1
|
Kalafateli M, Tourkochristou E, Tsounis EP, Aggeletopoulou I, Triantos C. New Insights into the Pathogenesis of Intestinal Fibrosis in Inflammatory Bowel Diseases: Focusing on Intestinal Smooth Muscle Cells. Inflamm Bowel Dis 2024:izae292. [PMID: 39680685 DOI: 10.1093/ibd/izae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Indexed: 12/18/2024]
Abstract
Strictures in inflammatory bowel disease, especially Crohn's disease (CD), are characterized by increased intestinal wall thickness, which, according to recent accumulating data, is mainly attributed to the expansion of the intestinal smooth muscle layers and to a lesser extent to collagen deposition. In this review, we will discuss the role of intestinal smooth muscle cells (SMCs) as crucial orchestrators of stricture formation. Activated SMCs can synthesize extracellular matrix (ECM), thus contributing to intestinal fibrosis, as well as growth factors and cytokines that can further enhance ECM production, stimulate other surrounding mesenchymal and immune cells, and increase SMC proliferation via paracrine or autocrine signaling. There is also evidence that, in stricturing CD, a phenotypic modulation of SMC toward a myofibroblast-like synthetic phenotype takes place. Moreover, the molecular mechanisms and signaling pathways that regulate SMC hyperplasia/hypertrophy will be extensively reviewed. The understanding of the cellular network and the molecular background behind stricture formation is essential for the design of effective anti-fibrotic strategies, and SMCs might be a promising therapeutic target in the future.
Collapse
Affiliation(s)
- Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, Patras, Greece
| | - Evanthia Tourkochristou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Efthymios P Tsounis
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
2
|
Liufu S, Wang K, Chen B, Chen W, Liu X, Wen S, Li X, Xu D, Ma H. Effect of host breeds on gut microbiome and fecal metabolome in commercial pigs. BMC Vet Res 2024; 20:458. [PMID: 39390513 PMCID: PMC11465751 DOI: 10.1186/s12917-024-04308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Gut microbial composition and its metabolites are crucial for livestock production performance. Metabolite profiles from autopsied biospecimens provide vital information on the basic mechanisms that affect the overall health and production traits in livestock animals. However, the role of the host breed in the gut microbiome and fecal metabolome of commercial pigs remains unclear. In this work, differences in microbiota composition among three commercial pig breeds Duroc, Yorkshire, and Landrace were measured by 16S rRNA gene sequencing. Fecal metabolite compositions of the three pig breeds were detected using untargeted metabolomics. RESULTS There were significant differences in the gut microbiomes of the three species, indicating that host breed affects the diversity and structure of gut microbiota. Several breed-associated microorganisms were identified at different taxonomic levels. Notely, most microbial taxa were annotated as Lactobacillacea, Muribaculaceae, and Oscillospiraceae. Several bacteria, including Lactobacillus, Subdoligranulum, Faecalibacterium, Oscillospira, Oscillospiraceae_UCG-002, and Christensenellaceae_R-7_group, could be considered as biomarkers for improving the backfat thickness (BF) for commercial pigs. Additionally, KEGG analysis of gut microbiota further revealed that arginine biosynthesis, pyruvate metabolism, and fatty acid biosynthesis varied greatly among pig breeds. Multiple gut bacterial metabolites (e.g., spermidine, estradiol, and palmitic acid) were identified as breed-associated. Mediation analysis ultimately revealed the cross-talk among gut microbiota, metabolites, and BF thickness, proclaiming that the microbial and metabolic biomarkers identified in this study could be used as biomarkers for improving BF phenotype. CONCLUSIONS This work provides vital insights into breed effects on gut microbiota and metabolite compositions of commercial pigs and uncovers potential biomarkers that are significant for pig breed improvement.
Collapse
Affiliation(s)
- Sui Liufu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Kaiming Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Bohe Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Wenwu Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Sheng Wen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Xintong Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China
| | - Dong Xu
- Department of Biological and Environmental Engineering, Yueyang Vocational Technical College, Yueyang, PR, 414000, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, PR, 410128, China.
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Changsha, PR, 410128, China.
- Yuelushan Laboratory, Changsha, PR, 410128, China.
| |
Collapse
|
3
|
Yoon KN, Choi YH, Keum GB, Yeom SJ, Kim SS, Kim ES, Park HJ, Kim JE, Park JH, Song BS, Eun JB, Park SH, Lee JH, Lee JH, Kim HB, Kim JK. Lactiplantibacillus argentoratensis AGMB00912 alleviates diarrhea and promotes the growth performance of piglets during the weaning transition. BMC Microbiol 2024; 24:404. [PMID: 39390387 PMCID: PMC11465746 DOI: 10.1186/s12866-024-03536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Preventing post-weaning diarrhea (PWD) in weaned piglets is a crucial challenge in the swine production industry. The stress of weaning, dietary shifts from maternal milk to solid feed, and environmental changes lead to decreased microbial diversity, increased pathogen abundance, and compromised intestinal integrity. We have previously identified Lactiplantibacillus argentoratensis AGMB00912 (LA) in healthy porcine feces, which demonstrated antimicrobial activity against pathogens and enhanced short-chain fatty acid production. This research aimed to evaluate the efficacy of LA strain supplementation as a strategy to inhibit PWD and enhance overall growth performance in weaned piglets. RESULTS LA supplementation in weaned piglets significantly increased body weight gain, average daily gain, and average daily feed intake. It also alleviated diarrhea symptoms (diarrhea score and incidence). Notably, LA was found to enrich beneficial microbial populations (Lactobacillus, Anaerobutyricum, Roseburia, Lachnospiraceae, and Blautia) while reducing the abundance of harmful bacteria (Helicobacter and Campylobacter). This not only reduces the direct impact of pathogens but also improves the overall gut microbiota structure, thus enhancing the resilience of weaned piglets. LA treatment also promotes the growth of the small intestinal epithelial structure, strengthens gut barrier integrity, and increases short-chain fatty acid levels in the gut. CONCLUSIONS The study findings demonstrate the promising potential of LA in preventing PWD. Supplementation with the LA strain offers a promising feed additive for improving intestinal health and growth in piglets during the weaning transition, with the potential to significantly reduce the incidence and severity of PWD.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yo-Han Choi
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Gi Beom Keum
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seo-Joon Yeom
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea
| | - Sang-Su Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea
| | - Eun Sol Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hyun Ju Park
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Jo Eun Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Jong-Heum Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea
| | - Beom-Seok Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, 56212, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, 56212, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, 56212, Republic of Korea.
| |
Collapse
|
4
|
Kasper C. Animal board invited review: Heritability of nitrogen use efficiency in fattening pigs: Current state and possible directions. Animal 2024; 18:101225. [PMID: 39013333 DOI: 10.1016/j.animal.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Pork, an important component of human nutrition worldwide, contributes considerably to anthropogenic nitrogen and greenhouse gas emissions. Reducing the environmental impact of pig production is therefore essential. This can be achieved through system-level strategies, such as optimising resource use, improving manure management and recycling leftovers from human food production, and at the individual animal level by maintaining pig health and fine-tuning dietary protein levels to individual requirements. Breeding, coupled with nutritional strategies, offers a lasting solution to improve nitrogen use efficiency (NUE) - the ratio of nitrogen retained in the body to nitrogen ingested. With a heritability as high as 0.54, incorporating NUE into breeding programmes appears promising. Nitrogen use efficiency involves multiple tissues and metabolic processes, and is influenced by the environment and individual animal characteristics, including its genetic background. Heritable genetic variation in NUE may therefore occur in many different processes, including the central nervous regulation of feed intake, the endocrine system, the gastrointestinal tract where digestion and absorption take place, and the composition of the gut microbiome. An animal's postabsorptive protein metabolism might also harbour important genetic variation, especially in the maintenance requirements of tissues and organs. Precise phenotyping, although challenging and costly, is essential for successful breeding. Various measurement techniques, such as imaging techniques and mechanistic models, are being explored for their potential in genetic analysis. Despite the difficulties in phenotyping, some studies have estimated the heritability and genetic correlations of NUE. These studies suggest that direct selection for NUE is more effective than indirect methods through feed efficiency. The complexity of NUE indicates a polygenic trait architecture, which has been confirmed by genome-wide association studies that have been unable to identify significant quantitative trait loci. Building sufficiently large reference populations to train genomic prediction models is an important next step. However, this will require the development of truly high-throughput phenotyping methods. In conclusion, breeding pigs with higher NUE is both feasible and necessary but will require increased efforts in high-throughput phenotyping and improved genome annotation.
Collapse
Affiliation(s)
- C Kasper
- Animal GenoPhenomics, Agroscope, Posieux, Switzerland.
| |
Collapse
|
5
|
Zhao M, Liu H, Liu M, Yue Z, Li C, Liu L, Li F. Metagenomics and metabolomics reveal that gut microbiome adapts to the diet transition in Hyla rabbits. Microbiol Res 2024; 283:127705. [PMID: 38554650 DOI: 10.1016/j.micres.2024.127705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
There is still a lack of longitudinal dynamic studies on the taxonomic features, functional reserves, and metabolites of the rabbit gut microbiome. An experiment was conducted to characterize the bacterial community of rabbits. By combining metagenomics and metabolomics, we have comprehensively analyzed the longitudinal dynamics of the rabbit gut microbiota and its effect on host adaptability. Our data reveal an overall increasing trend in microbial community and functional gene diversity and richness during the pre-harvest lifespan of rabbits. The introduction of solid feed is an important driving factor affecting rabbit gut microbiological compositions. Clostridium and Ruminococcus had significantly higher relative abundances in the solid feed stage. Further, the starch and fiber in solid feed promote the secretion of carbohydrate-degrading enzymes, which helps the host adapt to dietary changes. The rabbit gut microbiota can synthesize lysine, and the synthase is gradually enriched during the diet transformation. The gut microbiota of newborn rabbits has a higher abundance of lipid metabolism, which helps the host obtain more energy from breast milk lipids. The rabbit gut microbiota can also synthesize a variety of secondary bile acids after the introduction of solid feed. These findings provide a novel understanding of how the gut microbiota mediates adaptability to environment and diet in rabbits and provide multiple potential strategies for regulating intestinal health and promoting higher feed efficiency.
Collapse
Affiliation(s)
- Man Zhao
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Hongli Liu
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Mengqi Liu
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Zhengkai Yue
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Chenyang Li
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Lei Liu
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China.
| | - Fuchang Li
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Department of Animal Science, Shandong Agricultural University, Taian, China.
| |
Collapse
|
6
|
García Viñado I, Correa F, Trevisi P, Bee G, Ollagnier C. A non-invasive tool to collect small intestine content in post weaning pigs: validation study. Sci Rep 2024; 14:9964. [PMID: 38693207 PMCID: PMC11063154 DOI: 10.1038/s41598-024-59950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
The Capsule for Sampling (CapSa) is an ingestible capsule that collects small intestine content while transiting through the natural digestive pathway. In this study, 14 Swiss Large White pigs weighing less than 12 kg (Category < 12 kg) and 12 weighing between 12 and 20 kg (Category [12-20 kg]) were given two CapSas and monitored for three days. The animals were euthanized for post-mortem sampling, allowing us to directly obtain gut microbiota samples from the gastrointestinal tract. This post-mortem approach enabled a direct comparison between the microbial content from the gut and the samples collected via the CapSas, and it also facilitated precise identification of the CapSas' sampling sites within the gastrointestinal tract. For the category under 12 kg, only 2.3% of the administered CapSas were recovered from the feces. In contrast, in the 12-20 kg category, 62.5% of the CapSas were successfully retrieved from the feces within 48 h. Of these recovered CapSas, 73.3%-equating to 11 capsules from eight pigs-had a pH > 5.5 and were therefore selected for microbiome analysis. Bacterial composition of the CapSas was compared with that of the three segments of the small intestine, the large intestine and feces of the corresponding pig. The results were tested using a PERMANOVA model (Adonis) including sample type as a factor, and then pairwise comparisons were made. The bacterial composition found in the CapSas differed from that of the large intestine and feces (P < 0.01), while it did not differ from the first segment of the small intestine (P > 0.10). This study provides evidence that the CapSa effectively samples the intestinal microbiota from the upper section of the small intestine in post-weaning pigs. Furthermore, it was found that the collection of CapSas could only be successfully achieved in pigs classified within the heavier weight category.
Collapse
Affiliation(s)
- Inés García Viñado
- Pig Research Unit, Agroscope, 1725, Posieux, Switzerland
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127, Bologna, Italy
| | - Federico Correa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127, Bologna, Italy
| | - Giuseppe Bee
- Pig Research Unit, Agroscope, 1725, Posieux, Switzerland
| | | |
Collapse
|
7
|
Mancin E, Maltecca C, Huang YJ, Mantovani R, Tiezzi F. A first characterization of the microbiota-resilience link in swine. MICROBIOME 2024; 12:53. [PMID: 38486255 PMCID: PMC10941389 DOI: 10.1186/s40168-024-01771-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND The gut microbiome plays a crucial role in understanding complex biological mechanisms, including host resilience to stressors. Investigating the microbiota-resilience link in animals and plants holds relevance in addressing challenges like adaptation of agricultural species to a warming environment. This study aims to characterize the microbiota-resilience connection in swine. As resilience is not directly observable, we estimated it using four distinct indicators based on daily feed consumption variability, assuming animals with greater intake variation may face challenges in maintaining stable physiological status. These indicators were analyzed both as linear and categorical variables. In our first set of analyses, we explored the microbiota-resilience link using PERMANOVA, α-diversity analysis, and discriminant analysis. Additionally, we quantified the ratio of estimated microbiota variance to total phenotypic variance (microbiability). Finally, we conducted a Partial Least Squares-Discriminant Analysis (PLS-DA) to assess the classification performance of the microbiota with indicators expressed in classes. RESULTS This study offers four key insights. Firstly, among all indicators, two effectively captured resilience. Secondly, our analyses revealed robust relationship between microbial composition and resilience in terms of both composition and richness. We found decreased α-diversity in less-resilient animals, while specific amplicon sequence variants (ASVs) and KEGG pathways associated with inflammatory responses were negatively linked to resilience. Thirdly, considering resilience indicators in classes, we observed significant differences in microbial composition primarily in animals with lower resilience. Lastly, our study indicates that gut microbial composition can serve as a reliable biomarker for distinguishing individuals with lower resilience. CONCLUSION Our comprehensive analyses have highlighted the host-microbiota and resilience connection, contributing valuable insights to the existing scientific knowledge. The practical implications of PLS-DA and microbiability results are noteworthy. PLS-DA suggests that host-microbiota interactions could be utilized as biomarkers for monitoring resilience. Furthermore, the microbiability findings show that leveraging host-microbiota insights may improve the identification of resilient animals, supporting their adaptive capacity in response to changing environmental conditions. These practical implications offer promising avenues for enhancing animal well-being and adaptation strategies in the context of environmental challenges faced by livestock populations. Video Abstract.
Collapse
Affiliation(s)
- Enrico Mancin
- Department of Agronomy, Animals and Environment, (DAFNAE), Food, Natural Resources, University of Padova, Viale del Università 14, 35020, Legnaro (Padova), Italy
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy
| | - Yi Jian Huang
- Smithfield Premium Genetics, Rose Hill, NC, 28458, USA
| | - Roberto Mantovani
- Department of Agronomy, Animals and Environment, (DAFNAE), Food, Natural Resources, University of Padova, Viale del Università 14, 35020, Legnaro (Padova), Italy
| | - Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144, Firenze, Italy.
| |
Collapse
|
8
|
Mugetti D, Pastorino P, Beltramo C, Audino T, Arillo A, Esposito G, Prearo M, Bertoli M, Pizzul E, Bozzetta E, Acutis PL, Peletto S. The Gut Microbiota of Farmed and Wild Brook Trout ( Salvelinus fontinalis): Evaluation of Feed-Related Differences Using 16S rRNA Gene Metabarcoding. Microorganisms 2023; 11:1636. [PMID: 37512808 PMCID: PMC10386504 DOI: 10.3390/microorganisms11071636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiota has become a topic of increasing importance in various fields, including aquaculture. Several fish species have been the subject of investigations concerning the intestinal microbiota, which have compared different variables, including the intestinal portions, the environment, and diet. In this study, the microbiota of farmed and wild brook trout (Salvelinus fontinalis) were analyzed, in which the wall and content of the medial portion of the intestine were considered separately. A total of 66 fish (age class 2+) were sampled, of which 46 were wild and 20 were farmed brook trout, in two different years. Microbiota data were obtained using a 16S metabarcoding approach by analyzing the V3-V4 hypervariable regions of the corresponding 16S rRNA. The data showed that the core microbiota of these species consist of Proteobacteria (Alpha- and Gammaproteobacteria), Actinobacteria, Firmicutes (Bacilli and Clostridia), and, only for farmed animals, Fusobacteria. The latter taxon's presence is likely related to the fishmeal-based diet administered to farmed brook trout. Indeed, alpha and beta diversity analysis showed differences between wild and farmed fish. Finally, statistically significant differences in the microbiota composition were observed between the intestinal walls and contents of wild fish, while no differences were detected in reared animals. Our work represents the first study on the intestinal microbiota of brook trout with respect to both farmed and wild specimens. Future studies might focus on the comparison of our data with those pertaining to other fish species and on the study of other portions of the brook trout intestine.
Collapse
Affiliation(s)
- Davide Mugetti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
- Centro di Referenza Regionale per la Biodiversità degli Ambienti Acquatici (BioAqua), Via L. Maritano 22, 10051 Avigliana, Italy
| | - Chiara Beltramo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Tania Audino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Alessandra Arillo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Giuseppe Esposito
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
- Centro di Referenza Regionale per la Biodiversità degli Ambienti Acquatici (BioAqua), Via L. Maritano 22, 10051 Avigliana, Italy
| | - Marino Prearo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
- Centro di Referenza Regionale per la Biodiversità degli Ambienti Acquatici (BioAqua), Via L. Maritano 22, 10051 Avigliana, Italy
| | - Marco Bertoli
- Dipartimento Scienze della Vita, Università degli Studi di Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Elisabetta Pizzul
- Dipartimento Scienze della Vita, Università degli Studi di Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| |
Collapse
|
9
|
Fowler EC, Samuel RS, St-Pierre B. A Comparative Analysis of the Fecal Bacterial Communities of Light and Heavy Finishing Barrows Raised in a Commercial Swine Production Environment. Pathogens 2023; 12:pathogens12050738. [PMID: 37242408 DOI: 10.3390/pathogens12050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
For commercial swine producers, the natural variation in body weight amongst pigs in a herd presents a challenge in meeting the standards of meat processors who incentivize target carcass weights by offering more favorable purchase prices. Body weight variation in a swine herd is evident as early as birth, and it is typically maintained throughout the entire production cycle. Amongst the various factors that can affect growth performance, the gut microbiome has emerged as an important factor that can affect efficiency, as it contributes to vital functions such as providing assimilable nutrients from feed ingredients that are inedible to the host, as well as resistance to infection by a pathogen. In this context, the objective of the study described in this report was to compare the fecal microbiomes of light and heavy barrows (castrated male finishing pigs) that were part of the same research herd that was raised under commercial conditions. Using high-throughput sequencing of amplicons generated from the V1-V3 regions of the 16S rRNA gene, two abundant candidate bacterial species identified as operational taxonomic units (OTUs), Ssd-1085 and Ssd-1144, were found to be in higher abundance in the light barrows group. Ssd-1085 was predicted to be a potential strain of Clostridium jeddahitimonense, a bacterial species capable of utilizing tagatose, a monosaccharide known to act as a prebiotic that can enhance the proliferation of beneficial microorganisms while inhibiting the growth of bacterial pathogens. OTU Ssd-1144 was identified as a candidate strain of C. beijerinckii, which would be expected to function as a starch utilizing symbiont in the swine gut. While it remains to be determined why putative strains of these beneficial bacterial species would be in higher abundance in lower weight pigs, their overall high levels in finishing pigs could be the result of including ingredients such as corn and soybean-based products in swine diets. Another contribution from this study was the determination that these two OTUs, along with five others that were also abundant in the fecal bacterial communities of the barrows that were analyzed, had been previously identified in weaned pigs, suggesting that these OTUs can become established as early as the nursery phase.
Collapse
Affiliation(s)
- Emily C Fowler
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Ryan S Samuel
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| |
Collapse
|
10
|
Zhang XL, Zhou YR, Xu SS, Xu S, Xiong YJ, Xu K, Xu CJ, Che JJ, Huang L, Liu ZG, Wang BY, Mu YL, Xiao SB, Li K. Characterization of Gut Microbiota Compositions along the Intestinal Tract in CD163/pAPN Double Knockout Piglets and Their Potential Roles in Iron Absorption. Microbiol Spectr 2023; 11:e0190622. [PMID: 36625575 PMCID: PMC9927099 DOI: 10.1128/spectrum.01906-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
The gut microbiota is known to play a role in regulating host metabolism, yet the mechanisms underlying this regulation are not well elucidated. Our study aimed to characterize the differences in gut microbiota compositions and their roles in iron absorption between wild-type (WT) and CD163/pAPN double-gene-knockout (DKO) weaned piglets. A total of 58 samples along the entire digestive tract were analyzed for microbial community using 16S rRNA gene sequencing. The colonic microbiota and their metabolites were determined by metagenomic sequencing and untargeted liquid chromatography-mass spectrometry (LC-MS), respectively. Our results showed that no alterations in microbial community structure and composition were observed between DKO and WT weaned piglets, with the exception of colonic microbiota. Interestingly, the DKO piglets had selectively increased the relative abundance of the Leeia genus belonging to the Neisseriaceae family and decreased the Ruminococcaceae_UCG_014 genus abundance. Functional capacity analysis showed that organic acid metabolism was enriched in the colon in DKO piglets. In addition, the DKO piglets showed increased iron levels in important tissues compared with WT piglets without any pathological changes. Pearson's correlation coefficient indicated that the specific bacteria such as Leeia and Ruminococcaceae_UCG_014 genus played a key role in host iron absorption. Moreover, the iron levels had significantly (P < 0.05) positive correlation with microbial metabolites, particularly carboxylic acids and their derivatives, which might increase iron absorption by preventing iron precipitation. Overall, this study reveals an interaction between colonic microbiota and host metabolism and has potential significance for alleviating piglet iron deficiency. IMPORTANCE Iron deficiency is a major risk factor for iron deficiency anemia, which is among the most common nutritional disorders in piglets. However, it remains unclear how the gut microbiota interacts with host iron absorption. The current report provides the first insight into iron absorption-microbiome connection in CD163/pAPN double knockout piglets. The present results showed that carboxylic acids and their derivatives contributed to the absorption of nonheme iron by preventing ferric iron precipitation.
Collapse
Affiliation(s)
- Xiu-Ling Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yan-Rong Zhou
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Song-Song Xu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People’s Republic of China
| | - Si Xu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yu-Jian Xiong
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Kui Xu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Chang-Jiang Xu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jing-Jing Che
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Lei Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People’s Republic of China
| | - Zhi-Guo Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Bing-Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yu-Lian Mu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Shao-Bo Xiao
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People’s Republic of China
| |
Collapse
|
11
|
Tardiolo G, Romeo O, Zumbo A, Di Marsico M, Sutera AM, Cigliano RA, Paytuví A, D’Alessandro E. Characterization of the Nero Siciliano Pig Fecal Microbiota after a Liquid Whey-Supplemented Diet. Animals (Basel) 2023; 13:642. [PMID: 36830429 PMCID: PMC9951753 DOI: 10.3390/ani13040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
The utilization of dairy by-products as animal feed, especially in swine production, is a strategy to provide functional ingredients to improve gut health. This study explored the potential effect of a liquid whey-supplemented diet on the fecal microbiota of eleven pigs belonging to the Nero Siciliano breed. Five pigs were assigned to the control group and fed with a standard formulation feed, whereas six pigs were assigned to the experimental group and fed with the same feed supplemented with liquid whey. Fecal samples were collected from each individual before the experimental diet (T0), and one (T1) and two (T2) months after the beginning of the co-feed supplementation. Taxonomic analysis, based on the V3-V4 region of the bacterial 16S rRNA, showed that pig feces were populated by a complex microbial community with a remarkable abundance of Firmicutes, Bacteroidetes, and Spirochaetes phyla and Prevotella, Lactobacillus, Clostridium, and Treponema genera. Alpha and beta diversity values suggested that the experimental diet did not significantly affect the overall fecal microbiota diversity. However, analysis of abundance at different time points revealed significant variation in several bacterial genera, suggesting that the experimental diet potentially affected some genera of the microbial community.
Collapse
Affiliation(s)
- Giuseppe Tardiolo
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, Via Palatucci snc, 98168 Messina, Italy
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Alessandro Zumbo
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, Via Palatucci snc, 98168 Messina, Italy
| | - Marco Di Marsico
- Sequentia Biotech SL, Carrer del Dr. Trueta 179, 08005 Barcelona, Spain
| | - Anna Maria Sutera
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, Via Palatucci snc, 98168 Messina, Italy
| | | | - Andreu Paytuví
- Sequentia Biotech SL, Carrer del Dr. Trueta 179, 08005 Barcelona, Spain
| | - Enrico D’Alessandro
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, Via Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
12
|
Lan Q, Lian Y, Peng P, Yang L, Zhao H, Huang P, Ma H, Wei H, Yin Y, Liu M. Association of gut microbiota and SCFAs with finishing weight of Diannan small ear pigs. Front Microbiol 2023; 14:1117965. [PMID: 36778880 PMCID: PMC9911695 DOI: 10.3389/fmicb.2023.1117965] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Finishing weight is a key economic trait in the domestic pig industry. Evidence has linked the gut microbiota and SCFAs to health and production performance in pigs. Nevertheless, for Diannan small ear (DSE) pigs, a specific pig breed in China, the potential effect of gut microbiota and SCFAs on their finishing weight remains unclear. Herein, based on the data of the 16S ribosomal RNA gene and metagenomic sequencing analysis, we found that 13 OTUs could be potential biomarkers and 19 microbial species were associated with finishing weight. Among these, carbohydrate-decomposing bacteria of the families Streptococcaceae, Lactobacillaceae, and Prevotellaceae were positively related to finishing weight, whereas the microbial taxa associated with intestinal inflammation and damage exhibited opposite effects. In addition, interactions of these microbial species were found to be linked with finishing weight for the first time. Gut microbial functional annotation analysis indicated that CAZymes, such as glucosidase and glucanase could significantly affect finishing weight, given their roles in increasing nutrient absorption efficiency. Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthologies (KOs) and KEGG pathways analysis indicated that glycolysis/gluconeogenesis, phosphotransferase system (PTS), secondary bile acid biosynthesis, ABC transporters, sulfur metabolism, and one carbon pool by folate could act as key factors in regulating finishing weight. Additionally, SCFA levels, especially acetate and butyrate, had pivotal impacts on finishing weight. Finishing weight-associated species Prevotella sp. RS2, Ruminococcus sp. AF31-14BH and Lactobacillus pontis showed positive associations with butyrate concentration, and Paraprevotella xylaniphila and Bacteroides sp. OF04-15BH were positively related to acetate level. Taken together, our study provides essential knowledge for manipulating gut microbiomes to improve finishing weight. The underlying mechanisms of how gut microbiome and SCFAs modulate pigs' finishing weight required further elucidation.
Collapse
Affiliation(s)
- Qun Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yuju Lian
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Peiya Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Long Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Heng Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hongjiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China,*Correspondence: Yulong Yin, ✉
| | - Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China,Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China,Mei Liu, ✉
| |
Collapse
|
13
|
Haas V, Rodehutscord M, Camarinha-Silva A, Bennewitz J. Inferring causal structures of gut microbiota diversity and feed efficiency traits in poultry using Bayesian learning and genomic structural equation models. J Anim Sci 2023; 101:skad044. [PMID: 36734360 PMCID: PMC10032182 DOI: 10.1093/jas/skad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023] Open
Abstract
Feed and phosphorus (P) efficiency are of increasing importance in poultry breeding. It has been shown recently that these efficiency traits are influenced by the gut microbiota composition of the birds. The efficiency traits and the gut microbiota composition are partly under control of the host genome. Thus, the gut microbiota composition can be seen as a mediator trait between the host genome and the efficiency traits. The present study used data from 749 individuals of a Japanese quail F2 cross. The birds were genotyped for 4k single-nucleotide polymorphism (SNP) and trait recorded for P utilization (PU) and P retention (PR), body weight gain (BWG), and feed per gain ratio (F:G). The gut microbiota composition was characterized by targeted amplicon sequencing. The alpha diversity was calculated as the Pielou's evenness index (J'). A stable Bayesian network was established using a Hill-Climbing learning algorithm. Pielou's evenness index was placed as the most upstream trait and BWG as the most downstream trait, with direct and indirect links via PR, PU, and F:G. The direct and indirect effects between J', PU, and PR were quantified with structural equation models (SEM), which revealed a causal link from J' to PU and from PU to PR. Quantitative trait loci (QTL) linkage mapping revealed three genome-wide significant QTL regions for these traits with in total 49 trait-associated SNP within the QTL regions. SEM association mapping separated the total SNP effect for a trait into a direct effect and indirect effects mediated by upstream traits. Although the indirect effects were in general small, they contributed to the total SNP effect in some cases. This enabled us to detect some shared genetic effects. The method applied allows for the detection of shared genetic architecture of quantitative traits and microbiota compositions.
Collapse
Affiliation(s)
- Valentin Haas
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | | | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
14
|
Chang Z, Bo S, Xiao Q, Wang Y, Wu X, He Y, Iqbal M, Ye Y, Shang P. Remodeling of the microbiota improves the environmental adaptability and disease resistance in Tibetan pigs. Front Microbiol 2022; 13:1055146. [DOI: 10.3389/fmicb.2022.1055146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
IntroductionThe establishment of intestinal microbiota and the maintenance of its equilibrium structure plays an important role in Tibetan pigs during different growth stages. Understanding the structure and function of the intestinal microbiota at different growth stages of Tibetan pigs can provide a theoretical basis for guiding nutritional regulation and feeding management in different stages.MethodsFecal samples were collected from the Tibetan piglets at different growth stages, and the 16S rRNA was sequenced to analyze the changes of intestinal microbiota.ResultsAlpha and Beta diversity indexes showed that the diversity of the intestinal microbiota did not change during the three growth stages, and the main components of intestinal microbiota were not significantly different. At the phylum level, Firmicutes and Bacteroidetes were dominant and abundant at different growth stages and were not restricted by age. At the genus level, Streptococcus, Lactobacillus, and Bifidobacterium were the most dominant in the TP10d and TP40d groups, Streptococcus was the most dominant in the TP100d group, followed by Treponema_2 and Lactobacillus. Fusobacteria, Gluconobacter, and Synergistetes were found to be specific genera of 10-day-old Tibetan piglets by LEfSe combined with LDA score. The change of diet made Tenericutes and Epsilonbacteraeota, which are closely related to digestive fiber, become specific bacteria at the age of 40 days. With the consumption of oxygen in the intestine, obligate anaerobes, such as Verrucomicrobia, Fibrobacter, and Planctomycetes, were the characteristic genera of 100 days. KEGG function prediction analysis showed that the intestinal microbiota function of Tibetan pigs changed dynamically with the growth and development of Tibetan piglets.DiscussionIn conclusion, the structure and composition of the intestinal microbiota of Tibetan pigs are significantly different at different growth and development stages, which plays an important role in their immune performance.
Collapse
|
15
|
Vasquez R, Oh JK, Song JH, Kang DK. Gut microbiome-produced metabolites in pigs: a review on their biological functions and the influence of probiotics. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:671-695. [PMID: 35969697 PMCID: PMC9353353 DOI: 10.5187/jast.2022.e58] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022]
Abstract
The gastrointestinal tract is a complex ecosystem that contains a large number of microorganisms with different metabolic capacities. Modulation of the gut microbiome can improve the growth and promote health in pigs. Crosstalk between the host, diet, and the gut microbiome can influence the health of the host, potentially through the production of several metabolites with various functions. Short-chain and branched-chain fatty acids, secondary bile acids, polyamines, indoles, and phenolic compounds are metabolites produced by the gut microbiome. The gut microbiome can also produce neurotransmitters (such as γ-aminobutyric acid, catecholamines, and serotonin), their precursors, and vitamins. Several studies in pigs have demonstrated the importance of the gut microbiome and its metabolites in improving growth performance and feed efficiency, alleviating stress, and providing protection from pathogens. The use of probiotics is one of the strategies employed to target the gut microbiome of pigs. Promising results have been published on the use of probiotics in optimizing pig production. This review focuses on the role of gut microbiome-derived metabolites in the performance of pigs and the effects of probiotics on altering the levels of these metabolites.
Collapse
Affiliation(s)
- Robie Vasquez
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Ju Kyoung Oh
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Ji Hoon Song
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
16
|
Schumacher M, DelCurto-Wyffels H, Thomson J, Boles J. Fat Deposition and Fat Effects on Meat Quality—A Review. Animals (Basel) 2022; 12:ani12121550. [PMID: 35739885 PMCID: PMC9219498 DOI: 10.3390/ani12121550] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Animal fat deposition has a major impact on the meat yield from individual carcasses as well the perceived eating quality for consumers. Understanding the impact of livestock production practices on fat deposition and the molecular mechanisms activated will lead to a better understanding of finishing livestock. This enhanced understanding will also lead to the increased efficiency and improved sustainability of practices for livestock production. The impact of fat storage on physiological functions and health are also important. This review brings together both the production practices and the current understanding of molecular processes associated with fat deposition. Abstract Growth is frequently described as weight gain over time. Researchers have used this information in equations to predict carcass composition and estimate fat deposition. Diet, species, breed, and gender all influence fat deposition. Alterations in diets result in changes in fat deposition as well as the fatty acid profile of meat. Additionally, the amount and composition of the fat can affect lipid stability and flavor development upon cooking. Fat functions not only as a storage of energy and contributor of flavor compounds, but also participates in signaling that affects many aspects of the physiological functions of the animal. Transcription factors that are upregulated in response to excess energy to be stored are an important avenue of research to improve the understanding of fat deposition and thus, the efficiency of production. Additionally, further study of the inflammation associated with increased fat depots may lead to a better understanding of finishing animals, production efficiency, and overall health.
Collapse
|
17
|
Baholet D, Skalickova S, Batik A, Malyugina S, Skladanka J, Horky P. Importance of Zinc Nanoparticles for the Intestinal Microbiome of Weaned Piglets. Front Vet Sci 2022; 9:852085. [PMID: 35720843 PMCID: PMC9201420 DOI: 10.3389/fvets.2022.852085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
The scientific community is closely monitoring the replacement of antibiotics with doses of ZnO in weaned piglets. Since 2022, the use of zinc in medical doses has been banned in the European Union. Therefore, pig farmers are looking for other solutions. Some studies have suggested that zinc nanoparticles might replace ZnO for the prevention of diarrhea in weaning piglets. Like ZnO, zinc nanoparticles are effective against pathogenic microorganisms, e.g., Enterobacteriaceae family in vitro and in vivo. However, the effect on probiotic Lactobacillaceae appears to differ for ZnO and zinc nanoparticles. While ZnO increases their numbers, zinc nanoparticles act in the opposite way. These phenomena have been also confirmed by in vitro studies that reported a strong antimicrobial effect of zinc nanoparticles against Lactobacillales order. Contradictory evidence makes this topic still controversial, however. In addition, zinc nanoparticles vary in their morphology and properties based on the method of their synthesis. This makes it difficult to understand the effect of zinc nanoparticles on the intestinal microbiome. This review is aimed at clarifying many circumstances that may affect the action of nanoparticles on the weaning piglets' microbiome, including a comprehensive overview of the zinc nanoparticles in vitro effects on bacterial species occurring in the digestive tract of weaned piglets.
Collapse
Affiliation(s)
- Daria Baholet
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Andrej Batik
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Brno, Czechia
| | - Svetlana Malyugina
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
- *Correspondence: Pavel Horky
| |
Collapse
|
18
|
Ryu EP, Davenport ER. Host Genetic Determinants of the Microbiome Across Animals: From Caenorhabditis elegans to Cattle. Annu Rev Anim Biosci 2022; 10:203-226. [PMID: 35167316 PMCID: PMC11000414 DOI: 10.1146/annurev-animal-020420-032054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animals harbor diverse communities of microbes within their gastrointestinal tracts. Phylogenetic relationship, diet, gut morphology, host physiology, and ecology all influence microbiome composition within and between animal clades. Emerging evidence points to host genetics as also playing a role in determining gut microbial composition within species. Here, we discuss recent advances in the study of microbiome heritability across a variety of animal species. Candidate gene and discovery-based studies in humans, mice, Drosophila, Caenorhabditis elegans, cattle, swine, poultry, and baboons reveal trends in the types of microbes that are heritable and the host genes and pathways involved in shaping the microbiome. Heritable gut microbes within a host species tend to be phylogenetically restricted. Host genetic variation in immune- and growth-related genes drives the abundances of these heritable bacteria within the gut. With only a small slice of the metazoan branch of the tree of life explored to date, this is an area rife with opportunities to shed light into the mechanisms governing host-microbe relationships.
Collapse
Affiliation(s)
- Erica P Ryu
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA; ,
| | - Emily R Davenport
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA; ,
- Huck Institutes of the Life Sciences and Institute for Computational and Data Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
19
|
Li Y, Liu Y, Wu J, Chen Q, Zhou Q, Wu F, Zhang R, Fang Z, Lin Y, Xu S, Feng B, Zhuo Y, Wu D, Che L. Comparative effects of enzymatic soybean, fish meal and milk powder in diets on growth performance, immunological parameters, SCFAs production and gut microbiome of weaned piglets. J Anim Sci Biotechnol 2021; 12:106. [PMID: 34615550 PMCID: PMC8496045 DOI: 10.1186/s40104-021-00625-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/01/2021] [Indexed: 01/22/2023] Open
Abstract
Background The objective of this study was to evaluate the replacement effects of milk powder (MK) and fish meal (FM) by enzymatic soybean (ESB) in diets on growth performance, immunological parameters, SCFAs production and gut microbiome of weaned piglets. Methods A total of 128 piglets with initial body weight at 6.95 ± 0.46 kg, were randomly assigned into 4 dietary treatments with 8 replicates per treatment and 4 piglets per replicate for a period of 14 d. Piglets were offered iso-nitrogenous and iso-energetic diets as follows: CON diet with MK and FM as high quality protein sources, ESB plus FM diet with ESB replacing MK, ESB plus MK diet with ESB replacing FM, and ESB diet with ESB replacing both MK and FM. Results No significant differences were observed in growth performance among all treatments (P > 0.05). However, piglets fed ESB plus FM or ESB diet had increased diarrhea index (P<0.01), and lower digestibility of dry matter (DM), gross energy (GE) or crude protein (CP), relative to piglets fed CON diet (P < 0.01). Moreover, the inclusion of ESB in diet markedly decreased the plasma concentration of HPT and fecal concentration of butyric acid (BA) (P<0.01). The High-throughput sequencing of 16S rRNA gene V3−V4 region of gut microbiome revealed that the inclusion of ESB in diet increased the alpha diversity, and the linear discriminant analysis effect size (LEfSe) showed that piglets fed with ESB plus FM or ESB diet contained more gut pathogenic bacteria, such as g_Peptococcus, g_Veillonella and g_Helicobacter. Conclusion The inclusion of ESB in diet did not markedly affect growth performance of piglets, but the replacement of MK or both MK and FM by ESB increased diarrhea index, which could be associated with lower nutrients digestibility and more gut pathogenic bacteria. However, piglets fed diet using ESB to replace FM did not markedly affect gut health-related parameters, indicating the potential for replacing FM with ESB in weaning diet.
Collapse
Affiliation(s)
- Yingjie Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jiangnan Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Qiuhong Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Qiang Zhou
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Fali Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Ruinan Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, No. 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, People's Republic of China.
| |
Collapse
|
20
|
Maltecca C, Dunn R, He Y, McNulty NP, Schillebeeckx C, Schwab C, Shull C, Fix J, Tiezzi F. Microbial composition differs between production systems and is associated with growth performance and carcass quality in pigs. Anim Microbiome 2021; 3:57. [PMID: 34454609 PMCID: PMC8403435 DOI: 10.1186/s42523-021-00118-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The role of the microbiome in livestock production has been highlighted in recent research. Currently, little is known about the microbiome's impact across different systems of production in swine, particularly between selection nucleus and commercial populations. In this paper, we investigated fecal microbial composition in nucleus versus commercial systems at different time points. RESULTS We identified microbial OTUs associated with growth and carcass composition in each of the two populations, as well as the subset common to both. The two systems were represented by individuals with sizeable microbial diversity at weaning. At later times microbial composition varied between commercial and nucleus, with species of the genus Lactobacillus more prominent in the nucleus population. In the commercial populations, OTUs of the genera Lactobacillus and Peptococcus were associated with an increase in both growth rate and fatness. In the nucleus population, members of the genus Succinivibrio were negatively correlated with all growth and carcass traits, while OTUs of the genus Roseburia had a positive association with growth parameters. Lactobacillus and Peptococcus OTUs showed consistent effects for fat deposition and daily gain in both nucleus and commercial populations. Similarly, OTUs of the Blautia genus were positively associated with daily gain and fat deposition. In contrast, an increase in the abundance of the Bacteroides genus was negatively associated with growth performance parameters. CONCLUSIONS The current study provides a first characterization of microbial communities' value throughout the pork production systems. It also provides information for incorporating microbial composition into the selection process in the quest for affordable and sustainable protein production in swine.
Collapse
Affiliation(s)
- Christian Maltecca
- Department of Animal Science, North Carolina State University, 120 W Broughton Dr, Raleigh, NC 27607 USA
| | - Rob Dunn
- Department of Applied Ecology, North Carolina State University, 100 Brooks Ave, Raleigh, NC 27607 USA
| | - Yuqing He
- Department of Animal Science, North Carolina State University, 120 W Broughton Dr, Raleigh, NC 27607 USA
| | | | | | - Clint Schwab
- Acuity Ag Solutions, 7475 State Route 127, Carlyle, IL 62231 USA
| | - Caleb Shull
- The Maschhoffs LLC, 7475 IL-127, Carlyle, IL 62231 USA
| | - Justin Fix
- Department of Animal Science, North Carolina State University, 120 W Broughton Dr, Raleigh, NC 27607 USA
| | - Francesco Tiezzi
- Acuity Ag Solutions, 7475 State Route 127, Carlyle, IL 62231 USA
| |
Collapse
|
21
|
Pérez-Enciso M, Zingaretti LM, Ramayo-Caldas Y, de Los Campos G. Opportunities and limits of combining microbiome and genome data for complex trait prediction. Genet Sel Evol 2021; 53:65. [PMID: 34362312 PMCID: PMC8344190 DOI: 10.1186/s12711-021-00658-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Analysis and prediction of complex traits using microbiome data combined with host genomic information is a topic of utmost interest. However, numerous questions remain to be answered: how useful can the microbiome be for complex trait prediction? Are estimates of microbiability reliable? Can the underlying biological links between the host’s genome, microbiome, and phenome be recovered? Methods Here, we address these issues by (i) developing a novel simulation strategy that uses real microbiome and genotype data as inputs, and (ii) using variance-component approaches (Bayesian Reproducing Kernel Hilbert Space (RKHS) and Bayesian variable selection methods (Bayes C)) to quantify the proportion of phenotypic variance explained by the genome and the microbiome. The proposed simulation approach can mimic genetic links between the microbiome and genotype data by a permutation procedure that retains the distributional properties of the data. Results Using real genotype and rumen microbiota abundances from dairy cattle, simulation results suggest that microbiome data can significantly improve the accuracy of phenotype predictions, regardless of whether some microbiota abundances are under direct genetic control by the host or not. This improvement depends logically on the microbiome being stable over time. Overall, random-effects linear methods appear robust for variance components estimation, in spite of the typically highly leptokurtic distribution of microbiota abundances. The predictive performance of Bayes C was higher but more sensitive to the number of causative effects than RKHS. Accuracy with Bayes C depended, in part, on the number of microorganisms’ taxa that influence the phenotype. Conclusions While we conclude that, overall, genome-microbiome-links can be characterized using variance component estimates, we are less optimistic about the possibility of identifying the causative host genetic effects that affect microbiota abundances, which would require much larger sample sizes than are typically available for genome-microbiome-phenome studies. The R code to replicate the analyses is in https://github.com/miguelperezenciso/simubiome. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00658-7.
Collapse
Affiliation(s)
- Miguel Pérez-Enciso
- ICREA, Passeig de Lluís Companys 23, 08010, Barcelona, Spain. .,Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193, Bellaterra, Barcelona, Spain. .,Dept. of Epidemiology & Biostatistics, and Dept. of Statistics & Probability, Michigan State University, East Lansing, MI, 48824, USA.
| | - Laura M Zingaretti
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193, Bellaterra, Barcelona, Spain.,Dept. of Epidemiology & Biostatistics, and Dept. of Statistics & Probability, Michigan State University, East Lansing, MI, 48824, USA
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140, Caldes de Montbui, Barcelona, Spain
| | - Gustavo de Los Campos
- Dept. of Epidemiology & Biostatistics, and Dept. of Statistics & Probability, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
22
|
Qi R, Sun J, Qiu X, Zhang Y, Wang J, Wang Q, Huang J, Ge L, Liu Z. The intestinal microbiota contributes to the growth and physiological state of muscle tissue in piglets. Sci Rep 2021; 11:11237. [PMID: 34045661 PMCID: PMC8160342 DOI: 10.1038/s41598-021-90881-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Although the importance of the intestinal microbiota in host growth and health is well known, the relationship between microbiota colonization and muscle development is unclear. In this study, the direct causal effects of the colonization of gut microorganisms on the muscle tissue of piglets were investigated. The body weight and lean mass of germ-free (GF) piglets were approximately 40% lower than those of normal piglets. The deletion of the intestinal microbiota led to weakened muscle function and a reduction in myogenic regulatory proteins, such as MyoG and MyoD, in GF piglets. In addition, the blinded IGF1/AKT/mTOR pathway in GF piglets caused muscle atrophy and autophagy, which were characterized by the high expression of Murf-1 and KLF15. Gut microbiota introduced to GF piglets via fecal microbiota transplantation not only colonized the gut but also partially restored muscle growth and development. Furthermore, the proportion of slow-twitch muscle fibers was lower in the muscle of GF piglets, which was caused by the reduced short-chain fatty acid content in the circulation and impaired mitochondrial function in muscle. Collectively, these findings suggest that the growth, development and function of skeletal muscle in animals are mediated by the intestinal microbiota.
Collapse
Affiliation(s)
- Renli Qi
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China. .,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China. .,Chongqing Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing, 402460, China.
| | - Jing Sun
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China
| | - Xiaoyu Qiu
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China
| | - Yong Zhang
- Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China. .,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China. .,Chongqing Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing, 402460, China.
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China. .,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China.
| |
Collapse
|
23
|
Vaginal microbiome and serum metabolite differences in late gestation commercial sows at risk for pelvic organ prolapse. Sci Rep 2021; 11:6189. [PMID: 33731737 PMCID: PMC7969946 DOI: 10.1038/s41598-021-85367-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Sow mortality attributable to pelvic organ prolapse (POP) has increased in the U.S. swine industry and continues to worsen. Two main objectives of this study were, (1) to develop a perineal scoring system that can be correlated with POP risk, and (2) identify POP risk-associated biological factors. To assess POP risk during late gestation, sows (n = 213) were scored using a newly developed perineal scoring (PS) system. Sows scored as PS1 (low), PS2 (moderate), or PS3 (high) based on POP risk. Subsequently, 1.5, 0.8, and 23.1% of sows scored PS1, PS2, or PS3, respectively, experienced POP. To identify biomarkers, serum and vaginal swabs were collected from late gestation sows differing in PS. Using GC–MS, 82 serum metabolite differences between PS1 and PS3 animals (P < 0.05) were identified. Vaginal swabs were utilized for 16S rRNA gene sequencing and differences in vaginal microbiomes between PS1 and PS3 animals were detected on a community level (P < 0.01) along with differences in abundances of 89 operational taxonomic units (P < 0.05). Collectively, these data demonstrate that sows with greater POP risk have differential serum metabolites and vaginal microflora. Additionally, an initial and novel characterization of the sow vaginal microbiome was determined.
Collapse
|
24
|
Aliakbari A, Zemb O, Billon Y, Barilly C, Ahn I, Riquet J, Gilbert H. Genetic relationships between feed efficiency and gut microbiome in pig lines selected for residual feed intake. J Anim Breed Genet 2021; 138:491-507. [PMID: 33634901 PMCID: PMC8248129 DOI: 10.1111/jbg.12539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/10/2021] [Accepted: 01/24/2021] [Indexed: 12/21/2022]
Abstract
This study aimed to evaluate the genetic relationship between faecal microbial composition and five feed efficiency (FE) and production traits, residual feed intake (RFI), feed conversion ratio (FCR), daily feed intake (DFI), average daily gain (ADG) and backfat thickness (BFT). A total of 588 samples from two experimental pig lines developed by divergent selection for RFI were sequenced for the 16 rRNA hypervariable V3‐V4 region. The 75 genera with less than 20% zero values (97% of the counts) and two α‐diversity indexes were analysed. Line comparison of the microbiota traits and estimations of heritability (h2) and genetic correlations (rg) were analysed. A non‐metric multidimensional scaling showed line differences between genera. The α‐diversity indexes were higher in the LRFI line than in the HRFI line (p < .01), with h2 estimates of 0.19 ± 0.08 (Shannon) and 0.12 ± 0.06 (Simpson). Forty‐eight genera had a significant h2 (>0.125). The rg of the α‐diversities indexes with production traits were negative. Some rg of genera belonging to the Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Lactobacillaceae, Streptococcaceae, Rikenellaceae and Desulfovibrionaceae families significantly differed from zero (p < .05) with FE traits, RFI (3), DFI (7) and BFT (11). These results suggest that a sizable part of the variability of the gut microbial community is under genetic control and has genetic relationships with FE, including diversity indicators. It offers promising perspectives for selection for feed efficiency using gut microbiome composition in pigs.
Collapse
Affiliation(s)
- Amir Aliakbari
- GenPhySE, Université de Toulouse, INRAE, Castanet-Tolosan, France
| | - Olivier Zemb
- GenPhySE, Université de Toulouse, INRAE, Castanet-Tolosan, France
| | | | - Céline Barilly
- GenPhySE, Université de Toulouse, INRAE, Castanet-Tolosan, France
| | - Ingrid Ahn
- GenPhySE, Université de Toulouse, INRAE, Castanet-Tolosan, France
| | - Juliette Riquet
- GenPhySE, Université de Toulouse, INRAE, Castanet-Tolosan, France
| | - Hélène Gilbert
- GenPhySE, Université de Toulouse, INRAE, Castanet-Tolosan, France
| |
Collapse
|
25
|
Pei Y, Chen C, Mu Y, Yang Y, Feng Z, Li B, Li H, Li K. Integrated Microbiome and Metabolome Analysis Reveals a Positive Change in the Intestinal Environment of Myostatin Edited Large White Pigs. Front Microbiol 2021; 12:628685. [PMID: 33679652 PMCID: PMC7925633 DOI: 10.3389/fmicb.2021.628685] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/01/2021] [Indexed: 01/12/2023] Open
Abstract
Myostatin (MSTN) functional inactivation can change the proportion of lean meat and fat content in pigs. While both genotype and microbial composition are known to affect the host phenotype, so far there has been no systematic study to detect the changes in the intestinal microbial composition and metabolome of MSTN single copy mutant pigs. Here, we used 16S rDNA sequencing and metabolome analysis to investigate how MSTN gene editing affects changes in the microbial and metabolome composition in the jejunum and the cecum of Large White pigs. Our results showed that Clostridium_sensu_stricto_1, Bifidobacterium, Lachnospiraceae_UCG-007, Clostridium_sensu_stricto_6, Ruminococcaceae_UCG-002, and Ruminococcaceae_UCG-004 were significantly upregulated; while Treponema_2 and T34_unclassified were significantly downregulated in the jejunum of MSTN pigs. Similarly, Phascolarctobacterium, Ruminiclostridium_9, Succinivibrio, Longibaculum, and Candidatus_Stoquefichus were significantly upregulated, while Barnesiella was significantly downregulated in the cecum of MSTN pigs. Moreover, metabolomics analysis showed significant changes in metabolites involved in purine, sphingolipid and tryptophan metabolism in the jejunum, while those associated with glycerophospholipid and pyrimidine metabolism were changed in the cecum. Spearman correlation analysis further demonstrated that there was a significant correlation between microflora composition and metabolites. Our analyses indicated the MSTN editing affects the composition of metabolites and microbial strains in the jejunum and the cecum, which might provide more useable nutrients for the host of MSTN± Large White pigs.
Collapse
Affiliation(s)
- Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Chujie Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Yulian Mu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Malbert CH. Vagally Mediated Gut-Brain Relationships in Appetite Control-Insights from Porcine Studies. Nutrients 2021; 13:nu13020467. [PMID: 33573329 PMCID: PMC7911705 DOI: 10.3390/nu13020467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/07/2023] Open
Abstract
Signals arising from the upper part of the gut are essential for the regulation of food intake, particularly satiation. This information is supplied to the brain partly by vagal nervous afferents. The porcine model, because of its sizeable gyrencephalic brain, omnivorous regimen, and comparative anatomy of the proximal part of the gut to that of humans, has provided several important insights relating to the relevance of vagally mediated gut-brain relationships to the regulation of food intake. Furthermore, its large size combined with the capacity to become obese while overeating a western diet makes it a pivotal addition to existing murine models, especially for translational studies relating to obesity. How gastric, proximal intestinal, and portal information relating to meal arrival and transit are encoded by vagal afferents and their further processing by primary and secondary brain projections are reviewed. Their peripheral and central plasticities in the context of obesity are emphasized. We also present recent insights derived from chronic stimulation of the abdominal vagi with specific reference to the modulation of mesolimbic structures and their role in the restoration of insulin sensitivity in the obese miniature pig model.
Collapse
Affiliation(s)
- Charles-Henri Malbert
- Aniscan Unit, INRAE, Saint-Gilles, 35590 Paris, France;
- National Academy of Medicine, 75000 Paris, France
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
27
|
Serra CR, Oliva-Teles A, Enes P, Tavares F. Gut microbiota dynamics in carnivorous European seabass (Dicentrarchus labrax) fed plant-based diets. Sci Rep 2021; 11:447. [PMID: 33432059 PMCID: PMC7801451 DOI: 10.1038/s41598-020-80138-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
A healthy gastrointestinal microbiota is essential for host fitness, and strongly modulated by host diet. In aquaculture, a current challenge is to feed carnivorous fish with plant-feedstuffs in substitution of fish meal, an unsustainable commodity. Plants have a limited nutritive value due to the presence of non-starch polysaccharides (NSP) which are not metabolized by fish. In this work we assessed the effects of NSP-enriched diets on European seabass gut microbiota and evaluate the selective pressure of plant feedstuffs towards gut microbes with NSP-hydrolytic potential, i.e. capable to convert indigestible dietary constituents in fish metabolites. Triplicate groups of European seabass juveniles were fed a fish meal-based diet (control) or three plant-based diets (SBM, soybean meal; RSM, rapeseed meal; SFM, sunflower meal) for 6 weeks, before recovering intestinal samples for microbiota analysis, using the Illumina's MiSeq platform. Plant-based diets impacted differently digesta and mucosal microbiota. A decrease (p = 0.020) on species richness, accompanied by a decline on the relative abundance of specific phyla such as Acidobacteria (p = 0.030), was observed in digesta samples of SBM and RSM experimental fish, but no effects were seen in mucosa-associated microbiota. Plant-based diets favored the Firmicutes (p = 0.01), in particular the Bacillaceae (p = 0.017) and Clostridiaceae (p = 0.007), two bacterial families known to harbor carbohydrate active enzymes and thus putatively more prone to grow in high NSP environments. Overall, bacterial gut communities of European seabass respond to plant-feedstuffs with adjustments in the presence of transient microorganisms (allochthonous) with carbohydrolytic potential, while maintaining a balanced core (autochthonous) microbiota.
Collapse
Affiliation(s)
- Cláudia R Serra
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Aires Oliva-Teles
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, Ed. FC4, 4169-007, Porto, Portugal
| | - Paula Enes
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, Ed. FC4, 4169-007, Porto, Portugal
| | - Fernando Tavares
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, Ed. FC4, 4169-007, Porto, Portugal
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| |
Collapse
|
28
|
Recent genetic advances on boar taint reduction as an alternative to castration: a review. J Appl Genet 2021; 62:137-150. [PMID: 33405214 PMCID: PMC7822767 DOI: 10.1007/s13353-020-00598-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 11/28/2022]
Abstract
Boar taint is an unpleasant odor in male pig meat, mainly caused by androstenone, skatole, and indole, which are deposited in the fat tissue. Piglet castration is the most common practice to prevent boar taint. However, castration is likely to be banished in a few years due to animal welfare concerns. Alternatives to castration, such as genetic selection, have been assessed. Androstenone and skatole have moderate to high heritability, which makes it feasible to select against these compounds. This review presents the latest results obtained on genetic selection against boar taint, on correlation with other traits, on differences in breeds, and on candidate genes related to boar taint. QTLs for androstenone and skatole have been reported mainly on chromosomes 6, 7, and 14. These chromosomes were reported to contain genes responsible for synthesis and degradation of androstenone and skatole. A myriad of work has been done to find markers or genes that can be used to select animals with lower boar taint. The selection against boar taint could decrease performance of some reproduction traits. However, a favorable response on production traits has been observed by selecting against boar taint. Selection results have shown that it is possible to reduce boar taint in few generations. In addition, modifications in diet and environment conditions could be associated with genetic selection to reduce boar taint. Nevertheless, costs to measure and select against boar taint should be rewarded with incentives from the market; otherwise, it would be difficult to implement genetic selection.
Collapse
|
29
|
Tiezzi F, Fix J, Schwab C, Shull C, Maltecca C. Gut microbiome mediates host genomic effects on phenotypes: a case study with fat deposition in pigs. Comput Struct Biotechnol J 2020; 19:530-544. [PMID: 33510859 PMCID: PMC7809165 DOI: 10.1016/j.csbj.2020.12.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023] Open
Abstract
A large number of studies have highlighted the importance of gut microbiome composition in shaping fat deposition in mammals. Several studies have also highlighted how host genome controls the abundance of certain species that make up the gut microbiota. We propose a systematic approach to infer how the host genome can control the gut microbiome, which in turn contributes to the host phenotype determination. We implemented a mediation test that can be applied to measured and latent dependent variables to describe fat deposition in swine (Sus scrofa). In this study, we identify several host genomic features having a microbiome-mediated effects on fat deposition. This demonstrates how the host genome can affect the phenotypic trait by inducing a change in gut microbiome composition that leads to a change in the phenotype. Host genomic variants identified through our analysis are different than the ones detected in a traditional genome-wide association study. In addition, the use of latent dependent variables allows for the discovery of additional host genomic features that do not show a significant effect on the measured variables. Microbiome-mediated host genomic effects can help understand the genetic determination of fat deposition. Since their contribution to the overall genetic variance is usually not included in association studies, they can contribute to filling the missing heritability gap and provide further insights into the host genome – gut microbiome interplay. Further studies should focus on the portability of these effects to other populations as well as their preservation when pro-/pre-/anti-biotics are used (i.e. remediation).
Collapse
Key Words
- BEL, Weight of the belly cut
- BF1, Backfat depth measured in vivo at the age of 118.1±1.16 d
- BF2, Backfat depth measured in vivo at the age of 145.9±1.53 d
- BF3, Backfat depth measured in vivo at the age of 174.3±1.43 d
- BF4, Backfat depth measured in vivo at the age of 196.6±8.03 d
- BFt, Backfat measured post mortem (after slaughter at 196.6±8.03 d)
- Causal effect
- FATg, Latent variable built on BF1, BF2, and BF3
- FATt, Latent variable built on BF4, BFt, and BEL
- Fat deposition
- G, host genomic features, represented in this study by SNP
- Gut microbiome
- Latent variables
- M, gut microbiome features, represented in this study by OUT
- Mod1, Model 1, used to estimate the total effect of G on P. Reported in Fig. 1a
- Mod1L, Model 1L, used to estimate the total effect of G on
- Mod2, Model 2, used to estimate the effect of M on P. Reported in Fig. 1b
- Mod2L, Model 2L, used to estimate the effect of M on
- Mod3, Model 3, used to estimate the effect of G on M. Reported in Fig. S1
- Mod4, Model 4, used to estimate the direct and mediated effects of G on P. Reported in Fig. 1c
- Mod4L, Model 4, used to estimate the direct and mediated effects of G on. Reported in Fig. 1d
- OUT, Operational Taxonomic Units
- P, Phenotype recorded on the host
- S2a, S2b, S3a, S3b, S3c, Gut microbiome OUT selected used as mediator variables. See Table 2
- SEM, Structural equation model
- SNP, Single Nucleotide Polymorphism marker
- Π, Latent variable built on the P variables
Collapse
Affiliation(s)
- Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Justin Fix
- Acuity Ag Solutions, LLC, Carlyle, IL 62230, USA
| | - Clint Schwab
- Acuity Ag Solutions, LLC, Carlyle, IL 62230, USA.,The Maschhoffs, LLC, Carlyle, IL 62230, USA
| | | | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
30
|
Abstract
Host-associated microbiomes contribute in many ways to the homeostasis of the metaorganism. The microbiome's contributions range from helping to provide nutrition and aiding growth, development, and behavior to protecting against pathogens and toxic compounds. Here we summarize the current knowledge of the diversity and importance of the microbiome to animals, using representative examples of wild and domesticated species. We demonstrate how the beneficial ecological roles of animal-associated microbiomes can be generally grouped into well-defined main categories and how microbe-based alternative treatments can be applied to mitigate problems for both economic and conservation purposes and to provide crucial knowledge about host-microbiota symbiotic interactions. We suggest a Customized Combination of Microbial-Based Therapies to promote animal health and contribute to the practice of sustainable husbandry. We also discuss the ecological connections and threats associated with animal biodiversity loss, microorganism extinction, and emerging diseases, such as the COVID-19 pandemic.
Collapse
Affiliation(s)
- Raquel S Peixoto
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; .,Current affiliation: Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudia Arabia;
| | - Derek M Harkins
- J. Craig Venter Institute, Rockville, Maryland 20850, USA; ,
| | - Karen E Nelson
- J. Craig Venter Institute, Rockville, Maryland 20850, USA; ,
| |
Collapse
|
31
|
Correa-Fiz F, Neila-Ibáñez C, López-Soria S, Napp S, Martinez B, Sobrevia L, Tibble S, Aragon V, Migura-Garcia L. Feed additives for the control of post-weaning Streptococcus suis disease and the effect on the faecal and nasal microbiota. Sci Rep 2020; 10:20354. [PMID: 33230191 PMCID: PMC7683732 DOI: 10.1038/s41598-020-77313-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Medicated feed is a common strategy to control the occurrence of Streptococcus suis disease in swine production, but feed additives may constitute an alternative to metaphylaxis. In a farm with post-weaning S. suis disease, the following additives were tested: lysozyme (Lys), medium chain fatty acids plus lysozyme (FA + Lys), FA plus a natural anti-inflammatory (FA + antiinf) and amoxicillin (Amox). During the course of the study, FA + antiinf and Amox groups showed lower prevalence of clinical signs compatible with S. suis disease than the rest of the groups. Piglets from the FA + antiinf group showed high diversity and richness in their nasal and faecal microbiota. Diet supplements did not have major effects on the faecal microbiota, where the genus Mitsuokella was the only differentially present in the FA + Lys group. In the nasal microbiota, piglets from FA + antiinf presented higher differential abundance of a sequence variant from Ruminococcaceae and lower abundance of an unclassified genus from Weeksellaceae. In general, we detected more significant changes in the nasal than in the feacal microbiota, and found that parity of the dams affected the microbiota composition of their offspring, with piglets born to gilts exhibiting lower richness and diversity. Our results suggest that additives could be useful to control post-weaning disease when removing antimicrobials in farms.
Collapse
Affiliation(s)
- Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Carlos Neila-Ibáñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Sergio López-Soria
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Sebastian Napp
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | | | - Laia Sobrevia
- ASN SL, Calle de Murcia, PL Fraga, 22520, Huesca, Spain
| | - Simon Tibble
- ASN SL, Calle de Murcia, PL Fraga, 22520, Huesca, Spain
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Lourdes Migura-Garcia
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.
| |
Collapse
|
32
|
Molecular Characterization of Microbial and Fungal Communities on Dry-Aged Beef of Hanwoo Using Metagenomic Analysis. Foods 2020; 9:foods9111571. [PMID: 33138191 PMCID: PMC7693710 DOI: 10.3390/foods9111571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
Dry aging has been widely applied for the aging of meat to produce a unique flavor and tenderness of meat. A number of microorganisms are present, forming a community with interactions that affect the meat aging process. However, their comprehensive compositions are still not well understood. In this study, we analyzed longitudinal changes in microbial and fungal communities in dry-aged beef using a metagenomic platform. 16S rRNA sequencing revealed that dry aging led to an increase in bacterial diversity, and Actinobacteria and Firmicutes, which are mostly lactic acid bacteria, were dominant on dry-aged beef. However, prolonged dry aging reduced the diversity of lactic acid bacteria. Sequencing of the internal transcribed spacer (ITS) region showed that fungal diversity was reduced by aging and that Helicostylum sp. was the most common species. These results suggest that there are various microorganisms on dry-aged beef that interrelate with each other and affect meat quality. Understanding microbial characteristics during the aging process will help to enhance beef quality and functional effects.
Collapse
|
33
|
Fang S, Chen X, Ye X, Zhou L, Xue S, Gan Q. Effects of Gut Microbiome and Short-Chain Fatty Acids (SCFAs) on Finishing Weight of Meat Rabbits. Front Microbiol 2020; 11:1835. [PMID: 32849435 PMCID: PMC7431612 DOI: 10.3389/fmicb.2020.01835] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding how the gut microbiome and short-chain fatty acids (SCFAs) affect finishing weight is beneficial to improve meat production in the meat rabbit industry. In this study, we identified 15 OTUs and 23 microbial species associated with finishing weight using 16S rRNA gene and metagenomic sequencing analysis, respectively. Among these, butyrate-producing bacteria of the family Ruminococcaceae were positively associated with finishing weight, whereas the microbial taxa related to intestinal damage and inflammation showed opposite effects. Furthermore, interactions of these microbial taxa were firstly found to be associated with finishing weight. Gut microbial functional capacity analysis revealed that CAZymes, such as galactosidase, xylanase, and glucosidase, could significantly affect finishing weight, given their roles in regulating nutrient digestibility. GOs related to the metabolism of several carbohydrates and amino acids also showed important effects on finishing weight. Additionally, both KOs and KEGG pathways related to the membrane transportation system and involved in aminoacyl-tRNA biosynthesis and butanoate metabolism could act as key factors in modulating finishing weight. Importantly, gut microbiome explained nearly 11% of the variation in finishing weight, and our findings revealed that a subset of metagenomic species could act as predictors of finishing weight. SCFAs levels, especially butyrate level, had critical impacts on finishing weight, and several finishing weight-associated species were potentially contributed to the shift in butyrate level. Thus, our results should give deep insights into how gut microbiome and SCFAs influence finishing weight of meat rabbits and provide essential knowledge for improving finishing weight by manipulating gut microbiome.
Collapse
Affiliation(s)
- Shaoming Fang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuan Chen
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoxing Ye
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liwen Zhou
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuaishuai Xue
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qianfu Gan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
34
|
Bergamaschi M, Tiezzi F, Howard J, Huang YJ, Gray KA, Schillebeeckx C, McNulty NP, Maltecca C. Gut microbiome composition differences among breeds impact feed efficiency in swine. MICROBIOME 2020; 8:110. [PMID: 32698902 PMCID: PMC7376719 DOI: 10.1186/s40168-020-00888-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Feed efficiency is a crucial parameter in swine production, given both its economic and environmental impact. The gut microbiota plays an essential role in nutrient digestibility and is, therefore, likely to affect feed efficiency. This study aimed to characterize feed efficiency, fatness traits, and gut microbiome composition in three major breeds of domesticated swine and investigate a possible link between feed efficiency and gut microbiota composition. RESULTS Average daily feed intake (ADFI), average daily gain (ADG), feed conversion ratio (FCR), residual feed intake (RFI), backfat, loin depth, and intramuscular fat of 615 pigs belonging to the Duroc (DR), Landrace (LR), and Large White (LW) breeds were measured. Gut microbiota composition was characterized by 16S rRNA gene sequencing. Orthogonal contrasts between paternal line (DR) and maternal lines (LR+LW) and between the two maternal lines (LR versus LW) were performed. Average daily feed intake and ADG were statistically different with DR having lower ADFI and ADG compared to LR and LW. Landrace and LW had a similar ADG and RFI, with higher ADFI and FCR for LW. Alpha diversity was higher in the fecal microbial communities of LR pigs than in those of DR and LW pigs for all time points considered. Duroc communities had significantly higher proportional representation of the Catenibacterium and Clostridium genera compared to LR and LW, while LR pigs had significantly higher proportions of Bacteroides than LW for all time points considered. Amplicon sequence variants from multiple genera (including Anaerovibrio, Bacteroides, Blautia, Clostridium, Dorea, Eubacterium, Faecalibacterium, Lactobacillus, Oscillibacter, and Ruminococcus) were found to be significantly associated with feed efficiency, regardless of the time point considered. CONCLUSIONS In this study, we characterized differences in the composition of the fecal microbiota of three commercially relevant breeds of swine, both over time and between breeds. Correlations between different microbiome compositions and feed efficiency were established. This suggests that the microbial community may contribute to shaping host productive parameters. Moreover, our study provides important insights into how the intestinal microbial community might influence host energy harvesting capacity. A deeper understanding of this process may allow us to modulate the gut microbiome in order to raise more efficient animals. Video Abstract.
Collapse
Affiliation(s)
- Matteo Bergamaschi
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| | - Jeremy Howard
- Smithfield Premium Genetics, Rose Hill, NC 28458 USA
| | - Yi Jian Huang
- Smithfield Premium Genetics, Rose Hill, NC 28458 USA
| | - Kent A. Gray
- Smithfield Premium Genetics, Rose Hill, NC 28458 USA
| | | | | | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
35
|
Vollmar S, Wellmann R, Borda-Molina D, Rodehutscord M, Camarinha-Silva A, Bennewitz J. The Gut Microbial Architecture of Efficiency Traits in the Domestic Poultry Model Species Japanese Quail ( Coturnix japonica) Assessed by Mixed Linear Models. G3 (BETHESDA, MD.) 2020; 10:2553-2562. [PMID: 32471941 PMCID: PMC7341145 DOI: 10.1534/g3.120.401424] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
It is well known that mammals and avian gut microbiota compositions are shaped by the host genomes and affect quantitative traits. The microbial architecture describes the impact of the microbiota composition on quantitative trait variation and the number and effect distribution of microbiota features. In the present study the gut microbial architecture of feed-related traits phosphorus and calcium utilization, daily gain, feed intake and feed per gain ratio in the domestic poultry model species Japanese quail were assessed by mixed linear models. The ileum microbiota composition was characterized by 16S rRNA amplicon sequencing techniques of growing individuals. The microbiability of the traits was on a similar level as the narrow sense heritability and was highly significant except for calcium utilization. The animal microbial correlation of the traits was substantial. Microbiome-wide association analyses revealed several traits associated and highly significant microbiota features, both on the bacteria genera as well as on the operational taxonomic unit level. Most features were significant for more than one trait, which explained the high microbial correlations. It can be concluded that the traits are polymicrobial determined with some microbiota features with larger effects and many with small effects. The results are important for the development of hologenomic selection schemes for feed-related traits in avian breeding programs that are targeting the host genome and the metagenome simultaneously.
Collapse
Affiliation(s)
- Solveig Vollmar
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Robin Wellmann
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | | | | | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
36
|
Bergamaschi M, Maltecca C, Schillebeeckx C, McNulty NP, Schwab C, Shull C, Fix J, Tiezzi F. Heritability and genome-wide association of swine gut microbiome features with growth and fatness parameters. Sci Rep 2020; 10:10134. [PMID: 32576852 PMCID: PMC7311463 DOI: 10.1038/s41598-020-66791-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
Despite recent efforts to characterize longitudinal variation in the swine gut microbiome, the extent to which a host's genome impacts the composition of its gut microbiome is not yet well understood in pigs. The objectives of this study were: i) to identify pig gut microbiome features associated with growth and fatness, ii) to estimate the heritability of those features, and, iii) to conduct a genome-wide association study exploring the relationship between those features and single nucleotide polymorphisms (SNP) in the pig genome. A total of 1,028 pigs were characterized. Animals were genotyped with the Illumina PorcineSNP60 Beadchip. Microbiome samples from fecal swabs were obtained at weaning (Wean), at mid-test during the growth trial (MidTest), and at the end of the growth trial (OffTest). Average daily gain was calculated from birth to week 14 of the growth trial, from weaning to week 14, from week 14 to week 22, and from week 14 to harvest. Backfat and loin depth were also measured at weeks 14 and 22. Heritability estimates (±SE) of Operational Taxonomic Units ranged from 0.025 (±0.0002) to 0.139 (±0.003), from 0.029 (±0.003) to 0.289 (±0.004), and from 0.025 (±0.003) to 0.545 (±0.034) at Wean, MidTest, and OffTest, respectively. Several SNP were significantly associated with taxa at the three time points. These SNP were located in genomic regions containing a total of 68 genes. This study provides new evidence linking gut microbiome composition with growth and carcass traits in swine, while also identifying putative host genetic markers associated with significant differences in the abundance of several prevalent microbiome features.
Collapse
Affiliation(s)
- Matteo Bergamaschi
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Nathan P McNulty
- Matatu, Inc., 4340 Duncan Ave., Suite 211, St. Louis, MO, 63110, USA
| | | | | | - Justin Fix
- The Maschhoffs LLC, Carlyle, IL, 62231, USA
| | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
37
|
Gebhardt JT, Thomson KA, Woodworth JC, Dritz SS, Tokach MD, DeRouchey JM, Goodband RD, Jones CK, Cochrane RA, Niederwerder MC, Fernando S, Abbas W, Burkey TE. Effect of dietary medium-chain fatty acids on nursery pig growth performance, fecal microbial composition, and mitigation properties against porcine epidemic diarrhea virus following storage. J Anim Sci 2020; 98:skz358. [PMID: 31758795 PMCID: PMC6978897 DOI: 10.1093/jas/skz358] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
An experiment was conducted to evaluate the effect of dietary medium-chain fatty acid (MCFA) addition on nursery pig growth performance, fecal microbial composition, and mitigation of porcine epidemic diarrhea virus (PEDV) following storage. A total of 360 pigs (DNA 400 × 200, Columbus, NE; initially 6.7 ± 0.07 kg) were randomized to pens (5 pigs per pen) on the day of weaning (approximately 20 d of age), allowed a 6-d acclimation, blocked by BW, and randomized to dietary treatment (9 pens per treatment). All MCFA (Sigma-Aldrich, St. Louis, MO) were guaranteed ≥98% purity, including hexanoic (C6:0), octanoic (C8:0), and decanoic (C10:0) acids. Treatment diets were formulated in 2 phases (7 to 11 and 11 to 23 kg BW) and formulated to meet or exceed NRC requirement estimates. Treatments (n = 8) were a dose response including 0%, 0.25%, 0.5%, 1.0%, and 1.5% added MCFA blend (1:1:1 ratio C6:0, C8:0, and C10:0), as well as treatments with individual additions of 0.5% C6:0, C8:0, or C10:0. Fecal samples were collected from pigs fed control and 1.5% MCFA blend diets on days 0 and 14 and analyzed using 16s rDNA sequencing. Following feed manufacture, feed was stored in bags at barn temperature and humidity for 40 d before laboratory inoculation with PEDV. Subsamples of retained feed were inoculated with PEDV to achieve a titer of 104 TCID50/g and separate sample bottles were analyzed on 0 and 3 d post-inoculation (dpi). Overall, ADG and ADFI were increased (linear, P ≤ 0.010) and feed efficiency (G:F) improved (linear, P = 0.004) with increasing MCFA blend. Pigs fed 0.5% C8:0 had greater (P = 0.038) ADG compared with pigs fed the control diet, and G:F was improved (P ≤ 0.024) when pigs were fed 0.5% C6:0, 0.5% C8:0, or 0.5% C10:0 compared with control. An inclusion level × day interaction was observed (quadratic, P = 0.023), where PEDV Ct values increased (quadratic, P = 0.001) on 0 dpi with increasing levels of MCFA blend inclusion and also increased on 3 dpi (linear, P < 0.001). Fecal microbial diversity and composition were similar between control and 1.5% MCFA blend. In summary, the use of MCFA in nursery pig diets improves growth performance, provides residual mitigation activity against PEDV, and does not significantly alter fecal microbial composition.
Collapse
Affiliation(s)
- Jordan T Gebhardt
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Katelyn A Thomson
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Michael D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Cassandra K Jones
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Roger A Cochrane
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Samodha Fernando
- Department of Animal Science, College of Agricultural Sciences and Natural Resources, University of Nebraska, Lincoln, NE
| | - Waseem Abbas
- Department of Animal Science, College of Agricultural Sciences and Natural Resources, University of Nebraska, Lincoln, NE
| | - Thomas E Burkey
- Department of Animal Science, College of Agricultural Sciences and Natural Resources, University of Nebraska, Lincoln, NE
| |
Collapse
|