1
|
Zhigila DA, Elliott TL, Schmiedel U, Muasya AM. Do phylogenetic community metrics reveal the South African quartz fields as terrestrial-habitat islands? ANNALS OF BOTANY 2024; 133:833-850. [PMID: 38401154 PMCID: PMC11082514 DOI: 10.1093/aob/mcae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND AND AIMS The quartz fields of the Greater Cape Floristic Region (GCFR) are arid and island-like special habitats, hosting ~142 habitat-specialized plant species, of which 81 % are local endemics, characterized by a rapid turnover of species between and among sites. We use several phylogenetic community metrics: (1) to examine species diversity and phylogenetic structure within and among quartz fields; (2) to investigate whether quartz field specialists are evolutionarily drawn from local species pools, whereas the alternative hypothesis posits that there is no significant evolutionary connection between quartz field specialists and the local species pools; and (3) to determine whether there is an association between certain traits and the presence of species in quartz fields. METHODS We sampled and developed dated phylogenies for six species-rich angiosperm families (Aizoaceae, Asteraceae, Crassulaceae, Cyperaceae, Fabaceae and Santalaceae) represented in the quartz field floras of southern Africa. Specifically, we focused on the flora of three quartz field regions in South Africa (Knersvlakte, Little Karoo and Overberg) and their surrounding species pools to address our research questions by scoring traits associated with harsh environments. KEY RESULTS We found that the Overberg and Little Karoo had the highest level of species overlap for families Aizoaceae and Fabaceae, whereas the Knersvlakte and the Overberg had the highest species overlap for families Asteraceae, Crassulaceae and Santalaceae. Although our phylogenetic community structure and trait analyses showed no clear patterns, relatively low pairwise phylogenetic distances between specialists and their local species pools for Aizoaceae suggest that quartz species could be drawn evolutionarily from their surrounding areas. We also found that families Aizoaceae and Crassulaceae in Knersvlakte and Little Karoo were phylogenetically even. CONCLUSIONS Despite their proximity to one another within the GCFR, the studied areas differ in their species pools and the phylogenetic structure of their specialists. Our work provides further justification for increased conservation focus on these unique habitats under future scenarios of global change.
Collapse
Affiliation(s)
- Daniel A Zhigila
- Department of Botany, Gombe State University, PMB 127, Tudun Wada, Gombe, Gombe State, Nigeria
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Tammy L Elliott
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Ute Schmiedel
- Organismic Botany and Mycology, Institute of Plant Science and Microbiology, University of Hamburg, Germany
| | - A Muthama Muasya
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
2
|
Barbosa Fontana R, Both C, Hartz SM. Direct development in Atlantic Forest anurans: What can environmental and biotic influences explain about its evolution and occurrence? PLoS One 2023; 18:e0291644. [PMID: 38032887 PMCID: PMC10688756 DOI: 10.1371/journal.pone.0291644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/04/2023] [Indexed: 12/02/2023] Open
Abstract
Different environmental and biological factors can originate and support different alternative life histories in different taxonomic groups. Likewise, these factors are important for the processes that assemble and structure communities. Amphibians, besides being highly susceptible to environmental conditions, have various reproductive strategies, such as the direct development of individuals. Several hypotheses have been raised about possible selective pressures related to the emergence of direct development in anurans, as well as the relationship between environmental characteristics and the occurrence of these species. Such investigations, however, have mainly focused on specific clades and/or regions. Here, we use structural equation modelling to investigate the relationships between different abiotic (temperature, precipitation, humidity, and terrain slope) and biotic (phylogenetic composition and functional diversity) factors and the proportion of species with direct development in 766 anuran communities of the Atlantic Forest, a biome with a vast diversity of anuran species and high environmental complexity. Anuran communities with higher proportions of direct developing species were found to be mainly influenced by low potential evapotranspiration, low temperature seasonality, and high functional diversity. Phylogenetic composition and terrain slope were also found to be important in determining the occurrence of these species in Atlantic Forest communities. These results show the importance of these factors in the structuring of these communities and provide important contributions to the knowledge of direct development in anurans.
Collapse
Affiliation(s)
- Rodrigo Barbosa Fontana
- Instituto de Biociências, Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Both
- Departamento Interdisciplinar, Centro de Estudos Limnológicos e Marinhos, Universidade Federal do Rio Grande do Sul, Imbé, Rio Grande do Sul, Brazil
| | - Sandra Maria Hartz
- Instituto de Biociências, Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Zhang W, Liao Z, Xiao Q, Zhou J, Shi X, Li C, Chen Y, Xu W. Habitat-specific conservation priorities of multidimensional diversity patterns of amphibians in China effectively contribute to the '3030' target. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165959. [PMID: 37541511 DOI: 10.1016/j.scitotenv.2023.165959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Amphibia is the most threatened animal group among all land vertebrates in the context of anthropogenic global change. Filling the conservation gaps for this taxonomic group could help achieve the ambitious target of covering 30 % of the land by 2030 ('3030' target) set by the 15-th meeting of the Conference of the Parties (COP15). In this study, we compiled the most up-to-date occurrence records and corresponding species-specific traits and phylogenies of amphibians in China (particularly those newly described in the past decade) to explore the spatial distribution patterns of multidimensional diversity (including taxonomic, functional, and phylogenetic) for different species groups (including all, endemic and threatened). Additionally, a new conservation gap index (CGI) was proposed and applied to the analysis of multi-objective conservation strategies. The results showed that the spatial distribution of taxonomic, functional and phylogenetic diversity of amphibians in China is markedly geographically diverse, with common hotspots for all three concentrated in the humid mountainous regions of southern China. The CGI, which is independent of arbitrary threshold selection and grid cell size, showed that the conservation gap for amphibians in China is largest in biomes such as tropical and subtropical moist broadleaf forests and temperate broadleaf and mixed forests. The multi-objective conservation analysis revealed that the Yangtze River basin, Pearl River basin and Southeast Basin in China have pivotal roles in achieving the '3030' target due to their high taxonomic, phylogenetic and functional diversity, relatively high proportion of threatened and endemic species, and low coverage of existing nature reserves. Notably, sustainable management of less-protected habitats, including farmlands and grasslands, can reduce the area requirement of strict protection for reaching the '3030' conservation goal. This study provides practical strategies for guiding amphibian conservation by systematically integrating multidimensional biodiversity information, habitat features and the spatial distributions of the existing natural reserves.
Collapse
Affiliation(s)
- Wenyan Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyan Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Qi Xiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqin Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Youhua Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Weihua Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
4
|
Lourenço-de-Moraes R, Campos FS, Cabral P, Silva-Soares T, Nobrega YC, Covre AC, França FGR. Global conservation prioritization areas in three dimensions of crocodilian diversity. Sci Rep 2023; 13:2568. [PMID: 36781891 PMCID: PMC9925794 DOI: 10.1038/s41598-023-28413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
Crocodilians are a taxonomic group of large predators with important ecological and evolutionary benefits for ecosystem functioning in the face of global change. Anthropogenic actions affect negatively crocodilians' survival and more than half of the species are threatened with extinction worldwide. Here, we map and explore three dimensions of crocodilian diversity on a global scale. To highlight the ecological importance of crocodilians, we correlate the spatial distribution of species with the ecosystem services of nutrient retention in the world. We calculate the effectiveness of global protected networks in safeguarding crocodilian species and provide three prioritization models for conservation planning. Our results show the main hotspots of ecological and evolutionary values are in southern North, Central and South America, west-central Africa, northeastern India, and southeastern Asia. African species have the highest correlation to nutrient retention patterns. Twenty-five percent of the world's crocodilian species are not significantly represented in the existing protected area networks. The most alarming cases are reported in northeastern India, eastern China, and west-central Africa, which include threatened species with low or non-significant representation in the protected area networks. Our highest conservation prioritization model targets southern North America, east-central Central America, northern South America, west-central Africa, northeastern India, eastern China, southern Laos, Cambodia, and some points in southeastern Asia. Our research provides a global prioritization scheme to protect multiple dimensions of crocodilian diversity for achieving effective conservation outcomes.
Collapse
Affiliation(s)
- Ricardo Lourenço-de-Moraes
- Programa de Pós-graduação em Ecologia e Monitoramento Ambiental (PPGEMA), Universidade Federal da Paraíba, Rio Tinto, PB, 58297-000, Brazil.
| | - Felipe S Campos
- NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312, Lisbon, Portugal.
- Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Catalunya, Spain.
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193, Cerdanyola del Vallès, Catalunya, Spain.
| | - Pedro Cabral
- NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312, Lisbon, Portugal
| | - Thiago Silva-Soares
- Herpeto Capixaba project, Instituto Biodiversidade Neotropical, Nova Guarapari, Guarapari, ES, 29206-400, Brazil
- Museu de História Natural do Sul do Estado do Espírito Santo, Universidade Federal do Espírito Santo, Jerônimo Monteiro, ES, 29550-000, Brazil
| | - Yhuri C Nobrega
- Projeto Caiman, Instituto Marcos Daniel, Vitória, ES, 29055-290, Brazil
- Departamento de Medicina Veterinária, Centro Universitário FAESA, Vitória, ES, 29053-360, Brazil
| | - Amanda C Covre
- Programa de Pós-graduacão em Ecologia de Ambientes Aquáticos Continentais (PEA), Universidade Estadual de Maringá, Maringá, PR, 87020-900, Brazil
| | - Frederico G R França
- Programa de Pós-graduação em Ecologia e Monitoramento Ambiental (PPGEMA), Universidade Federal da Paraíba, Rio Tinto, PB, 58297-000, Brazil
| |
Collapse
|
5
|
Jeon JY, Lee DK, Kim JH. Functional group analyses of herpetofauna in South Korea using a large dataset. Sci Data 2023; 10:15. [PMID: 36604446 PMCID: PMC9816106 DOI: 10.1038/s41597-022-01924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Functional traits are characteristics of species that affect their fitness and ecosystem, and they greatly influence ecological niches. Thus, biodiversity assessment based on functional groups rather than species per se can more realistically reflect the ecological niche space. As essential players of ecosystem functions, herpetofauna are appropriate subjects of functional trait-based analyses. In this study, using a nationwide dataset and applying trait information and ecological niche modeling, the richness within each functional group, and the taxonomic and functional diversity indices of South Korean herpetofauna were visualized to identify and compare the geographic distributions. The results revealed that the reptile community seemed more locally diverse with more overlapping randomized patterns among groups than amphibians, while amphibians showed wider distributions and a higher within-grid occurrence ratio. Functional diversity indices of reptiles also showed more randomized geographic patterns with higher levels at Jejudo Island than amphibians. The findings of this study may help to identify biodiversity hot spots and understand its ecosystem health. Increasing survey data and trait information will improve the assessment.
Collapse
Affiliation(s)
- Jong Yoon Jeon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08802, South Korea
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47906, USA
| | - Dong Kun Lee
- Department of Landscape Architecture and Rural System Engineening, Seoul National University, Seoul, 08802, South Korea
| | - Jae Hyun Kim
- Warnell School of Forestry & Natural Resources, University of Georgia, Athens, 30602, USA.
- DMZ Ecology Research Institute, Paju, 10881, South Korea.
| |
Collapse
|
6
|
Covre AC, Lourenço-de-Moraes R, Campos FS, Benedito E. Spatial relationships between fishes and amphibians: implications for conservation planning in a Neotropical Hotspot. ENVIRONMENTAL MANAGEMENT 2022; 70:978-989. [PMID: 36036277 DOI: 10.1007/s00267-022-01707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Species distribution patterns are widely used to guide conservation planning and are a central issue in ecology. The usefulness of spatial correlation analysis has been highlighted in several ecological applications so far. However, spatial assumptions in ecology are highly scale-dependent, in which geographical relationships between species diversity and distributions can have different conservation concerns. Here, an integrative landscape planning was designed to show the spatial distribution patterns of taxonomic and functional diversity of amphibians and fishes, from multiple species traits regarding morphology, life history, and behavior. We used spatial, morphological, and ecological data of amphibians and fishes to calculate the functional diversity and the spatial correlation of species. Mapping results show that the higher taxonomic and functional diversity of fishes is concentrated in the West Atlantic Forest. Considering amphibians, are located in the East portion of the biome. The spatial correlation of species indicates the regions of the Serra do Mar and the extreme southern part of the Central Corridor as the main overlapped species distribution areas between both groups. New key conservation sites were reported within the Brazilian Atlantic Forest hotspot, revealing cross-taxon mismatches between terrestrial and freshwater ecosystems. This study offers useful spatial information integrating suitable habitats of fishes and amphibians to complement existing and future research based on terrestrial and freshwater conservation. New priorities for biodiversity conservation in rich-species regions highlight the importance of spatial pattern analysis to support land-use planning in a macroecological context.
Collapse
Affiliation(s)
- Amanda Caroline Covre
- Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Ricardo Lourenço-de-Moraes
- Universidade Federal da Paraíba, Programa de Pós-graduação em Ecologia e Monitoramento Ambiental (PPGEMA), Campus IV - Litoral Norte, Av. Santa Elizabete s/n, Centro, 58297-000, Rio Tinto, PB, Brazil.
| | - Felipe Siqueira Campos
- NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312, Lisboa, Portugal
| | - Evanilde Benedito
- Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
7
|
Alzate A, Onstein RE. Understanding the relationship between dispersal and range size. Ecol Lett 2022; 25:2303-2323. [PMID: 36001639 DOI: 10.1111/ele.14089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022]
Abstract
The drivers of variability in species range sizes remain an outstanding enigma in ecology. The theoretical expectation of a positive dispersal-range size relationship has received mixed empirical support, despite dispersal being one of the most prominent hypothesised predictors of range size. Here, we synthesised results from 86 studies examining the dispersal-range size relationship for plants and animals in marine, terrestrial and freshwater realms. Overall, our meta-analysis showed that dispersal positively affects range size, but its effect is dependent on the clade and dispersal proxy studied. Moreover, despite potential differences in habitat connectivity, we did not find an effect of realm on the dispersal-range size relationship. Finally, the strength of the dispersal-range size relationship was dependent on latitude, range size metric and the taxonomic breadth of the study clade. Our synthesis emphasizes the importance of developing a mechanistic understanding of the trait to dispersal to range size relationship, considering the complexity of dispersal departure, transfer and settlement, as well as evolutionary components such as time for range expansion, speciation and past geological-environmental dynamics. We, therefore, call for a more integrative view of the dispersal process and its causal relationship with range size.
Collapse
Affiliation(s)
- Adriana Alzate
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Leipzig University, Leipzig, Germany
| | - Renske E Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Leipzig University, Leipzig, Germany.,Naturalis Biodiversity Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Habitat fragmentation rather than habitat amount or habitat split reduces the diversity and abundance of ground-dwelling anurans within forest remnants of the Brazilian Cerrado. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Hose GC, Chariton A, Daam MA, Di Lorenzo T, Galassi DMP, Halse SA, Reboleira ASPS, Robertson AL, Schmidt SI, Korbel KL. Invertebrate traits, diversity and the vulnerability of groundwater ecosystems. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. C. Hose
- Department of Biological Sciences Macquarie University NSW 2109 Australia
| | - A. Chariton
- Department of Biological Sciences Macquarie University NSW 2109 Australia
| | - M. A. Daam
- CENSE ‐ Center for Environmental and Sustainability Research NOVA School of Science and Technology NOVA University Lisbon, 2829‐516 Caparica Portugal
| | - T. Di Lorenzo
- Research Institute on Terrestrial Ecosystems of the National Research Council Via Madonna del Piano 10, 50019, Sesto Fiorentino Firenze Italy
- Emil Racovita Institute of Speleology Romanian Academy, Clinicilor 5, Cluj Napoca 400006 Romania
| | - D. M. P. Galassi
- Department of Life, Health and Environmental Sciences University of L'Aquila Via Vetoio, Coppito, 67100 L'Aquila Italy
| | - S. A. Halse
- Bennelongia Environmental Consultants, Jolimont WA 6014 Australia
| | - A. S. P. S. Reboleira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa Lisbon Portugal
- Natural History Museum of Life and Health Sciences Denmark and University of Copenhagen Universitetsparken 15, 2100 Copenhagen Denmark
| | - A. L. Robertson
- School of Life and Health Sciences University of Roehampton, Holybourne Avenue, London SW15 4JD UK
| | - S. I. Schmidt
- Biology Centre of the Czech Academy of Sciences Institute of Hydrobiology Na Sádkách 7, 37005 České Budějovice Czech Republic
- Present address: Department of Lake Research, Helmholtz Centre for Environmental Research Magdeburg Germany
| | - K. L. Korbel
- Department of Biological Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|
10
|
Brooks GC, Kindsvater HK. Early Development Drives Variation in Amphibian Vulnerability to Global Change. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.813414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding how natural selection determines species’ life histories can reveal their resilience or sensitivity to anthropogenic changes. For example, the safe harbor hypothesis posits that natural selection will favor life histories that maximize the time spent in the safest life stages; a second theoretical prediction suggests that species with complex life histories will maximize the growth potential of a life stage relative to its safety. Amphibians exhibit complex life histories, with a diversity of developmental strategies occurring across taxa. Many strategies involve the complete elimination of a particular life stage, and thus provide an excellent opportunity to evaluate the main tenets of the safe harbor hypothesis and understand the consequences of this developmental variation for conservation of threatened amphibians. We develop a general framework for understanding developmental life histories of amphibians – including the special cases of paedomorphism, direct development, and viviparity – based on the relative growth potential and safety offered by aquatic and terrestrial habitat, which we tested using a global trait database. We then compare the IUCN Red List status of species differing in developmental mode, revealing that most fully aquatic species and species with an aquatic larval stage are currently of Least Concern, despite the fact that freshwater habitats are being lost at a much faster rate compared with terrestrial ecosystems. The higher proportion of direct developing and viviparous species that are threatened can be attributed to their smaller ranges, the fact that they are more likely to be found in rainforest habitats, and their relatively slow life histories. We conclude that an amphibian’s developmental mode reflects the relative costs and benefits of different habitats, and that this could contribute to the resilience or vulnerability of amphibians to future anthropogenic change.
Collapse
|
11
|
Anjos AG, Costa RN, Brito D, Solé M. Is there an association between the ecological characteristics of anurans from the Brazilian Atlantic Forest and their extinction risk? ETHOL ECOL EVOL 2020. [DOI: 10.1080/03949370.2020.1711815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Amanda G. Anjos
- Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, CEP 45662-900, Brasil
| | - Renan N. Costa
- Programa de Pós-Graduação em Sistemas Aquáticos Tropicais, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, CEP 45662-900, Brasil
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, CEP 45662-900, Brasil
| | - Daniel Brito
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Caixa Postal 131, Goiânia, CEP 74001-970, Brasil
| | - Mirco Solé
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, CEP 45662-900, Brasil
- Herpetology Section, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, Bonn, D-53113, Germany
| |
Collapse
|
12
|
Tolerant and avoiders in an urban landscape: anuran species richness and functional groups responses in the Yungas’ forest of NW Argentina. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-01025-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|