from 16 pregnant ewes, which were grouped as tolerant and non-tolerant to heat stress according to a physiological indicator. Additional samples were collected to measure complete blood count. A total of 358 differentially expressed genes were identified after applying selection criteria. Gene expression analysis detected 46 GO terms and 52 KEGG functional pathways. The top-three signaling pathways were p53, RIG-I-like receptor and FoxO, which suggested gene participation in biological processes such as apoptosis, cell signaling and immune response to external stressors. Network analysis revealed ATM, ISG15, IRF7, MDM4, DHX58 and TGFβR1 as over-expressed genes with high regulatory potential. A co-expression network involving the immune-related genes ISG15, IRF7 and DXH58 was detected in lymphocytes and monocytes, which was consistent with hematological findings. In conclusion, transcriptomic analysis revealed a non-viral immune mechanism involving apoptosis, which is induced by external stressors and appears to play an important role in the molecular regulation of heat stress tolerance in ewes.
Collapse
Affiliation(s)
- Rosa I. Luna-Ramirez
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Sean W. Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Ravi Goyal
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Alexander L. Pendleton
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | - Xi Zeng
- Zoetis Inc., VMRD Genetics R&D, Kalamazoo, MI 49007, USA
| | - Guillermo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Javier R. Reyna-Granados
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Pablo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| |
Collapse
|
7
|
Zamorano-Algandar R, Medrano JF, Thomas MG, Enns RM, Speidel SE, Sánchez-Castro MA, Luna-Nevárez G, Leyva-Corona JC, Luna-Nevárez P. Genetic Markers Associated with Milk Production and Thermotolerance in Holstein Dairy Cows Managed in a Heat-Stressed Environment. BIOLOGY 2023; 12:biology12050679. [PMID: 37237493 DOI: 10.3390/biology12050679] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Dairy production in Holstein cows in a semiarid environment is challenging due to heat stress. Under such conditions, genetic selection for heat tolerance appears to be a useful strategy. The objective was to validate molecular markers associated with milk production and thermotolerance traits in Holstein cows managed in a hot and humid environment. Lactating cows (n = 300) exposed to a heat stress environment were genotyped using a medium-density array including 53,218 SNPs. A genome-wide association study (GWAS) detected six SNPs associated with total milk yield (MY305) that surpassed multiple testing (p < 1.14 × 10-6). These SNPs were further validated in 216 Holstein cows from two independent populations that were genotyped using the TaqMan bi-allelic discrimination method and qPCR. In these cows, only the SNPs rs8193046, rs43410971, and rs382039214, within the genes TLR4, GRM8, and SMAD3, respectively, were associated (p < 0.05) with MY305, rectal temperature (RT), and respiratory rate. Interestingly, these variables improved as the number of favorable genotypes of the SNPs increased from 0 to 3. In addition, a regression analysis detected RT as a significant predictor (R2 = 0.362) for MY305 in cows with >1 favorable genotype, suggesting this close relationship was influenced by genetic markers. In conclusion, SNPs in the genes TLR4, GRM8, and SMAD3 appear to be involved in the molecular mechanism that regulates milk production in cows under heat-stressed conditions. These SNPs are proposed as thermotolerance genetic markers for a selection program to improve the milk performance of lactating Holstein cows managed in a semiarid environment.
Collapse
Affiliation(s)
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | - R Mark Enns
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Scott E Speidel
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Guillermo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - José C Leyva-Corona
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Pablo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| |
Collapse
|
8
|
Zhang L, Zhang S, Zhan F, Song M, Shang P, Zhu F, Li J, Yang F, Li X, Qiao R, Han X, Li X, Liu G, Wang K. Population Genetic Analysis of Six Chinese Indigenous Pig Meta-Populations Based on Geographically Isolated Regions. Animals (Basel) 2023; 13:ani13081396. [PMID: 37106959 PMCID: PMC10135051 DOI: 10.3390/ani13081396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The diversification of indigenous pig breeds in China has resulted from multiple climate, topographic, and human cultural influences. The numerous indigenous pig breeds can be geographically divided into six meta-populations; however, their genetic relationships, contributions to genetic diversity, and genetic signatures remain unclear. Whole-genome SNP data for 613 indigenous pigs from the six Chinese meta-populations were obtained and analyzed. Population genetic analyses confirmed significant genetic differentiation and a moderate mixture among the Chinese indigenous pig meta-populations. The North China (NC) meta-population had the largest contribution to genetic and allelic diversity. Evidence from selective sweep signatures revealed that genes related to fat deposition and heat stress response (EPAS1, NFE2L2, VPS13A, SPRY1, PLA2G4A, and UBE3D) were potentially involved in adaptations to cold and heat. These findings from population genetic analyses provide a better understanding of indigenous pig characteristics in different environments and a theoretical basis for future work on the conservation and breeding of Chinese indigenous pigs.
Collapse
Affiliation(s)
- Lige Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Songyuan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Fengting Zhan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingkun Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China
| | - Fangxian Zhu
- National Animal Husbandry Service, Beijing 100193, China
| | - Jiang Li
- National Supercomputing Center in Zhengzhou, Zhengzhou 450001, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Gang Liu
- National Animal Husbandry Service, Beijing 100193, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
9
|
Macciotta NPP, Dimauro C, Degano L, Vicario D, Cesarani A. A transgenerational study on the effect of great-granddam birth month on granddaughter EBV for production traits in Italian Simmental cattle. J Dairy Sci 2023; 106:2588-2597. [PMID: 36870840 DOI: 10.3168/jds.2022-22455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/08/2022] [Indexed: 03/06/2023]
Abstract
Heat tolerance is a key feature of resilient animals. Offspring of animals that suffer environmental stress during pregnancy could show physiological, morphological, and metabolic modifications. This is due to a dynamic reprogramming of the epigenetics of the mammalian genome that occurs in the early life cycle. Thus, the aim of this study was to investigate the extent of the transgenerational effect of heat stress during the pregnancy of Italian Simmental cows. The effects of dam and granddam birth months (as indicator of pregnancy period) on their daughter and granddaughter estimated breeding values (EBV) for some dairy traits as well as of the temperature-humidity index (THI) during the pregnancy were tested. A total of 128,437 EBV (milk, fat, and protein yields, and somatic cell score) were provided by the Italian Association of Simmental Breeders. The best birth months (of both dam and granddam) for milk yield and protein yield were May and June, whereas the worst were January and March. Great-granddam pregnancies developed during the winter and spring seasons positively affected the EBV for milk and protein yields of their great-granddaughters; in contrast, pregnancies during summer and autumn had negative effects. These findings were confirmed by the effects of maximum and minimum THI in different parts of the great-granddam pregnancy on the performances of their great-granddaughters. Thus, a negative effect of high temperatures during the pregnancy of female ancestors was observed. Results of the present study suggest a transgenerational epigenetic inheritance in Italian Simmental cattle due to environmental stressors.
Collapse
Affiliation(s)
- Nicolò P P Macciotta
- Departimento di Agraria, Università degli Studi di Sassari, Sassari 07100, Italy
| | - Corrado Dimauro
- Departimento di Agraria, Università degli Studi di Sassari, Sassari 07100, Italy
| | - Lorenzo Degano
- Associazione Nazionale Allevatori Bovini di Razza Pezzata Rossa Italiana, Udine 33100, Italy
| | - Daniele Vicario
- Associazione Nazionale Allevatori Bovini di Razza Pezzata Rossa Italiana, Udine 33100, Italy
| | - Alberto Cesarani
- Departimento di Agraria, Università degli Studi di Sassari, Sassari 07100, Italy; Department of Animal and Dairy Science, University of Georgia, Athens 30602.
| |
Collapse
|
10
|
Falchi L, Cesarani A, Mastrangelo S, Senczuk G, Portolano B, Pilla F, Macciotta NPP. Analysis of runs of homozygosity of cattle living in different climate zones. J Anim Sci 2023; 101:skad061. [PMID: 36802370 PMCID: PMC10066727 DOI: 10.1093/jas/skad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Aim of this study was to analyze the distribution and characteristics of runs of homozygosity in Bos taurus taurus and Bos taurus indicus breeds, as well as their crosses, farmed all around the world. With this aim in view, we used single-nucleotide polymorphisms (SNP) genotypes for 3,263 cattle belonging to 204 different breeds. After quality control, 23,311 SNPs were retained for the analysis. Animals were divided into seven different groups: 1) continental taurus, 2) temperate taurus, 3) temperate indicus, 4) temperate composite, 5) tropical taurus, 6) tropical indicus, and 7) tropical composite. The climatic zones were created according to the latitude of the breeds' country of origin: i) continental, latitude ≥ 45°; ii) temperate, 45°< Latitude >23.26°; iii) tropics, latitude ≤ 23.26°. Runs of homozygosity were computed as 15 SNPs spanning in at least 2 Mb; number of ROH per animal (nROH), average ROH length (meanMb), and ROH-based inbreeding coefficients (FROH) were also computed. Temperate indicus showed the largest nROH, whereas Temperate taurus the lowest value. Moreover, the largest meanMb was observed for Temperate taurus, whereas the lowest value for Tropics indicus. Temperate indicus breeds showed the largest FROH values. Genes mapped in the identified ROH were reported to be associated with the environmental adaptation, disease resistance, coat color determinism, and production traits. Results of the present study confirmed that runs of homozygosity could be used to identify genomic signatures due to both artificial and natural selection.
Collapse
Affiliation(s)
- Laura Falchi
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy
| | - Alberto Cesarani
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy
- Department of Animal and Dairy Science, University of Georgia, 30602 Athens, USA
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Gabriele Senczuk
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, 86100 Campobasso, Italy
| | - Baldassare Portolano
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Fabio Pilla
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, 86100 Campobasso, Italy
| | | |
Collapse
|
11
|
Comparison of Marker Effects and Breeding Values at Two Levels at THI for Milk Yield and Quality Traits in Brazilian Holstein Cows. Genes (Basel) 2022; 14:genes14010017. [PMID: 36672758 PMCID: PMC9858941 DOI: 10.3390/genes14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/26/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Genomic tools can help in the selection of animals genetically resistant to heat stress, especially the genome-wide association studies (GWAS). The objective of this study was to compare the variance explained by SNPs and direct genomic breeding values (DGVs) at two levels of a temperature and humidity index (THI). Records of milk yield (MY), somatic cell score (SCS), and percentages of casein (CAS), saturated fatty acids (SFA), and unsaturated fatty acids (UFA) in milk from 1157 Holstein cows were used. Traditional breeding values (EBV) were determined in a previous study and used as pseudo-phenotypes. Two levels of THI (heat comfort zone and heat stress zone) were used as environments and were treated as "traits" in a bi-trait model. The GWAS was performed using the genomic best linear unbiased prediction (GBLUP) method. Considering the top 50 SNPs, a total of 36 SNPs were not common between environments, eight of which were located in gene regions related to the evaluated traits. Even for those SNPs that had differences in their explained variances between the two environments, the differences were very small. The animals showed virtually no rank order, with rank correlation values of 0.90, 0.88, 1.00, 0.88, and 0.97 for MY, CAS, SCS, SFA, and UFA, respectively. The small difference between the environments studied can be attributed to the small difference in the pseudo-phenotypes used between the environments, on-farm acclimation, the polygenic nature of the traits, and the THI values studied near the threshold between comfort and heat stress. It is recommended that future studies be conducted with a larger number of animals and at more extreme THI levels.
Collapse
|
12
|
Estimates of genomic heritability and genome-wide association studies for blood parameters in Akkaraman sheep. Sci Rep 2022; 12:18477. [PMID: 36323871 PMCID: PMC9630504 DOI: 10.1038/s41598-022-22966-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to estimate genomic heritability and the impact that genetic backgrounds have on blood parameters in Akkaraman sheep by conducting genome-wide association studies and regional heritability mapping analysis. Genomic heritability estimates for blood parameters ranged from 0.00 to 0.55, indicating that measured phenotypes have a low to moderate heritability. A total of 7 genome- and 13 chromosome-wide significant SNPs were associated with phenotypic changes in 15 blood parameters tested. Accordingly, SCN7A, SCN9A, MYADM-like, CCDC67, ITGA9, MGAT5, SLC19A1, AMPH, NTRK2, MSRA, SLC35F3, SIRT6, CREB3L3, and NAV3 genes as well as three undefined regions (LOC101117887, LOC106991526 and LOC105608461) were suggested as candidates. Most of the identified genes were involved in basic biological processes that are essential to immune system function and cellular growth; specific functions include cellular transport, histone deacetylation, cell differentiation, erythropoiesis, and endocytosis. The top significant SNP for HCT, MCH, and MCHC was found within a genomic region mainly populated by the MYADM-like gene family. This region was previously suggested to be under historical selection pressure in many sheep breeds from various parts of the world. These results have implications on animal breeding program studies due to the effect that the genetic background has on blood parameters, which underlying many productive and wellness related traits.
Collapse
|
13
|
Luo H, Hu L, Brito LF, Dou J, Sammad A, Chang Y, Ma L, Guo G, Liu L, Zhai L, Xu Q, Wang Y. Weighted single-step GWAS and RNA sequencing reveals key candidate genes associated with physiological indicators of heat stress in Holstein cattle. J Anim Sci Biotechnol 2022; 13:108. [PMID: 35986427 PMCID: PMC9392250 DOI: 10.1186/s40104-022-00748-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background The study of molecular processes regulating heat stress response in dairy cattle is paramount for developing mitigation strategies to improve heat tolerance and animal welfare. Therefore, we aimed to identify quantitative trait loci (QTL) regions associated with three physiological indicators of heat stress response in Holstein cattle, including rectal temperature (RT), respiration rate score (RS), and drooling score (DS). We estimated genetic parameters for all three traits. Subsequently, a weighted single-step genome-wide association study (WssGWAS) was performed based on 3200 genotypes, 151,486 phenotypic records, and 38,101 animals in the pedigree file. The candidate genes located within the identified QTL regions were further investigated through RNA sequencing (RNA-seq) analyses of blood samples for four cows collected in April (non-heat stress group) and four cows collected in July (heat stress group). Results The heritability estimates for RT, RS, and DS were 0.06, 0.04, and 0.03, respectively. Fourteen, 19, and 20 genomic regions explained 2.94%, 3.74%, and 4.01% of the total additive genetic variance of RT, RS, and DS, respectively. Most of these genomic regions are located in the Bos taurus autosome (BTA) BTA3, BTA6, BTA8, BTA12, BTA14, BTA21, and BTA24. No genomic regions overlapped between the three indicators of heat stress, indicating the polygenic nature of heat tolerance and the complementary mechanisms involved in heat stress response. For the RNA-seq analyses, 2627 genes were significantly upregulated and 369 downregulated in the heat stress group in comparison to the control group. When integrating the WssGWAS, RNA-seq results, and existing literature, the key candidate genes associated with physiological indicators of heat stress in Holstein cattle are: PMAIP1, SBK1, TMEM33, GATB, CHORDC1, RTN4IP1, and BTBD7. Conclusions Physiological indicators of heat stress are heritable and can be improved through direct selection. Fifty-three QTL regions associated with heat stress indicators confirm the polygenic nature and complex genetic determinism of heat tolerance in dairy cattle. The identified candidate genes will contribute for optimizing genomic evaluation models by assigning higher weights to genetic markers located in these regions as well as to the design of SNP panels containing polymorphisms located within these candidate genes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00748-6.
Collapse
|
14
|
Luna-Nevárez G, Pendleton AL, Luna-Ramirez RI, Limesand SW, Reyna-Granados JR, Luna-Nevárez P. Genome-wide association study of a thermo-tolerance indicator in pregnant ewes exposed to an artificial heat-stressed environment. J Therm Biol 2021; 101:103095. [PMID: 34879913 DOI: 10.1016/j.jtherbio.2021.103095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
Environmental heat stress negatively influences sheep production in warm semi-arid regions. An animal's ability to tolerate warm weather is difficult to measure naturally due to environmental variability and genetic variation between animals. In this study we developed a thermo-tolerance indicator (TTI) to define heat stress tolerance in pregnant sheep in a controlled environment. Next, we performed a genome-wide association study (GWAS) to identify genomic regions and target genes associated with thermo-tolerance in sheep. Pregnant Columbia-Rambouillet crossbred ewes (n = 127) were heat-stressed inside a climate-controlled chamber for 57 days by increasing the temperature-humidity index to ≥30. Rectal temperature (RT) and feed intake (FI) data were collected daily and used for the predictive TTI analysis. After the tenth day of heat stress, the regression analyses revealed that FI was stable; however, when the ewe's RT exceeded 39.8 °C their FI was less than thermo-tolerant ewes. This average predicted temperature was used to classify each ewe as heat stress tolerant (≤39.8 °C) and non-heat stress tolerant (>39.8 °C). A GWAS analysis was performed and genomic regions were compared between heat stress tolerant and non-tolerant ewes. The single-marker genomic analysis detected 16 single nucleotide polymorphisms (SNP) associated with heat stress tolerance (P < 0.0001), whereas the multi-marker Bayesian analysis identified 8 overlapped 1-Mb chromosomal regions accounting for 11.39% of the genetic variation associated with tolerance to heat stress. Four intragenic SNP showed a remarkable contribution to thermo-tolerance, and these markers were within the genes FBXO11 (rs407804467), PHC3 (rs414179061), TSHR (rs418575898) and STAT1 (rs417581105). In conclusion, genomic regions harboring four intragenic SNP were associated with heat stress tolerance, and these candidate genes are proposed to influence heat tolerance in pregnant ewes subjected to an artificially induced warm climate. Moreover, these genetic markers could be suitable for use in further genetic selection programs in sheep managed in semi-arid regions.
Collapse
Affiliation(s)
- Guillermo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, 85000, México
| | - Alexander L Pendleton
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Rosa I Luna-Ramirez
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Javier R Reyna-Granados
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, 85000, México
| | - Pablo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, 85000, México.
| |
Collapse
|
15
|
Penfold RS, Zazzara MB, Österdahl MF, Welch C, Ni Lochlainn M, Freidin MB, Bowyer RCE, Thompson E, Antonelli M, Tan YXR, Sudre CH, Modat M, Murray B, Wolf J, Ourselin S, Veenith T, Lord JM, Steves CJ. Individual factors including age, BMI and heritable factors underlie temperature variation in sickness and in health: an observational, multi-cohort study. J Gerontol A Biol Sci Med Sci 2021; 77:1890-1897. [PMID: 34609487 PMCID: PMC8513412 DOI: 10.1093/gerona/glab295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
Background Aging affects immunity, potentially altering fever response to infection. We assess effects of biological variables on basal temperature, and during COVID-19 infection, proposing an updated temperature threshold for older adults ≥65 years. Methods Participants were from 4 cohorts: 1 089 unaffected adult TwinsUK volunteers; 520 adults with emergency admission to a London hospital with RT-PCR confirmed SARS-CoV-2 infection; 757 adults with emergency admission to a Birmingham hospital with RT-PCR confirmed SARS-CoV-2 infection and 3 972 adult community-based COVID Symptom Study participants self-reporting a positive RT-PCR test. Heritability was assessed using saturated and univariate ACE models; mixed-effect and multivariable linear regression examined associations between temperature, age, sex, and body mass index (BMI); multivariable logistic regression examined associations between fever (≥37.8°C) and age; receiver operating characteristic (ROC) analysis was used to identify temperature threshold for adults ≥ 65 years. Results Among unaffected volunteers, lower BMI (p = .001), and increasing age (p < .001) was associated with lower basal temperature. Basal temperature showed a heritability of 47% (95% confidence interval 18%–57%). In COVID-19+ participants, increasing age was associated with lower temperatures in Birmingham and community-based cohorts (p < .001). For each additional year of age, participants were 1% less likely to demonstrate a fever ≥37.8°C (OR 0.99; p < .001). Combining healthy and COVID-19+ participants, a temperature of 37.4°C in adults ≥65 years had similar sensitivity and specificity to 37.8°C in adults <65 years for discriminating infection. Conclusions Aging affects temperature in health and acute infection, with significant heritability, indicating genetic factors contribute to temperature regulation. Our observations suggest a lower threshold (37.4°C/97.3°F) for identifying fever in older adults ≥65 years.
Collapse
Affiliation(s)
- Rose S Penfold
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London.,Guy's and St Thomas' NHS Foundation Trust
| | - Maria Beatrice Zazzara
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London.,Department of Gerontology, Neuroscience and Orthopedics, Sacred Heart Catholic University, Rome, Italy
| | | | | | - Carly Welch
- Institute of Inflammation and Ageing, University of Birmingham, B15 2TT, Birmingham, UK
| | - Mary Ni Lochlainn
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London
| | - Maxim B Freidin
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London
| | - Ruth C E Bowyer
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London
| | - Ellen Thompson
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London
| | - Michela Antonelli
- School of Biomedical Engineering and Imaging Sciences, King's College London, SE17EH, London, UK
| | - Yu Xian Rachel Tan
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen Green, Dublin 2, Ireland
| | - Carole H Sudre
- School of Biomedical Engineering and Imaging Sciences, King's College London, SE17EH, London, UK
| | - Marc Modat
- School of Biomedical Engineering and Imaging Sciences, King's College London, SE17EH, London, UK
| | - Benjamin Murray
- School of Biomedical Engineering and Imaging Sciences, King's College London, SE17EH, London, UK
| | | | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, SE17EH, London, UK
| | - Tonny Veenith
- Institute of Inflammation and Ageing, University of Birmingham, B15 2TT, Birmingham, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, B15 2TT, Birmingham, UK
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London
| |
Collapse
|
16
|
Del Corvo M, Lazzari B, Capra E, Zavarez L, Milanesi M, Utsunomiya YT, Utsunomiya ATH, Stella A, de Paula Nogueira G, Garcia JF, Ajmone-Marsan P. Methylome Patterns of Cattle Adaptation to Heat Stress. Front Genet 2021; 12:633132. [PMID: 34122501 PMCID: PMC8194315 DOI: 10.3389/fgene.2021.633132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Heat stress has a detrimental impact on cattle health, welfare and productivity by affecting gene expression, metabolism and immune response, but little is known on the epigenetic mechanisms mediating the effect of temperature at the cellular and organism level. In this study, we investigated genome-wide DNA methylation in blood samples collected from 5 bulls of the heat stress resilient Nellore breed and 5 bulls of the Angus that are more heat stress susceptible, exposed to the sun and high temperature-high humidity during the summer season of the Brazilian South-East region. The methylomes were analyzed during and after the exposure by Reduced Representation Bisulfite Sequencing, which provided genome-wide single-base resolution methylation profiles. Significant methylation changes between stressful and recovery periods were observed in 819 genes. Among these, 351 were only seen in Angus, 366 were specific to Nellore, and 102 showed significant changes in methylation patterns in both breeds. KEGG and Gene Ontology (GO) enrichment analyses showed that responses were breed-specific. Interestingly, in Nellore significant genes and pathways were mainly involved in stress responses and cellular defense and were under methylated during heat stress, whereas in Angus the response was less focused. These preliminary results suggest that heat challenge induces changes in methylation patterns in specific loci, which should be further scrutinized to assess their role in heat tolerance.
Collapse
Affiliation(s)
- Marcello Del Corvo
- Department of Animal Science Food and Nutrition - DIANA, Nutrigenomics and Proteomics Research Centre - PRONUTRIGEN, and Biodiversity and Ancient DNA Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy.,Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Milan, Italy
| | - Barbara Lazzari
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Milan, Italy
| | - Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Milan, Italy
| | - Ludmilla Zavarez
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Marco Milanesi
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Yuri Tani Utsunomiya
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Adam Taiti Harth Utsunomiya
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Alessandra Stella
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Milan, Italy
| | - Guilherme de Paula Nogueira
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil
| | - Josè Fernando Garcia
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Paolo Ajmone-Marsan
- Department of Animal Science Food and Nutrition - DIANA, Nutrigenomics and Proteomics Research Centre - PRONUTRIGEN, and Biodiversity and Ancient DNA Research Centre, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
17
|
Ramírez-Ayala LC, Rocha D, Ramos-Onsins SE, Leno-Colorado J, Charles M, Bouchez O, Rodríguez-Valera Y, Pérez-Enciso M, Ramayo-Caldas Y. Whole-genome sequencing reveals insights into the adaptation of French Charolais cattle to Cuban tropical conditions. Genet Sel Evol 2021; 53:3. [PMID: 33397281 PMCID: PMC7784321 DOI: 10.1186/s12711-020-00597-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/11/2020] [Indexed: 02/01/2023] Open
Abstract
Background In the early 20th century, Cuban farmers imported Charolais cattle (CHFR) directly from France. These animals are now known as Chacuba (CHCU) and have become adapted to the rough environmental tropical conditions in Cuba. These conditions include long periods of drought and food shortage with extreme temperatures that European taurine cattle have difficulty coping with. Results In this study, we used whole-genome sequence data from 12 CHCU individuals together with 60 whole-genome sequences from six additional taurine, indicus and crossed breeds to estimate the genetic diversity, structure and accurate ancestral origin of the CHCU animals. Although CHCU animals are assumed to form a closed population, the results of our admixture analysis indicate a limited introgression of Bos indicus. We used the extended haplotype homozygosity (EHH) approach to identify regions in the genome that may have had an important role in the adaptation of CHCU to tropical conditions. Putative selection events occurred in genomic regions with a high proportion of Bos indicus, but they were not sufficient to explain adaptation of CHCU to tropical conditions by Bos indicus introgression only. EHH suggested signals of potential adaptation in genomic windows that include genes of taurine origin involved in thermogenesis (ATP9A, GABBR1, PGR, PTPN1 and UCP1) and hair development (CCHCR1 and CDSN). Within these genes, we identified single nucleotide polymorphisms (SNPs) that may have a functional impact and contribute to some of the observed phenotypic differences between CHCU and CHFR animals. Conclusions Whole-genome data confirm that CHCU cattle are closely related to Charolais from France (CHFR) and Canada, but also reveal a limited introgression of Bos indicus genes in CHCU. We observed possible signals of recent adaptation to tropical conditions between CHCU and CHFR founder populations, which were largely independent of the Bos indicus introgression. Finally, we report candidate genes and variants that may have a functional impact and explain some of the phenotypic differences observed between CHCU and CHFR cattle.
Collapse
Affiliation(s)
- Lino C Ramírez-Ayala
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Dominique Rocha
- Université Paris-Saclay, INRAE, Jouy-En-Josas, AgroParisTech, GABI, 78350, France
| | - Sebas E Ramos-Onsins
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Jordi Leno-Colorado
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Mathieu Charles
- Université Paris-Saclay, INRAE, Jouy-En-Josas, AgroParisTech, GABI, 78350, France.,INRAE, SIGENAE, Jouy-En-Josas, 78350, France
| | - Olivier Bouchez
- INRAE, GeT-PlaGe, Genotoul, Castanet-Tolosan, US, 1426, France
| | | | - Miguel Pérez-Enciso
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain.,Institut Català de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Yuliaxis Ramayo-Caldas
- Université Paris-Saclay, INRAE, Jouy-En-Josas, AgroParisTech, GABI, 78350, France. .,Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, Caldes De Montbui, 08140, Spain.
| |
Collapse
|
18
|
Eisemann JH, Ashwell MS, Devine TL, Poole DH, Poore MH, Linder KE. Physiological response, function of sweat glands, and hair follicle cycling in cattle in response to fescue toxicosis and hair genotype. J Anim Sci 2020; 98:5717958. [PMID: 31998943 DOI: 10.1093/jas/skaa013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/14/2020] [Indexed: 01/27/2023] Open
Abstract
Fescue toxicosis is a syndrome that results when cattle consume toxic endophyte-infected tall fescue. The objective of this study was to compare the response in physiological variables, sweat gland function, hair follicle cycling, and gene expression to feeding a total mixed ration that included tall fescue haylage and tall fescue seed containing a toxic endophyte (EI) or tall fescue haylage containing a nontoxic novel endophyte (EN) in beef heifers (Angus × Senepol heifers, n = 31) with 2 different hair genotypes. Numbers in each subgroup were as follows: novel endophyte, heterozygous slick (EN-S; n = 8), novel endophyte, homozygous hairy (wild type, EN-W; n = 7), endophyte-infected, heterozygous slick (EI-S; n = 10), and endophyte-infected, homozygous hairy (wild type, EI-W; n = 6). Physiological measurements were taken weekly for 7 wk. Data were analyzed using the MIXED procedure of SAS including dietary fescue treatment (EN vs. EI) and hair genotype (S vs. W) as main effects, day as a repeated measure, and temperature-humidity index (THI) as a covariate. Skin biopsies were taken before treatment initiation and on day 37 of treatment. Average surface temperature (ST) increased as the THI increased (P < 0.0001). Average ST was greater (P < 0.01) for animals fed EI than for animals fed the EN fescue diet, and greater (P < 0.01) for animals with the W genotype compared with animals with the S genotype. The difference between heifers with the S and W genotype was greater at greater THI (genotype × day interaction, P < 0.01). Transepidermal water loss (TEWL) was greater (P < 0.05) for animals with the S genotype compared with the W genotype and greater (P < 0.05) for heifers with the S genotype than for heifers with the W genotype when fed EI (36.7, 38.5, 30.0, and 38.7 g/m2 per hour for EN-W, EN-S, EI-W, and EI-S, respectively). The fraction of follicles in telogen in plucked hair samples for heifers fed EI was greater for animals with the S genotype than the W genotype (fraction in telogen: 0.456, 0.565, 0.297, 0.702 for EN-W, EN-S, EI-W, and EI-S, respectively; diet × genotype interaction, P < 0.05). Fraction of follicles in anagen was the opposite. EI fescue resulted in increased ST, changes in hair follicle cycling that support greater hair growth, and decreased TEWL for heifers with the W genotype compared with S genotype, suggesting greater heat stress in response to EI.
Collapse
Affiliation(s)
- Joan H Eisemann
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | - Melissa S Ashwell
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | - Thomas L Devine
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | - Daniel H Poole
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | - Matt H Poore
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | - Keith E Linder
- Department of Population, Health and Pathobiology, North Carolina State University, Raleigh, NC
| |
Collapse
|
19
|
Hansen PJ. Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle. Theriogenology 2020; 154:190-202. [PMID: 32622199 DOI: 10.1016/j.theriogenology.2020.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022]
Abstract
In cattle, genetic variation exists in regulation of body temperature and stabilization of cellular function during heat stress. There are opportunities to reduce the impact of heat stress on cattle production by identifying the causative mutations responsible for genetic variation in thermotolerance and transferring specific alleles that confer thermotolerance to breeds not adapted to hot climates. An example of a mutation conferring superior ability to regulate body temperature is the group of frame-sift mutations in the prolactin receptor gene (PRLR) that lead to a truncated receptor and development of cattle with a short, sleek hair coat. Slick mutations in PRLR have been found in several extant breeds derived from criollo cattle. The slick mutation in Senepol cattle has been introgressed into dairy cattle in Puerto Rico, Florida and New Zealand. An example of a mutation that confers cellular protection against elevated body temperature is a deletion mutation in the promoter region of a heat shock protein 70 gene called HSPA1L. Inheritance of the mutation results in amplification of the transcriptional response of HSPA1L to heat shock and increased cell survival. The case of PRLR provides a promising example of the efficacy of the genetic approach outlined in this paper. Identification of other mutations conferring thermotolerance at the whole-animal or cellular level will lead to additional opportunities for using genetic solutions to reduce the impact of heat stress.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, 32611-0910, USA.
| |
Collapse
|
20
|
Sigdel A, Liu L, Abdollahi-Arpanahi R, Aguilar I, Peñagaricano F. Genetic dissection of reproductive performance of dairy cows under heat stress. Anim Genet 2020; 51:511-520. [PMID: 32363588 PMCID: PMC7383808 DOI: 10.1111/age.12943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Heat stress negatively impacts the reproductive performance of dairy cows. The main objective of this study was to dissect the genetic basis underlying dairy cow fertility under heat stress conditions. Our first goal was to estimate genetic components of cow conception across lactations considering heat stress. Our second goal was to reveal individual genes and functional gene‐sets that explain a cow’s ability to conceive under thermal stress. Data consisted of 74 221 insemination records on 13 704 Holstein cows. Multitrait linear repeatability test‐day models with random regressions on a function of temperature–humidity index values were used for the analyses. Heritability estimates for cow conception under heat stress were around 2–3%, whereas genetic correlations between general and thermotolerance additive genetic effects were negative and ranged between −0.35 and −0.82, indicating an unfavorable relationship between cows’ ability to conceive under thermo‐neutral vs. thermo‐stress conditions. Whole‐genome scans identified at least six genomic regions on BTA1, BTA10, BTA11, BTA17, BTA21 and BTA23 associated with conception under thermal stress. These regions harbor candidate genes such as BRWD1, EXD2, ADAM20, EPAS1, TAOK3, and NOS1, which are directly implicated in reproductive functions and cellular response to heat stress. The gene‐set enrichment analysis revealed functional terms related to fertilization, developmental biology, heat shock proteins and oxidative stress, among others. Overall, our findings contribute to a better understanding of the genetics underlying the reproductive performance of dairy cattle under heat stress conditions and point out novel genomic strategies for improving thermotolerance and fertility via marker‐assisted breeding.
Collapse
Affiliation(s)
- A Sigdel
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - L Liu
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - R Abdollahi-Arpanahi
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - I Aguilar
- Instituto Nacional de Investigación Agropecuaria, Montevideo, 11100, Uruguay
| | - F Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
21
|
Zhuang ZX, Chen SE, Chen CF, Lin EC, Huang SY. Genomic regions and pathways associated with thermotolerance in layer-type strain Taiwan indigenous chickens. J Therm Biol 2019; 88:102486. [PMID: 32125976 DOI: 10.1016/j.jtherbio.2019.102486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
This study aimed to investigate genetic markers and candidate genes associated with thermotolerance in a layer-type strain Taiwan indigenous chickens exposed to acute heat stress. One hundred and ninety-two 30-week-old roosters were subjected to acute heat stress. Changes in body temperature (BT, ΔT) were calculated by measuring the difference between the initial BT and the highest BT during heat stress and the results were categorized into dead, susceptible, tolerant, and intermediate groups depending on their survival and ΔT values at the end of the experiment. A genome-wide association study on survival and ΔT values was conducted using the Cochran-Armitage trend test and Fisher's exact test. Association analyses identified 80 significant SNPs being annotated to 23 candidate genes, 440 SNPs to 71 candidate genes, 64 SNPs to 25 candidate genes, and 378 SNPs to 78 candidate genes in the dead versus survivor, tolerant versus susceptible, intermediate versus tolerant, and intermediate versus susceptible groups, respectively. The annotated genes were associated with apoptosis, cellular stress responses, DNA repair, and metabolic oxidative stress. In conclusion, the identified SNPs of candidate genes provide insights into the potential mechanisms underlying physiological responses to acute heat stress in chickens.
Collapse
Affiliation(s)
- Zi-Xuan Zhuang
- Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan; Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| | - Chih-Feng Chen
- Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| | - En-Chung Lin
- Department of Animal Science and Technology, National Taiwan University, 50, Lane 155, Section 3, Keelung Road, Taipei, 10673, Taiwan.
| | - San-Yuan Huang
- Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan; Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| |
Collapse
|
22
|
Tahir MS, Nguyen LT, Schulz BL, Boe-Hansen GA, Thomas MG, Moore SS, Lau LY, Fortes MRS. Proteomics Recapitulates Ovarian Proteins Relevant to Puberty and Fertility in Brahman Heifers ( Bos indicus L.). Genes (Basel) 2019; 10:E923. [PMID: 31726744 PMCID: PMC6895798 DOI: 10.3390/genes10110923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
High fertility and early puberty in Bos indicus heifers are desirable and genetically correlated traits in beef production. The hypothalamus-pituitary-ovarian (HPO) axis synthesizes steroid hormones, which contribute to the shift from the pre-pubertal state into the post-pubertal state and influence subsequent fertility. Understanding variations in abundance of proteins that govern steroid synthesis and ovarian signaling pathways remains crucial to understanding puberty and fertility. We used whole ovaries of six pre-pubertal and six post-pubertal Brahman heifers to conduct differential abundance analyses of protein profiles between the two physiological states. Extracted proteins were digested into peptides followed by identification and quantification with massspectrometry (MS) by sequential window acquisition of all instances of theoretical fragment ion mass spectrometry (SWATH-MS). MS and statistical analysis identified 566 significantly differentially abundant (DA) proteins (adjusted p < 0.05), which were then analyzed for gene ontology and pathway enrichment. Our data indicated an up-regulation of steroidogenic proteins contributing to progesterone synthesis at luteal phase post-puberty. Proteins related to progesterone signaling, TGF-β, retinoic acid, extracellular matrix, cytoskeleton, and pleiotrophin signaling were DA in this study. The DA proteins probably relate to the formation and function of the corpus luteum, which is only present after ovulation, post-puberty. Some DA proteins might also be related to granulosa cells signaling, which regulates oocyte maturation or arrest in ovaries prior to ovulation. Ten DA proteins were coded by genes previously associated with reproductive traits according to the animal quantitative trait loci (QTL) database. In conclusion, the DA proteins and their pathways were related to ovarian activity in Bos indicus cattle. The genes that code for these proteins may explain some known QTLs and could be targeted in future genetic studies.
Collapse
Affiliation(s)
- Muhammad S. Tahir
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Loan T. Nguyen
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Queensland, Australia; (L.T.N.); (S.S.M.)
| | - Benjamin L. Schulz
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Gry A. Boe-Hansen
- School of Veterinary Sciences, University of Queensland, Brisbane 4343, Queensland, Australia;
| | - Milton G. Thomas
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA;
| | - Stephen S. Moore
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Queensland, Australia; (L.T.N.); (S.S.M.)
| | - Li Yieng Lau
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane 4072, Queensland, Australia; (M.S.T.); (B.L.S.); (L.Y.L.)
| |
Collapse
|
23
|
Osei-Amponsah R, Chauhan SS, Leury BJ, Cheng L, Cullen B, Clarke IJ, Dunshea FR. Genetic Selection for Thermotolerance in Ruminants. Animals (Basel) 2019; 9:E948. [PMID: 31717903 PMCID: PMC6912363 DOI: 10.3390/ani9110948] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Variations in climatic variables (temperature, humidity and solar radiation) negatively impact livestock growth, reproduction, and production. Heat stress, for instance, is a source of huge financial loss to livestock production globally. There have been significant advances in physical modifications of animal environment and nutritional interventions as tools of heat stress mitigation. Unfortunately, these are short-term solutions and may be unsustainable, costly, and not applicable to all production systems. Accordingly, there is a need for innovative, practical, and sustainable approaches to overcome the challenges posed by global warming and climate change-induced heat stress. This review highlights attempts to genetically select and breed ruminants for thermotolerance and thereby sustain production in the face of changing climates. One effective way is to incorporate sustainable heat abatement strategies in ruminant production. Improved knowledge of the physiology of ruminant acclimation to harsh environments, the opportunities and tools available for selecting and breeding thermotolerant ruminants, and the matching of animals to appropriate environments should help to minimise the effect of heat stress on sustainable animal genetic resource growth, production, and reproduction to ensure protein food security.
Collapse
Affiliation(s)
- Richard Osei-Amponsah
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
- Department of Animal Science, University of Ghana, Legon, Accra, Ghana
| | - Surinder S. Chauhan
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Brian J. Leury
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Long Cheng
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Brendan Cullen
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Iain J. Clarke
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia; (R.O.-A.); (B.J.L.); (L.C.); (B.C.); (I.J.C.); (F.R.D.)
| |
Collapse
|
24
|
Otto PI, Guimarães SEF, Verardo LL, Azevedo ALS, Vandenplas J, Sevillano CA, Marques DBD, Pires MDFA, de Freitas C, Verneque RS, Martins MF, Panetto JCC, Carvalho WA, Gobo DOR, da Silva MVGB, Machado MA. Genome-wide association studies for heat stress response in Bos taurus × Bos indicus crossbred cattle. J Dairy Sci 2019; 102:8148-8158. [PMID: 31279558 DOI: 10.3168/jds.2018-15305] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Abstract
Heat stress is an important issue in the global dairy industry. In tropical areas, an alternative to overcome heat stress is the use of crossbred animals or synthetic breeds, such as the Girolando. In this study, we performed a genome-wide association study (GWAS) and post-GWAS analyses for heat stress in an experimental Gir × Holstein F2 population. Rectal temperature (RT) was measured in heat-stressed F2 animals, and the variation between 2 consecutive RT measurements (ΔRT) was used as the dependent variable. Illumina BovineSNP50v1 BeadChip (Illumina Inc., San Diego, CA) and single-SNP approach were used for GWAS. Post-GWAS analyses were performed by gene ontology terms enrichment and gene-transcription factor (TF) networks, generated from enriched TF. The breed origin of marker alleles in the F2 population was assigned using the breed of origin of alleles (BOA) approach. Heritability and repeatability estimates (± standard error) for ΔRT were 0.13 ± 0.08 and 0.29 ± 0.06, respectively. Association analysis revealed 6 SNP significantly associated with ΔRT. Genes involved with biological processes in response to heat stress effects (LIF, OSM, TXNRD2, and DGCR8) were identified as putative candidate genes. After performing the BOA approach, the 10% of F2 animals with the lowest breeding values for ΔRT were classified as low-ΔRT, and the 10% with the highest breeding values for ΔRT were classified as high-ΔRT. On average, 49.4% of low-ΔRT animals had 2 alleles from the Holstein breed (HH), and 39% had both alleles from the Gir breed (GG). In high-ΔRT animals, the average proportion of animals for HH and GG were 1.4 and 50.2%, respectively. This study allowed the identification of candidate genes for ΔRT in Gir × Holstein crossbred animals. According to the BOA approach, Holstein breed alleles could be associated with better response to heat stress effects, which could be explained by the fact that Holstein animals are more affected by heat stress than Gir animals and thus require a genetic architecture to defend the body from the deleterious effects of heat stress. Future studies can provide further knowledge to uncover the genetic architecture underlying heat stress in crossbred cattle.
Collapse
Affiliation(s)
- Pamela I Otto
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Simone E F Guimarães
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Lucas L Verardo
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | | | - Jeremie Vandenplas
- Wageningen University and Research Animal Breeding and Genomics, Wageningen 6700, the Netherlands
| | - Claudia A Sevillano
- Wageningen University and Research Animal Breeding and Genomics, Wageningen 6700, the Netherlands; Topigs Norsvin Research Center, Beuningen 6640, the Netherlands
| | - Daniele B D Marques
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | | | - Célio de Freitas
- Embrapa Dairy Cattle Research Center, Juiz de Fora 36038-330, Brazil
| | - Rui S Verneque
- Embrapa Dairy Cattle Research Center, Juiz de Fora 36038-330, Brazil
| | | | | | | | - Diego O R Gobo
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | | | - Marco A Machado
- Embrapa Dairy Cattle Research Center, Juiz de Fora 36038-330, Brazil.
| |
Collapse
|
25
|
Zolini AM, Ortiz WG, Estrada-Cortes E, Ortega MS, Dikmen S, Sosa F, Giordano JO, Hansen PJ. Interactions of human chorionic gonadotropin with genotype and parity on fertility responses of lactating dairy cows. J Dairy Sci 2018; 102:846-856. [PMID: 30447974 DOI: 10.3168/jds.2018-15358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/25/2018] [Indexed: 11/19/2022]
Abstract
Fertility-promoting effects of treatment of lactating dairy cattle with human chorionic gonadotropin (hCG) after artificial insemination (AI) have been variable. Here, we tested whether fertility response to hCG in lactating Holstein cows interacts with genotype and parity. Primiparous (n = 538) and multiparous (n = 613) cows were treated with hCG (3,300 IU) or vehicle 5 d after AI. Pregnancy was diagnosed on d 32 and 60 after AI. A subset of cows (n = 593-701) was genotyped for 4 single nucleotide polymorphisms (SNP) previously associated with fertility. Treatment with hCG increased progesterone concentration on d 12 after AI regardless of genotype or parity. Pregnancy per AI was improved by hCG in primiparous cows but not in multiparous cows. Moreover, hCG treatment interacted with a SNP in coenzyme Q9 (COQ9) to affect fertility. Fertility of cows treated with vehicle was greatest for the AA allele, whereas fertility was lowest for the same genotype among cows treated with hCG. Pregnancy per AI was also affected by genotype for heat shock protein A1-like (HSPA1L) and progesterone receptor (PGR), but no interactions were observed with treatment. Genotype for a SNP in prostate androgen-regulated mucin-like protein 1 (PARM1) was not associated with fertility. Overall, results show that variation in response to hCG treatment on fertility depends on parity and interacts with a SNP in COQ9.
Collapse
Affiliation(s)
- A M Zolini
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - W G Ortiz
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - E Estrada-Cortes
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - M S Ortega
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - S Dikmen
- Faculty of Veterinary Medicine, Department of Animal Science, University of Uludag, Bursa, 16059, Turkey
| | - F Sosa
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - J O Giordano
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - P J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910.
| |
Collapse
|
26
|
Habibu B, Dzenda T, Ayo J, Yaqub L, Kawu M. Haematological changes and plasma fluid dynamics in livestock during thermal stress, and response to mitigative measures. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Campen KA, Abbott CR, Rispoli LA, Payton RR, Saxton AM, Edwards JL. Heat stress impairs gap junction communication and cumulus function of bovine oocytes. J Reprod Dev 2018; 64:385-392. [PMID: 29937465 PMCID: PMC6189573 DOI: 10.1262/jrd.2018-029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The intimate association of cumulus cells with one another and with the oocyte is important for regulating oocyte meiotic arrest and resumption. The objective of this study was to determine
the effects of heat stress on cumulus cell communication and functions that may be related to accelerated oocyte meiosis during early maturation. Bovine cumulus-oocyte complexes underwent
in vitro maturation for up to 6 h at thermoneutral control (38.5°C) or elevated (40.0, 41.0 or 42.0°C) temperatures. Gap junction communication between the cumulus cells
and the oocyte was assessed using the fluorescent dye calcein after 4 h of in vitro maturation. Dye transfer was reduced in cumulus-oocyte complexes matured at 41.0°C or
42.0°C; transfer at 40.0°C was similar to control (P < 0.0001). Subsequent staining of oocytes with Hoechst revealed that oocytes matured at 41.0 or 42.0°C contained chromatin at more
advanced stages of condensation. Maturation of cumulus-oocyte complexes at elevated temperatures reduced levels of active 5’ adenosine monophosphate activated kinase (P = 0.03). Heat stress
exposure had no effect on active extracellular-regulated kinase 1/2 in oocytes (P = 0.67), associated cumulus cells (P = 0.60) or intact cumulus-oocyte complexes (P = 0.44). Heat-induced
increases in progesterone production by cumulus-oocyte complexes were detected during the first 6 h of maturation (P = 0.001). Heat-induced alterations in gap junction communication and
other cumulus-cell functions likely cooperate to accelerate bovine oocyte meiotic progression.
Collapse
Affiliation(s)
- Kelly A Campen
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Chelsea R Abbott
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Louisa A Rispoli
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Rebecca R Payton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Arnold M Saxton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - J Lannett Edwards
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| |
Collapse
|
28
|
Jardim JG, Guldbrandtsen B, Lund MS, Sahana G. Association analysis for udder index and milking speed with imputed whole-genome sequence variants in Nordic Holstein cattle. J Dairy Sci 2017; 101:2199-2212. [PMID: 29274975 DOI: 10.3168/jds.2017-12982] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022]
Abstract
Genome-wide association testing facilitates the identification of genetic variants associated with complex traits. Mapping genes that promote genetic resistance to mastitis could reduce the cost of antibiotic use and enhance animal welfare and milk production by improving outcomes of breeding for udder health. Using imputed whole-genome sequence variants, we carried out association studies for 2 traits related to udder health, udder index, and milking speed in Nordic Holstein cattle. A total of 4,921 bulls genotyped with the BovineSNP50 BeadChip array were imputed to high-density genotypes (Illumina BovineHD BeadChip, Illumina, San Diego, CA) and, subsequently, to whole-genome sequence variants. An association analysis was carried out using a linear mixed model. Phenotypes used in the association analyses were deregressed breeding values. Multitrait meta-analysis was carried out for these 2 traits. We identified 10 and 8 chromosomes harboring markers that were significantly associated with udder index and milking speed, respectively. Strongest association signals were observed on chromosome 20 for udder index and chromosome 19 for milking speed. Multitrait meta-analysis identified 13 chromosomes harboring associated markers for the combination of udder index and milking speed. The associated region on chromosome 20 overlapped with earlier reported quantitative trait loci for similar traits in other cattle populations. Moreover, this region was located close to the FYB gene, which is involved in platelet activation and controls IL-2 expression; FYB is a strong candidate gene for udder health and worthy of further investigation.
Collapse
Affiliation(s)
- Júlia Gazzoni Jardim
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark; Laboratory of Reproduction and Animal Breeding, State University of North Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000 Parque California, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Bernt Guldbrandtsen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| | - Mogens Sandø Lund
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| | - Goutam Sahana
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark.
| |
Collapse
|
29
|
Davis SR, Spelman RJ, Littlejohn MD. BREEDING AND GENETICS SYMPOSIUM:Breeding heat tolerant dairy cattle: the case for introgression of the "slick" prolactin receptor variant into dairy breeds. J Anim Sci 2017; 95:1788-1800. [PMID: 28464106 DOI: 10.2527/jas.2016.0956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Increasing environmental temperatures are a threat to the sustainability of livestock production and, because of the high metabolic demands of lactation, to dairy production in particular. Summer heat waves in temperate climates reduce feed intake, milk production, and cow comfort. In extreme heat events, there is an increase in cow mortality. In tropical climates, dairy cattle are mostly (zebu) type or zebu crossbred with temperate dairy breeds. Crossbreeding is undertaken to combine the heat tolerance and tick resistance of zebu with the productivity of temperate dairy breeds. In the absence of improved heat tolerance, milk production and fertility of temperate cattle is severely impaired. We have recently identified a key role for the prolactin pathway in regulating heat tolerance. A de novo mutation in prolactin that impairs prolactin activity was discovered in hairy and heat intolerant, New Zealand dairy cattle. The phenotypes produced were remarkably similar to those seen in fescue toxicosis, a syndrome seen in grazing cattle in the U.S. where ingestion of ergovaline, a fungal toxin from infected pasture, inhibits prolactin secretion. Recognition of the role of prolactin in hairy cattle led us to identify a deletion in exon 10 of the long-form of the prolactin receptor in Senepol cattle that causes truncation of the protein and determines the slick coat and heat tolerance traits found in this , beef breed. The short form of the prolactin receptor is predicted to be unaffected by the deletion. Knowledge of this dominant mutation has provided the impetus to begin a crossbreeding program to investigate performance and heat tolerance of temperate dairy cattle carrying the slick, prolactin receptor variant. The perceived opportunity is to introgress this variant into temperate dairy cattle to enable performance and welfare improvement in hot climates. Heat tolerance of cattle with slick coats appears to be mostly associated with coat type although sweating ability may also be enhanced. Further investigation is required of performance traits in cows homozygous for the slick variant because the published data are almost exclusively from heterozygous animals. Combination of the slick mutation with other favorable genes for heat tolerance, especially those for coat color, will be particularly enabled by gene editing technologies, offering opportunities for further improvement in bovine thermotolerance.
Collapse
|
30
|
Carabaño MJ, Ramón M, Díaz C, Molina A, Pérez-Guzmán MD, Serradilla JM. BREEDING AND GENETICS SYMPOSIUM: Breeding for resilience to heat stress effects in dairy ruminants. A comprehensive review. J Anim Sci 2017; 95:1813-1826. [PMID: 28464073 DOI: 10.2527/jas.2016.1114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Selection for heat tolerant (HT) animals in dairy production has been so far linked to estimation of declines in production using milk recording and meteorological information on the day of control using reaction norms. Results from these models show that there is a reasonable amount of genetic variability in the individual response to high heat loads, which makes feasible selection of HT animals at low costs. However, the antagonistic relationship between level of production and response to heat stress (HS) implies that selection for HT animals under this approach must be done with caution so that productivity is not damaged. Decomposition of the genetic variability in principal components (PC) can provide selection criteria independent of milk production level although biological interpretation of PC is difficult. Moreover, given that response to heat stress for each animal is estimated with very sparse information collected under different physiological and management circumstances, biased (normally underestimation) and lack of accuracy may be expected. Alternative phenotypic characterization of HT can come from the use of physiological traits, which have also shown moderate heritability. However, costs of a large scale implementation based on physiological characteristics has precluded its use. Another alternative is the use of biomarkers that define heat tolerance. A review of biomarkers of HS from more recent studies is provided. Of particular interest are milk biomarkers, which together with infrared spectra prediction equations can provide useful tools for genetic selection. In the 'omics' era, genomics, transcriptomics, proteomics and metabolomics have been already used to detect genes affecting HT. A review of findings in these areas is also provided. Except for the slick hair gene, there are no other genes for which variants have been clearly associated with HT. However, integration of omics information could help in pointing at knots of the HS control network and, in the end, to a panel of markers to be used in the selection of HT animals. Overall, HT is a complex phenomenon that requires integration of fine phenotypes and omics information to provide accurate tools for selection without damaging productivity. Technological developments to make on-farm implementation feasible and with greater insight into the key biomarkers and genes involved in HT are needed.
Collapse
|
31
|
Wang T, Chen YPP, MacLeod IM, Pryce JE, Goddard ME, Hayes BJ. Application of a Bayesian non-linear model hybrid scheme to sequence data for genomic prediction and QTL mapping. BMC Genomics 2017; 18:618. [PMID: 28810831 PMCID: PMC5558724 DOI: 10.1186/s12864-017-4030-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 08/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Using whole genome sequence data might improve genomic prediction accuracy, when compared with high-density SNP arrays, and could lead to identification of casual mutations affecting complex traits. For some traits, the most accurate genomic predictions are achieved with non-linear Bayesian methods. However, as the number of variants and the size of the reference population increase, the computational time required to implement these Bayesian methods (typically with Monte Carlo Markov Chain sampling) becomes unfeasibly long. Results Here, we applied a new method, HyB_BR (for Hybrid BayesR), which implements a mixture model of normal distributions and hybridizes an Expectation-Maximization (EM) algorithm followed by Markov Chain Monte Carlo (MCMC) sampling, to genomic prediction in a large dairy cattle population with imputed whole genome sequence data. The imputed whole genome sequence data included 994,019 variant genotypes of 16,214 Holstein and Jersey bulls and cows. Traits included fat yield, milk volume, protein kg, fat% and protein% in milk, as well as fertility and heat tolerance. HyB_BR achieved genomic prediction accuracies as high as the full MCMC implementation of BayesR, both for predicting a validation set of Holstein and Jersey bulls (multi-breed prediction) and a validation set of Australian Red bulls (across-breed prediction). HyB_BR had a ten fold reduction in compute time, compared with the MCMC implementation of BayesR (48 hours versus 594 hours). We also demonstrate that in many cases HyB_BR identified sequence variants with a high posterior probability of affecting the milk production or fertility traits that were similar to those identified in BayesR. For heat tolerance, both HyB_BR and BayesR found variants in or close to promising candidate genes associated with this trait and not detected by previous studies. Conclusions The results demonstrate that HyB_BR is a feasible method for simultaneous genomic prediction and QTL mapping with whole genome sequence in large reference populations.
Collapse
Affiliation(s)
- Tingting Wang
- School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3083, Australia. .,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, 3083, Australia. .,Dairy Futures Cooperative Research Centre, Melbourne, VIC, 3083, Australia.
| | - Yi-Ping Phoebe Chen
- School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, 3083, Australia.,Dairy Futures Cooperative Research Centre, Melbourne, VIC, 3083, Australia
| | - Jennie E Pryce
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, 3083, Australia.,Dairy Futures Cooperative Research Centre, Melbourne, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Melbourne, VIC, 3083, Australia
| | - Michael E Goddard
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, 3083, Australia.,Dairy Futures Cooperative Research Centre, Melbourne, VIC, 3083, Australia.,Faculty of Veterinary and Agricultural Science, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ben J Hayes
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, 3083, Australia.,Dairy Futures Cooperative Research Centre, Melbourne, VIC, 3083, Australia.,Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
32
|
Cole JB, Bormann JM, Gill CA, Khatib H, Koltes JE, Maltecca C, Miglior F. BREEDING AND GENETICS SYMPOSIUM: Resilience of livestock to changing environments. J Anim Sci 2017; 95:1777-1779. [PMID: 28464075 DOI: 10.2527/jas.2017.1402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Macciotta NPP, Biffani S, Bernabucci U, Lacetera N, Vitali A, Ajmone-Marsan P, Nardone A. Derivation and genome-wide association study of a principal component-based measure of heat tolerance in dairy cattle. J Dairy Sci 2017; 100:4683-4697. [PMID: 28365122 DOI: 10.3168/jds.2016-12249] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/05/2017] [Indexed: 12/19/2022]
Abstract
Heat stress represents a key factor that negatively affects the productive and reproductive performance of farm animals. In the present work, a new measure of tolerance to heat stress for dairy cattle was developed using principal component analysis. Data were from 590,174 test-day records for milk yield, fat and protein percentages, and somatic cell score of 39,261 Italian Holstein cows. Test-day records adjusted for main systematic factors were grouped into 11 temperature-humidity index (THI) classes. Daughter trait deviations (DTD) were calculated for 1,540 bulls as means of the adjusted test-day records for each THI class. Principal component analysis was performed on the DTD for each bull. The first 2 principal components (PC) explained 42 to 51% of the total variance of the system across the 4 traits. The first PC, a measure of the level at which the curve is located, was interpreted as a measure of the level at which the DTD curve was located. The second PC, which shows the slope of increasing or decreases DTD curves, synthesized the behavior of the DTD pattern. Heritability of the 2 component scores was moderate to high for level across all traits (range = 0.23-0.82) and low to moderate for slope (range = 0.16-0.28). For each trait, phenotypic and genetic correlations between level and slope were equal to zero. A genome-wide association analysis was carried out on a subsample of 423 bulls genotyped with the Illumina 50K bovine bead chip (Illumina, San Diego, CA). Two single nucleotide polymorphisms were significantly associated with slope for milk yield, 4 with level for fat percentage, and 2 with level and slope of protein percentage, respectively. The gene discovery was carried out considering windows of 0.5 Mb surrounding the significant markers and highlighted some interesting candidate genes. Some of them have been already associated with the mechanism of heat tolerance as the heat shock transcription factor (HSF1) and the malonyl-CoA-acyl carrier protein transacylase (MCAT). The 2 PC were able to describe the overall level and the slope of response of milk production traits across increasing levels of THI index. Moreover, they exhibited genetic variability and were genetically uncorrelated. These features suggest their use as measures of thermotolerance in dairy cattle breeding schemes.
Collapse
Affiliation(s)
- N P P Macciotta
- Dipartimento di Agraria, Università di Sassari, 07100 Sassari, Italy.
| | - S Biffani
- Associazione Italiana Allevatori, 00161 Roma, Italy
| | - U Bernabucci
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia-Viterbo, 01100 Viterbo, Italy
| | - N Lacetera
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia-Viterbo, 01100 Viterbo, Italy
| | - A Vitali
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia-Viterbo, 01100 Viterbo, Italy
| | - P Ajmone-Marsan
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A Nardone
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi della Tuscia-Viterbo, 01100 Viterbo, Italy.
| |
Collapse
|
34
|
Pragna P, Archana P, Aleena J, Sejian V, Krishnan G, Bagath M, Manimaran A, Beena V, Kurien E, Varma G, Bhatta R. Heat Stress and Dairy Cow: Impact on Both Milk Yield and
Composition. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ijds.2017.1.11] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Habibu B, Kawu M, Makun H, Aluwong T, Yaqub L. Seasonal variation in body mass index, cardinal physiological variables and serum thyroid hormones profiles in relation to susceptibility to thermal stress in goat kids. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.10.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Ortega MS, Rocha-Frigoni NAS, Mingoti GZ, Roth Z, Hansen PJ. Modification of embryonic resistance to heat shock in cattle by melatonin and genetic variation in HSPA1L. J Dairy Sci 2016; 99:9152-9164. [PMID: 27614828 DOI: 10.3168/jds.2016-11501] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/02/2016] [Indexed: 01/20/2023]
Abstract
The objectives were to test whether (1) melatonin blocks inhibition of embryonic development caused by heat shock at the zygote stage, and (2) the frequency of a thermoprotective allele for HSPA1L is increased in blastocysts formed from heat-shocked zygotes as compared with blastocysts from control zygotes. It was hypothesized that melatonin prevents effects of heat shock on development by reducing accumulation of reactive oxygen species (ROS) and that embryos inheriting the thermoprotective allele of HSPA1L would be more likely to survive heat shock. Effects of 1 µM melatonin on ROS were determined in experiments 1 and 2. Zygotes were cultured at 38.5 or 40°C for 3 h in the presence of CellROX reagent (ThermoFisher Scientific, Waltham, MA). Culture was in a low [5% (vol/vol)] oxygen (experiment 1) or low or high [21% (vol/vol)] oxygen environment (experiment 2). Heat shock and high oxygen increased ROS; melatonin decreased ROS. Development was assessed in experiments 3 and 4. In experiment 3, zygotes were cultured in low oxygen ± 1 µM melatonin and exposed to 38.5 or 40°C for 12 h (experiment 1) beginning 8 h after fertilization. Melatonin did not protect the embryo from heat shock. Experiment 4 was performed similarly except that temperature treatments (38.5 or 40°C, 24 h) were performed in a low or high oxygen environment (2×2 × 2 factorial design with temperature, melatonin, and oxygen concentration as main effects), and blastocysts were genotyped for a deletion (D) mutation (C→D) in the promoter region of HSPA1L associated with thermotolerance. Heat shock decreased percent of zygotes developing to the blastocyst stage independent of melatonin or oxygen concentration. Frequency of genotypes for HSPA1L was affected by oxygen concentration and temperature, with an increase in the D allele for blastocysts that developed in high oxygen and following heat shock. It was concluded that (1) lack of effect of melatonin or oxygen concentration on embryonic development means that the negative effects of heat shock on the zygote are not mediated by ROS, (2) previously reported effect of melatonin on fertility of heat-stressed cows might involve actions independent of the antioxidant properties of melatonin, and (3) the deletion mutation in the promoter of HSPA1L confers protection to the zygote from heat shock and high oxygen. Perhaps, embryonic survival during heat stress could be improved by selecting for thermotolerant genotypes.
Collapse
Affiliation(s)
- M Sofia Ortega
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - Nathália A S Rocha-Frigoni
- School of Veterinary Medicine, Laboratory of Reproductive Physiology, Universidade Estadual Paulista, Araçatuba, SP 16050-680, Brazil; Graduate Program in Veterinary Medicine, School of Agrarian and Veterinary Sciences, Department of Animal Reproduction, Universidade Estadual Paulista, Jaboticabal, SP 16050-680, Brazil
| | - Gisele Zoccal Mingoti
- School of Veterinary Medicine, Laboratory of Reproductive Physiology, Universidade Estadual Paulista, Araçatuba, SP 16050-680, Brazil; Graduate Program in Veterinary Medicine, School of Agrarian and Veterinary Sciences, Department of Animal Reproduction, Universidade Estadual Paulista, Jaboticabal, SP 16050-680, Brazil
| | - Zvi Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville 32611-0910.
| |
Collapse
|
37
|
Biffani S, Bernabucci U, Vitali A, Lacetera N, Nardone A. Short communication: Effect of heat stress on nonreturn rate of Italian Holstein cows. J Dairy Sci 2016; 99:5837-5843. [PMID: 27108174 DOI: 10.3168/jds.2015-10491] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/09/2016] [Indexed: 11/19/2022]
Abstract
The data set consisted of 1,016,856 inseminations of 191,012 first, second, and third parity Holstein cows from 484 farms. Data were collected from year 2001 through 2007 and included meteorological data from 35 weather stations. Nonreturn rate at 56 d after first insemination (NR56) was considered. A logit model was used to estimate the effect of temperature-humidity index (THI) on reproduction across parities. Then, least squares means were used to detect the THI breakpoints using a 2-phase linear regression procedure. Finally, a multiple-trait threshold model was used to estimate variance components for NR56 in first and second parity cows. A dummy regression variable (t) was used to estimate NR56 decline due to heat stress. The NR56, both for first and second parity cows, was significantly (unfavorable) affected by THI from 4 d before 5 d after the insemination date. Additive genetic variances for NR56 increased from first to second parity both for general and heat stress effect. Genetic correlations between general and heat stress effects were -0.31 for first parity and -0.45 for second parity cows.
Collapse
Affiliation(s)
- S Biffani
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche (CNR), Via Einstein - Località Cascina Codazza, 26900 Lodi, Italy
| | - U Bernabucci
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia-Viterbo, 01100, Viterbo, Italy
| | - A Vitali
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia-Viterbo, 01100, Viterbo, Italy
| | - N Lacetera
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia-Viterbo, 01100, Viterbo, Italy
| | - A Nardone
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia-Viterbo, 01100, Viterbo, Italy.
| |
Collapse
|