1
|
Laredo M, Charpentier E, Soulez S, Nguyen V, Martino A, Calò L, Ader F, Hermida A, Fressart V, Charron P, Kachenoura N, Gandjbakhch E, Redheuil A. Imaging features of desmoplakin arrhythmogenic cardiomyopathy: A comparative cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2025; 27:101867. [PMID: 40021092 DOI: 10.1016/j.jocmr.2025.101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) related to Desmoplakin (DSP) mutations is a distinct condition associated with particularly severe outcomes, more frequent left ventricular (LV) involvement, including fibrosis, dysfunction, and inflammatory episodes. Whether DSP-ACM is associated with specific imaging features remains elusive. This study aims to provide a comprehensive description of cardiovascular magnetic resonance (CMR) findings in patients with DSP-ACM and to compare them to RV-dominant ACM with LV involvement (LV+ right-dominant-ACM). METHODS Patients with DSP-ACM matched with patients with ACM related to a non-DSP desmosomal mutation and ≥1 feature of LV involvement underwent CMR in two institutions. Biventricular metrics and segmental wall motion abnormalities (WMA) were assessed. LV late gadolinium enhancement (LGE) was assessed both qualitatively and quantitatively after semi-automated segmentation. RESULTS Overall, 70 ACM patients were analyzed; 37 with DSP-ACM and 33 in the LV+ right-dominant-ACM group. LVEF was significantly lower in the DSP-ACM group (46 ± 12%) than in the LV+ right-dominant-ACM group (56 ± 10%, P = 0.001). Conversely, RVEF was significantly higher in the DSP-ACM group (45 ± 11% vs. 40 ± 12%, P = 0.04) and both RV end-diastolic (100 ± 24 vs 130 ± 44 mL/m², P = 0.002) and end-systolic (56 ± 21 vs 81 ± 45 mL/m², P = 0.007) indexed volumes were significantly smaller in DSP-ACM as compared to the LV+ right-dominant-ACM group. The LV to RV end-systolic volume ratio (0.96 [interquartile range (IQR)0.70-1.27] vs. 0.59 [IQR 0.48-0.69]) was significantly higher in the DSP-ACM group (P < 0.0001), and had a good performance in differentiating both groups (area under the ROC curve 0.86, optimal threshold 0.8). Patients in the DSP-ACM group had significantly more LV and less RV WMA than those in the LV+ right-dominant-ACM group. The amount of LGE was significantly higher in the DSP group (14% ± 16 vs. 2%±3, P < 0.0001) and present in the majority of LV segments, particularly in the lateral and inferior walls, as compared to LV+ right-dominant-ACM patients. Transmural LGE and the presence of a ring-like pattern corresponding to circumferential subepicardial LGE involving ≥3 contiguous LV basal segments were highly specific of DSP-ACM. CONCLUSION The presence of LV to RV end-systolic volume ratio>0.8, global LGE>5%, transmural and/or a ring-like LGE pattern are highly suggestive of DSP-ACM and should prompt careful diagnostic assessment considering the severe associated outcome.
Collapse
Affiliation(s)
- Mikael Laredo
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France; Sorbonne Université, Département de Cardiologie, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Paris, France; Institute of Cardiometabolism and Nutrition (IHU ICAN), Paris, France.
| | - Etienne Charpentier
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France; Institute of Cardiometabolism and Nutrition (IHU ICAN), Paris, France; Sorbonne Université, Imagerie Cardiovasculaire et Thoracique (ICT), AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Shannon Soulez
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | - Vincent Nguyen
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | | | - Leonardo Calò
- Division of Cardiology, Policlinico Casilino, Rome, Italy
| | - Flavie Ader
- Sorbonne Université, Département de Génétique, Centre de Références des Maladies Cardiaques Héréditaires ou rares, AP-HP, Inserm UMR_1166, IHU ICAN, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Alexis Hermida
- Sorbonne Université, Département de Cardiologie, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Paris, France; Institute of Cardiometabolism and Nutrition (IHU ICAN), Paris, France; Sorbonne Université, Département de Génétique, Centre de Références des Maladies Cardiaques Héréditaires ou rares, AP-HP, Inserm UMR_1166, IHU ICAN, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Véronique Fressart
- Sorbonne Université, Département de Génétique, Centre de Références des Maladies Cardiaques Héréditaires ou rares, AP-HP, Inserm UMR_1166, IHU ICAN, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Philippe Charron
- Sorbonne Université, Département de Cardiologie, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Paris, France; Institute of Cardiometabolism and Nutrition (IHU ICAN), Paris, France; Sorbonne Université, Département de Génétique, Centre de Références des Maladies Cardiaques Héréditaires ou rares, AP-HP, Inserm UMR_1166, IHU ICAN, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Nadjia Kachenoura
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France; Institute of Cardiometabolism and Nutrition (IHU ICAN), Paris, France
| | - Estelle Gandjbakhch
- Sorbonne Université, Département de Cardiologie, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Paris, France; Institute of Cardiometabolism and Nutrition (IHU ICAN), Paris, France; Sorbonne Université, Département de Génétique, Centre de Références des Maladies Cardiaques Héréditaires ou rares, AP-HP, Inserm UMR_1166, IHU ICAN, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Alban Redheuil
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France; Institute of Cardiometabolism and Nutrition (IHU ICAN), Paris, France; Sorbonne Université, Imagerie Cardiovasculaire et Thoracique (ICT), AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| |
Collapse
|
2
|
Shaikh T, Nguyen D, Dugal JK, DiCaro MV, Yee B, Houshmand N, Lei K, Namazi A. Arrhythmogenic Right Ventricular Cardiomyopathy: A Comprehensive Review. J Cardiovasc Dev Dis 2025; 12:71. [PMID: 39997505 PMCID: PMC11855979 DOI: 10.3390/jcdd12020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by structural abnormalities, arrhythmias, and a spectrum of genetic and clinical manifestations. Clinically, ARVC is structurally distinguished by right ventricular dilation due to increased adiposity and fibrosis in the ventricular walls, and it manifests as cardiac arrhythmias ranging from non-sustained ventricular tachycardia to sudden cardiac death. Its prevalence has been estimated to range from 1 in every 1000 to 5000 people, with its large range being attributed to the variability in genetic penetrance from asymptomatic to significant burden. It is even suggested that the prevalence is underestimated, as the presence of genotypic mutations does not always lead to clinical manifestations that would facilitate diagnosis. Additionally, while set criteria have been in place since the 1990s, newer understanding of this condition and advancements in cardiac technology have prompted multiple revisions in the diagnostic criteria for ARVC. Novel discoveries of gene variants predisposing patients to ARVC have led to established screening techniques while providing insight into genetic counseling and management. This review aims to provide an overview of the genetics, pathophysiology, and clinical approach to ARVC. It will also focus on clinical presentation, ARVC diagnostic criteria, electrophysiological findings, including electrocardiogram characteristics, and imaging findings from cardiac MRI, 2D, and 3D echocardiogram. Current management options-including anti-arrhythmic medications, device indications, and ablation techniques-and the effectiveness of treatment will also be reviewed.
Collapse
Affiliation(s)
- Taha Shaikh
- Department of Internal Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (T.S.); (D.N.); (J.K.D.); (B.Y.)
| | - Darren Nguyen
- Department of Internal Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (T.S.); (D.N.); (J.K.D.); (B.Y.)
| | - Jasmine K. Dugal
- Department of Internal Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (T.S.); (D.N.); (J.K.D.); (B.Y.)
| | - Michael V. DiCaro
- Department of Internal Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (T.S.); (D.N.); (J.K.D.); (B.Y.)
| | - Brianna Yee
- Department of Internal Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (T.S.); (D.N.); (J.K.D.); (B.Y.)
| | - Nazanin Houshmand
- Department of Internal Medicine, Division of Cardiology, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (N.H.); (K.L.); (A.N.)
| | - KaChon Lei
- Department of Internal Medicine, Division of Cardiology, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (N.H.); (K.L.); (A.N.)
| | - Ali Namazi
- Department of Internal Medicine, Division of Cardiology, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (N.H.); (K.L.); (A.N.)
| |
Collapse
|
3
|
Yu LY, Xiang JY, Chen BH, An DA, Wu R, Shi RY, Zheng JY, Zhao L, Wu LM. Prognostic value of magnetic resonance imaging (MRI)-based cardiac adipose tissue in arrhythmogenic right ventricular cardiomyopathy. Clin Radiol 2025; 81:106708. [PMID: 39438200 DOI: 10.1016/j.crad.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
AIM The aim of this study was to explore the relationship between epicardial adipose tissue (EAT), paracardial adipose tissue (PaAT), pericardial adipose tissue (PeAT), and fat ratio with left ventricular (LV) involvement, assessing the prognostic significance of cardiac fat in arrhythmogenic right ventricular cardiomyopathy (ARVC). MATERIALS AND METHODS Ninety-two ARVC patients (mean age: 45.74 years; 63% male) were included and followed up for 92 months. Measured in cardiac magnetic resonance imaging (MRI) cine views, EAT, PaAT, PeAT, and fat ratio (EAT/PaAT) were analyzed to identify the association with major adverse cardiac events (MACEs) (sudden cardiovascular death, aborted cardiac arrest, heart failure hospitalization, and sustained documented ventricular tachycardia). RESULTS Among the 92 participants, 28 (30.43%) MACEs occurred during the follow-up. Significantly higher EAT, PaAT, PeAT, and fat ratio were observed in patients with LV involvement than in those without (p = 0.001, p = 0.002, p = 0.001, p = 0.003, respectively) in violin plots. A worse prognosis in ARVC patients was associated with a higher volume of EAT (log rank p = 0.0031). In multivariate Cox regression analysis, EAT (Hazard Ratio [HR]: 1.056, 95% confidence interval [CI]: 1.011-1.103, p = 0.013) and 5-year risk score (HR: 1.018, 95% CI: 1.002-1.034, p = 0.030) were identified as independent prognostic predictors for MACEs. Additional prognostic information over conventional outcome predictors was provided by EAT (Uno C-statistics: 0.645 vs. 0.665, p = 0.007). CONCLUSION higher cardiac fat volume was found to be correlated with LV involvement. Independent risk factors for MACEs in ARVC were identified as EAT and 5-year risk score, and the incremental prognostic value to established predictors in ARVC was provided by EAT.
Collapse
Affiliation(s)
- L-Y Yu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - J-Y Xiang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - B-H Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - D-A An
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - R Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - R-Y Shi
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - J-Y Zheng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| | - L Zhao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| | - L-M Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| |
Collapse
|
4
|
Zarrouk S, Ben-Miled H, Rahali N, Finsterer J, Ouarda F. Identification of Biomarkers of Arrhythmogenic Cardiomyopathy (ACM) by Plasma Proteomics. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:105. [PMID: 39859087 PMCID: PMC11766713 DOI: 10.3390/medicina61010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Background and Objectives: The pathophysiology of arrhythmogenic cardiomyopathy (ACM), previously known as arrhythmogenic right ventricular cardiomyopathy (ARVC), and its specific biological features remain poorly understood. High-throughput plasma proteomic profiling, a powerful tool for gaining insights into disease pathophysiology at the systems biology level, has not been used to study ACM. This study aimed at characterizing plasmatic protein changes in patients with ACM, which were compared with those of healthy controls, and at exploring the potential role of the identified proteins as biomarkers for diagnosis and monitoring. Materials and Methods: Blood samples were collected from six ACM patients, four patients with other cardiomyopathies, and two healthy controls. Plasma was processed to remove high-abundance proteins and analyzed by two-dimensional gel electrophoresis. Differential protein expressions were assessed using PDQuest software, Bio-Rad US version 8.0.1. Results: The analysis revealed several proteins with altered expressions between ACM patients and controls, including plakophilin-2, junctional plakoglobin, desmoplakin, desmin, transmembrane protein 43, and lamin A/C. Conclusions: The plasma proteomic profiling of ACM suggests that ACM is a distinct disease entity characterized by a unique dysregulation of desmosomal proteins. The identification of plasma biomarkers associated with ACM underscores their potential to improve diagnostic accuracy and facilitate early intervention strategies. Further exploration of mutations in desmosomal proteins and their phosphorylation states may provide deeper insights into the pathophysiology of ACM.
Collapse
Affiliation(s)
- Sinda Zarrouk
- Technological Platform IPTOMICS, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
- LR99ES10 Human Genetics Laboratory, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Houda Ben-Miled
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Nadia Rahali
- Technological Platform IPTOMICS, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia
| | - Josef Finsterer
- Neurology Department, Neurology & Neurophysiology Center, 1180 Vienna, Austria
| | - Fatma Ouarda
- Service de Cardiologie Pédiatrique, Hôpital la Rabta Tunis, Tunis 1007, Tunisia
| |
Collapse
|
5
|
WU CC, ZHOU LQ, WANG XY, ZU LY, XU WX. Arrhythmogenic left ventricular cardiomyopathy mimicking acute myocardial infarction. J Geriatr Cardiol 2024; 21:1141-1146. [PMID: 39935439 PMCID: PMC11808489 DOI: 10.26599/1671-5411.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Affiliation(s)
- Cen-Cen WU
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Le-Qun ZHOU
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Xin-Yu WANG
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Ling-Yun ZU
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Wei-Xian XU
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| |
Collapse
|
6
|
Real C, Pérez-García CN, Galán-Arriola C, García-Lunar I, García-Álvarez A. Right ventricular dysfunction: pathophysiology, experimental models, evaluation, and treatment. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2024; 77:957-970. [PMID: 39068988 DOI: 10.1016/j.rec.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/28/2024] [Indexed: 07/30/2024]
Abstract
Interest in the right ventricle has substantially increased due to advances in knowledge of its pathophysiology and prognostic implications across a wide spectrum of diseases. However, we are still far from understanding the multiple mechanisms that influence right ventricular dysfunction, its evaluation continues to be challenging, and there is a shortage of specific treatments in most scenarios. This review article aims to update knowledge about the physiology of the right ventricle, its transition to dysfunction, diagnostic tools, and available treatments from a translational perspective.
Collapse
Affiliation(s)
- Carlos Real
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Servicio de Cardiología, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | | | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Servicio de Cardiología, Hospital Universitario La Moraleja, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Servicio de Cardiología, Instituto Clínic Cardiovascular (ICCV), Hospital Clínic, Barcelona, Spain; Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
MozafaryBazargany M, Salmanipour A, Ghaffari Jolfayi A, Azimi A, Bakhshandeh H, Mahmoodieh B, Tofighi S, Gholami N, Golzarian J, Motevalli M. Value of cardiac magnetic resonance feature-tracking in Arrhythmogenic Cardiomyopathy (ACM): A systematic review and meta-analysis. IJC HEART & VASCULATURE 2024; 53:101455. [PMID: 39228971 PMCID: PMC11368602 DOI: 10.1016/j.ijcha.2024.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 09/05/2024]
Abstract
We aimed to assess the diagnostic performance of Cardiac Magnetic Resonance (CMR) strain parameters in ACM patients to evaluate their diagnostic role. We systematically searched MEDLINE, EMBASE, Scopus, and Web of Science. Of the 146 records, 16 were included. All Right Ventricle (RV) global strains were significantly reduced in ACM patients compared to controls (Standardized Mean Difference (SMD)[95 % Confidence Interval (CI)]: Longitudinal 1.31[0.79,1.83]; Circumferential 0.88[0.34,1.42]; Radial -1.14[-1.78,-0.51]). Similarly, all Left Ventricle (LV) global strains were significantly impaired in ACM compared to healthy controls (SDM [95 %CI]: Longitudinal 0.88[0.48,12.28], Circumferential 0.97[0.72,1.22], Radial -1.24[-1.49,-1.00]). Regarding regional RV strains, longitudinal and circumferential strains were significantly reduced in basal and mid-wall regions, while they were comparable to controls in the apical regions. The RV radial strain was reduced only within the basal region in the ACM group compared to controls. ACM patients exhibited significant impairment of regional LV strains in all regions-basal, mid-wall, and apical-compared to control subjects. Ultimately, despite the limitations of CMR-FT in terms of reproducibility, it is superior to qualitative assessment in detecting wall motion abnormalities. Thus, integrating CMR-FT with ACM diagnostic criteria seems to enhance its diagnostic yield.
Collapse
Affiliation(s)
| | - Alireza Salmanipour
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical, Tehran, Iran
| | - Amir Ghaffari Jolfayi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical, Tehran, Iran
| | - Amir Azimi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical, Tehran, Iran
| | - Hooman Bakhshandeh
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Tofighi
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Gholami
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Jafar Golzarian
- Department of Radiology, Medical School, University of Minnesota, 420 Delaware Street S.E., Minneapolis, MN 55455, USA
| | - Marzieh Motevalli
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical, Tehran, Iran
| |
Collapse
|
8
|
Chen BH, Jiang WY, Zheng JY, Dai YS, Shi RY, Wu R, An DA, Tang LL, Xu JR, Zhao L, Wu LM. Prognostic value of right ventricular trabecular complexity in patients with arrhythmogenic cardiomyopathy. Eur Radiol 2024; 34:4883-4896. [PMID: 38189980 DOI: 10.1007/s00330-023-10561-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVES The present study aimed to investigate the incremental prognostic value of the right ventricular fractal dimension (FD), a novel marker of myocardial trabecular complexity by cardiac magnetic resonance (CMR) in patients with arrhythmogenic cardiomyopathy (ACM). METHODS Consecutive patients with ACM undergoing CMR were followed up for major cardiac events, including sudden cardiac death, aborted cardiac arrest, and appropriate implantable cardioverter defibrillator intervention. Prognosis prediction was compared by Cox regression analysis. We established a multivariable model supplemented with RV FD and evaluated its discrimination by Harrell's C-statistic. We compared the category-free, continuous net reclassification improvement (cNRI) and integrated discrimination index (IDI) before and after the addition of FD. RESULTS A total of 105 patients were prospectively included from three centers and followed up for a median of 60 (48, 66) months; experienced 36 major cardiac events were recorded. Trabecular FD displayed a strong unadjusted association with major cardiac events (p < 0.05). In the multivariable Cox regression analysis, RV maximal apical FD maintained an independent association with major cardiac events (hazard ratio, 1.31 (1.11-1.55), p < 0.002). The Hosmer-Lemeshow goodness of fit test displayed good fit (X2 = 0.68, p = 0.99). Diagnostic performance was significantly improved after the addition of RV maximal apical FD to the multivariable baseline model, and the continuous net reclassification improvement increased 21% (p = 0.001), and the integrated discrimination index improved 16% (p = 0.045). CONCLUSIONS In patients with ACM, CMR-assessed myocardial trabecular complexity was independently correlated with adverse cardiovascular events and provided incremental prognostic value. CLINICAL RELEVANCE STATEMENT The application of FD values for assessing RV myocardial trabeculae may become an accessible and promising parameter in monitoring and early diagnosis of risk factors for adverse cardiovascular events in patients with ACM. KEY POINTS • Ventricular trabecular morphology, a novel quantitative marker by CMR, has been explored for the first time to determine the severity of ACM. • Patients with higher maximal apical fractal dimension of RV displayed significantly higher cumulative incidence of major cardiac events. • RV maximal apical FD was independently associated with major cardiac events and provided incremental prognostic value in patients with ACM.
Collapse
Affiliation(s)
- Bing-Hua Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Wen-Yi Jiang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Jin-Yu Zheng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Yi-Si Dai
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Ruo-Yang Shi
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Rui Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Dong-Aolei An
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Lang-Lang Tang
- Department of Radiology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, People's Republic of China
| | - Jian-Rong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Lei Zhao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
9
|
Rekker LY, Muller SA, Gasperetti A, Bourfiss M, Oerlemans MIFJ, Cramer MJ, Zimmerman SL, Dooijes D, Schalkx H, van der Harst P, James CA, van Tintelen JP, Guglielmo M, Velthuis BK, Te Riele ASJM. Diagnostic value of late gadolinium enhancement at cardiovascular magnetic resonance to distinguish arrhythmogenic right ventricular cardiomyopathy from differentials. J Cardiovasc Magn Reson 2024; 26:101059. [PMID: 38986843 PMCID: PMC11327940 DOI: 10.1016/j.jocmr.2024.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND While late gadolinium enhancement (LGE) is proposed as a diagnostic criterion for arrhythmogenic right ventricular cardiomyopathy (ARVC), the potential of LGE to distinguish ARVC from differentials remains unknown. We aimed to assess the diagnostic value of LGE for ARVC diagnosis. METHODS We included 132 subjects (60% male, 47 ± 11 years) who had undergone cardiac magnetic resonance imaging with LGE assessment for ARVC or ARVC differentials. ARVC was diagnosed as per 2010 Task Force Criteria (n = 55). ARVC differentials consisted of familial/genetic dilated cardiomyopathy (n = 25), myocarditis (n = 13), sarcoidosis (n = 20), and amyloidosis (n = 19). The diagnosis of all differentials was based on the most current standard of reference. The presence of LGE was evaluated using a 7-segment right ventricle (RV) and 17-segment left ventricle (LV) model. Subsequently, we assessed LGE patterns for every patient individually for fulfilling LV- and/or RV-LGE per Padua criteria, independent of their clinical diagnosis (i.e. phenotype). Diagnostic values were analyzed using sensitivity and specificity for any RV-LGE, any LV-LGE, RV-LGE per Padua criteria, and prevalence graphs for LV-LGE per Padua criteria. The optimal integration of LGE for ARVC diagnosis was determined using classification and regression tree analysis. RESULTS One-third (38%) of ARVC patients had RV-LGE, while half (51%) had LV-LGE. RV-LGE was less frequently observed in ARVC vs non-ARVC patients (38% vs 58%, p = 0.034) leading to a poor discriminatory potential (any RV-LGE: sensitivity 38%, specificity 42%; RV-LGE per Padua criteria: sensitivity 36%, specificity 44%). Compared to ARVC patients, non-ARVC patients more often had LV-LGE (91% vs 51%, p < 0.001) which was also more globally distributed (median 9 [interquartile range (IQR): 3-13] vs 0 [IQR: 0-3] segments, p < 0.001). The absence of anteroseptal and absence of extensive (≥5 segments) mid-myocardial LV-LGE, and absence of moderate (≥2 segments) mid-myocardial LV-LGE predicted ARVC with good diagnostic performance (sensitivity 93%, specificity 78%). CONCLUSION LGE is often present in ARVC differentials and may lead to false positive diagnoses when used without knowledge of LGE patterns. Moderate RV-LGE without anteroseptal and mid-myocardial LV-LGE is typically observed in ARVC.
Collapse
Affiliation(s)
- Lian Y Rekker
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Steven A Muller
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | - Alessio Gasperetti
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands; Division of Medicine, Department of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA; Department of Clinical Electrophysiology & Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | - Mimount Bourfiss
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Maarten J Cramer
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefan L Zimmerman
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dennis Dooijes
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hanke Schalkx
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cynthia A James
- Division of Medicine, Department of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - J Peter van Tintelen
- Netherlands Heart Institute, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marco Guglielmo
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Birgitta K Velthuis
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anneline S J M Te Riele
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands.
| |
Collapse
|
10
|
Markman TM, Marchlinski FE, Callans DJ, Frankel DS. Programmed Ventricular Stimulation: Risk Stratification and Guiding Antiarrhythmic Therapies. JACC Clin Electrophysiol 2024; 10:1489-1507. [PMID: 38661601 DOI: 10.1016/j.jacep.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/13/2024] [Indexed: 04/26/2024]
Abstract
Electrophysiologic testing with programmed ventricular stimulation (PVS) has been utilized to induce ventricular tachycardia (VT), thereby improving risk stratification for patients with ischemic and nonischemic cardiomyopathies and determining the effectiveness of antiarrhythmic therapies, especially catheter ablation. A variety of procedural aspects can be modified during PVS in order to alter the sensitivity and specificity of the test including the addition of multiple baseline pacing cycle lengths, extrastimuli, and pacing locations. The definition of a positive result is also critically important, which has varied from exclusively sustained monomorphic VT (>30 seconds) to any ventricular arrhythmia regardless of morphology. In this review, we discuss the history of PVS and evaluate its role in sudden cardiac death risk stratification in a variety of patient populations. We propose an approach to future investigations that will capitalize on the unique ability to vary the sensitivity and specificity of this test. We then discuss the application of PVS during and following catheter ablation. The strategies that have been utilized to improve the efficacy of intraprocedural PVS are highlighted during a discussion of the limitations of this probabilistic strategy. The role of noninvasive programmed stimulation is also reviewed in predicting recurrent VT and informing management decisions including repeat ablations, modifications in antiarrhythmic drugs, and implantable cardioverter-defibrillator programming. Based on the available evidence and guidelines, we propose an approach to future investigations that will allow clinicians to optimize the use of PVS for risk stratification and assessment of therapeutic efficacy.
Collapse
Affiliation(s)
- Timothy M Markman
- Cardiovascular Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Francis E Marchlinski
- Cardiovascular Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David J Callans
- Cardiovascular Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David S Frankel
- Cardiovascular Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Mundisugih J, Ravindran D, Kizana E. Exploring the Therapeutic Potential of Gene Therapy in Arrhythmogenic Right Ventricular Cardiomyopathy. Biomedicines 2024; 12:1351. [PMID: 38927558 PMCID: PMC11201581 DOI: 10.3390/biomedicines12061351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Right dominant arrhythmogenic cardiomyopathy, commonly known as Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), represents a formidable challenge in cardiovascular medicine, as conventional therapies are commonly ineffective in impeding disease progression and the development of end-stage heart failure. Recombinant adeno-associated virus (AAV)-mediated gene therapy presents a promising avenue for targeted therapeutic interventions, potentially revolutionising treatment approaches for ARVC patients. Encouraging results from preclinical studies have sparked optimism about the possibility of curing specific subtypes of ARVC in the near future. This narrative review delves into the dynamic landscape of genetic therapy for ARVC, elucidating its underlying mechanisms and developmental stages, and providing updates on forthcoming trials. Additionally, it examines the hurdles and complexities impeding the successful translation of ARVC genetic therapies into clinical practice. Despite notable scientific advancements, the journey towards implementing genetic therapies for ARVC patients in real-world clinical settings is still in its early phases.
Collapse
Affiliation(s)
- Juan Mundisugih
- Centre for Heart Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Dhanya Ravindran
- Centre for Heart Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Eddy Kizana
- Centre for Heart Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
12
|
Zathar Z, Shah N, Desai N, Patel PA. Arrhythmogenic Cardiomyopathy: Current Updates and Future Challenges. Rev Cardiovasc Med 2024; 25:208. [PMID: 39076315 PMCID: PMC11270059 DOI: 10.31083/j.rcm2506208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 07/31/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) epitomises a genetic anomaly hallmarked by a relentless fibro-fatty transmogrification of cardiac myocytes. Initially typified as a right ventricular-centric disease, contemporary observations elucidate a frequent occurrence of biventricular and left-dominant presentations. The diagnostic labyrinth of ACM emerges from its clinical and imaging properties, often indistinguishable from other cardiomyopathies. Precision in diagnosis, however, is paramount and unlocks the potential for early therapeutic interventions and vital cascade screening for at-risk individuals. Adherence to the criteria established by the 2010 task force remains the cornerstone of ACM diagnosis, demanding a multifaceted assessment incorporating electrophysiological, imaging, genetic, and histological data. Reflecting the evolution of our understanding, these criteria have undergone several revisions to encapsulate the expanding spectrum of ACM phenotypes. This review seeks to crystallise the genetic foundation of ACM, delineate its clinical and radiographic manifestations, and offer an analytical perspective on the current diagnostic criteria. By synthesising these elements, we aim to furnish practitioners with a strategic, evidence-based algorithm to accurately diagnose ACM, thereby optimising patient management and mitigating the intricate challenges of this multifaceted disorder.
Collapse
Affiliation(s)
- Zafraan Zathar
- Department of Cardiology, Worcestershire Acute Hospitals NHS Trust, WR5 1DD Worcester, UK
| | - Nihit Shah
- Department of Cardiology, Royal Wolverhampton NHS Trust, WV10 0QP Wolverhampton, UK
| | - Nimai Desai
- Department of Cardiology, University Hospital Birmingham NHS Trust, B15 2GW Birmingham, UK
| | - Peysh A Patel
- Department of Cardiology, University Hospital Birmingham NHS Trust, B15 2GW Birmingham, UK
| |
Collapse
|
13
|
Cianci V, Forzese E, Sapienza D, Cianci A, Ieni A, Germanà A, Guerrera MC, Omero F, Speranza D, Cracò A, Asmundo A, Gualniera P, Mondello C. Arrhythmogenic Right Ventricular Cardiomyopathy Post-Mortem Assessment: A Systematic Review. Int J Mol Sci 2024; 25:2467. [PMID: 38473714 PMCID: PMC10931616 DOI: 10.3390/ijms25052467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic disorder characterized by the progressive fibro-fatty replacement of the right ventricular myocardium, leading to myocardial atrophy. Although the structural changes usually affect the right ventricle, the pathology may also manifest with either isolated left ventricular myocardium or biventricular involvement. As ARVC shows an autosomal dominant pattern of inheritance with variable penetrance, the clinical presentation of the disease is highly heterogeneous, with different degrees of severity and patterns of myocardial involvement even in patients of the same familiar group with the same gene mutation: the pathology spectrum ranges from the absence of symptoms to sudden cardiac death (SCD) sustained by ventricular arrhythmias, which may, in some cases, be the first manifestation of an otherwise silent pathology. An evidence-based systematic review of the literature was conducted to evaluate the state of the art of the diagnostic techniques for the correct post-mortem identification of ARVC. The research was performed using the electronic databases PubMed and Scopus. A methodological approach to reach a correct post-mortem diagnosis of ARVC was described, analyzing the main post-mortem peculiar macroscopic, microscopic and radiological alterations. In addition, the importance of performing post-mortem genetic tests has been underlined, which may lead to the correct identification and characterization of the disease, especially in those ARVC forms where anatomopathological investigation does not show evident morphostructural damage. Furthermore, the usefulness of genetic testing is not exclusively limited to the correct diagnosis of the pathology, but is essential for promoting targeted screening programs to the deceased's family members. Nowadays, the post-mortem diagnosis of ARVC performed by forensic pathologist remains very challenging: therefore, the identification of a clear methodological approach may lead to both a reduction in under-diagnoses and to the improvement of knowledge on the disease.
Collapse
Affiliation(s)
- Vincenzo Cianci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (E.F.); (D.S.); (A.A.); (P.G.); (C.M.)
| | - Elena Forzese
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (E.F.); (D.S.); (A.A.); (P.G.); (C.M.)
| | - Daniela Sapienza
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (E.F.); (D.S.); (A.A.); (P.G.); (C.M.)
| | - Alessio Cianci
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Pathology, University of Messina, 98125 Messina, Italy;
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy; (A.G.); (M.C.G.)
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy; (A.G.); (M.C.G.)
| | - Fausto Omero
- Medical Oncology Unit, Department of Human Pathology “G.Barresi”, University of Messina, 98125 Messina, Italy; (F.O.); (D.S.)
| | - Desirèe Speranza
- Medical Oncology Unit, Department of Human Pathology “G.Barresi”, University of Messina, 98125 Messina, Italy; (F.O.); (D.S.)
| | - Annalisa Cracò
- Department of Biomedical Sciences and Morphological and Functional Imaging, Diagnostic and Interventional Radiology Unit, University Hospital Messina, 98125 Messina, Italy;
| | - Alessio Asmundo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (E.F.); (D.S.); (A.A.); (P.G.); (C.M.)
| | - Patrizia Gualniera
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (E.F.); (D.S.); (A.A.); (P.G.); (C.M.)
| | - Cristina Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy; (E.F.); (D.S.); (A.A.); (P.G.); (C.M.)
| |
Collapse
|
14
|
Al-Aidarous S, Protonotarios A, Elliott PM, Lambiase PD. Management of arrhythmogenic right ventricular cardiomyopathy. Heart 2024; 110:156-162. [PMID: 37433658 DOI: 10.1136/heartjnl-2023-322612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a disease characterised by fibrofatty replacement of the ventricular myocardium due to specific mutations, leading to ventricular arrhythmias and sudden cardiac death. Treating this condition can be challenging due to progressive fibrosis, phenotypic variations and small patient cohorts limiting the feasibility of conducting meaningful clinical trials. Although widely used, the evidence base for anti-arrhythmic drugs is limited. Beta-blockers are theoretically sound, yet their efficacy in reducing arrhythmic risk is not robust. Additionally, the impact of sotalol and amiodarone is inconsistent with studies reporting contradictory results. Emerging evidence suggests that combining flecainide and bisoprolol may be efficacious.Radiofrequency ablation has shown some potential in disrupting ventricular tachycardia circuits, with combined endo and epicardial ablation yielding better results which could be considered at the index procedure. In addition, stereotactic radiotherapy may be a future option that can decrease arrhythmias beyond simple scar formation by altering levels of Nav1.5 channels, Connexin 43 and Wnt signalling, potentially modifying myocardial fibrosis.Future therapies, such as adenoviruses and GSk3b modulation, are still in early-stage research. While implantable cardioverter-defibrillator implantation is a key intervention for reducing arrhythmic death, the risks of inappropriate shocks and device complications must be carefully considered.
Collapse
Affiliation(s)
- Sayed Al-Aidarous
- Institute of Cardiovascular Science, University College London, London, UK
| | - Alexandros Protonotarios
- Institute of Cardiovascular Science, University College London, London, UK
- St Bartholomew's Hospital, London, UK
| | - Perry M Elliott
- Institute of Cardiovascular Science, University College London, London, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Cardiology, Saint Bartholomew's Hospital, Barts Heart Centre, London, UK
| |
Collapse
|
15
|
Saguner AM, Lunk D, Mohsen M, Knecht S, Akdis D, Costa S, Gasperetti A, Duru F, Rossi VA, Brunckhorst CB. Electroanatomical voltage mapping with contact force sensing for diagnosis of arrhythmogenic right ventricular cardiomyopathy. Int J Cardiol 2023; 392:131289. [PMID: 37619879 DOI: 10.1016/j.ijcard.2023.131289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Three-dimensional electroanatomical mapping (EAM) can be helpful to diagnose arrhythmogenic right ventricular cardiomyopathy (ARVC). Yet, previous studies utilizing EAM have not systematically used contact-force sensing catheters (CFSC) to characterize the substrate in ARVC, which is the current gold standard to assure adequate tissue contact. OBJECTIVE To investigate reference values for endocardial right ventricular (RV) EAM as well as substrate characterization in patients with ARVC by using CFSC. METHODS Endocardial RV EAM during sinus rhythm was performed with CFSC in 12 patients with definite ARVC and 5 matched controls without structural heart disease. A subanalysis for the RV outflow tract (RVOT), septum, free-wall, subtricuspid region, and apex was performed. Endocardial bipolar and unipolar voltage amplitudes (BVA, UVA), signal characteristics and duration as well as the impact of catheter orientation on endocardial signals were also investigated. RESULTS ARVC patients showed lower BVA vs. controls (p = 0.018), particularly in the subtricuspid region (1.4, IQR:0.5-3.1 vs. 3.8, IQR:2.5-5 mV, p = 0.037) and RV apex (2.5, IQR:1.5-4 vs. 4.3,IQR:2.9-6.1 mV, p = 0.019). BVA in all RV regions yielded a high sensitivity and specificity for ARVC diagnosis (AUC 59-78%, p < 0.05 for all), with the highest performance for the subtricuspid region (AUC 78%, 95% CI:0.75-0.81, p < 0.001, negative predictive value 100%). A positive correlation between BVA and an orthogonal catheter orientation (46°-90°:r = 0.106, p < 0.001), and a negative correlation between BVA and EGM duration (r = -0.370, p < 0.001) was found. CONCLUSIONS EAM using CFSC validates previous bipolar cut-off values for normal endocardial RV voltage amplitudes. RV voltages are generally lower in ARVC as compared to controls, with the subtricuspid area being commonly affected and having the highest discriminatory power to differentiate between ARVC and healthy controls. Therefore, EAM using CFSC constitutes a promising tool for diagnosis of ARVC.
Collapse
Affiliation(s)
- A M Saguner
- Arrhythmia Division, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland; Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland.
| | - D Lunk
- Arrhythmia Division, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - M Mohsen
- Arrhythmia Division, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland; Department of Cardiology, Qatar Heart Hospital 7GR5+RW4, Doha, Qatar
| | - Sven Knecht
- Cardiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Deniz Akdis
- Arrhythmia Division, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - S Costa
- Arrhythmia Division, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - A Gasperetti
- Arrhythmia Division, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland; Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Carnegie 568D, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | - F Duru
- Arrhythmia Division, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland; Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - V A Rossi
- Arrhythmia Division, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - C B Brunckhorst
- Arrhythmia Division, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Bradford WH, Zhang J, Gutierrez-Lara EJ, Liang Y, Do A, Wang TM, Nguyen L, Mataraarachchi N, Wang J, Gu Y, McCulloch A, Peterson KL, Sheikh F. Plakophilin 2 gene therapy prevents and rescues arrhythmogenic right ventricular cardiomyopathy in a mouse model harboring patient genetics. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1246-1261. [PMID: 39196150 PMCID: PMC11357983 DOI: 10.1038/s44161-023-00370-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/16/2023] [Indexed: 08/29/2024]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a fatal genetic heart disease characterized by cardiac arrhythmias, in which fibrofatty deposition leads to heart failure, with no effective treatments. Plakophilin 2 (PKP2) is the most frequently mutated gene in ARVC, and although altered RNA splicing has been implicated, there are no models to study its effect and therapeutics. Here, we generate a mouse model harboring a PKP2 mutation (IVS10-1G>C) affecting RNA splicing, recapitulating ARVC features and sudden death starting at 4 weeks. Administering AAV-PKP2 gene therapy (adeno-associated viral therapy to drive cardiac expression of PKP2) to neonatal mice restored PKP2 protein levels, completely preventing cardiac desmosomal and pathological deficits associated with ARVC, ensuring 100% survival of mice up to 6 months. Late-stage AAV-PKP2 administration rescued desmosomal protein deficits and reduced pathological deficits including improved cardiac function in adult mice, resulting in 100% survival up to 4 months. We suggest that AAV-PKP2 gene therapy holds promise for circumventing ARVC associated with PKP2 mutations, including splice site mutations.
Collapse
Affiliation(s)
- William H Bradford
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jing Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Yan Liang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Aryanne Do
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tsui-Min Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lena Nguyen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Jie Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yusu Gu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Kirk L Peterson
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Farah Sheikh
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
Yang Y, Wei X, Lu G, Xie J, Tan Z, Du Z, Ye W, Xu H, Li X, Liu E, Zhang Q, Liu Y, Li J, Liu H. Ringlike late gadolinium enhancement provides incremental prognostic value in non-classical arrhythmogenic cardiomyopathy. J Cardiovasc Magn Reson 2023; 25:72. [PMID: 38031154 PMCID: PMC10687920 DOI: 10.1186/s12968-023-00986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The 2019 arrhythmogenic right ventricular cardiomyopathy (ARVC) risk model has proved insufficient in the capability of predicting ventricular arrhythmia (VA) risk in non-classical arrhythmogenic cardiomyopathy (ACM). Furthermore, the prognostic value of ringlike late gadolinium enhancement (LGE) of the left ventricle in non-classical ACM remains unknown. We aimed to assess the incremental value of ringlike LGE over the 2019 ARVC risk model in predicting sustained VA in patients with non-classical ACM. METHODS In this retrospective study, consecutive patients with non-classical ACM who underwent CMR from January 2011 to January 2022 were included. The pattern of LGE was categorized as no, non-ringlike, and ringlike LGE. The primary outcome was defined as the occurrence of sustained VA. Univariable and multivariable Cox regression analysis was used to evaluate the impact of LGE patterns on sustained VA and area under curve (AUC) was calculated for the incremental value of ringlike LGE. RESULTS A total of 73 patients were collected in the final cohort (mean age, 39.3 ± 14.4 years, 51 male), of whom 10 (13.7%) had no LGE, 33 (45.2%) had non-ringlike LGE, and 30 (41.1%) had ringlike LGE. There was no statistically significant difference in the 5-year risk score among the three groups (P = 0.190). During a median follow-up of 34 (13-56) months, 34 (46.6%) patients experienced sustained VA, including 1 (10.0%), 13 (39.4%) and 20 (66.7%) of patients with no, non-ringlike and ringlike LGE, respectively. After multivariable adjustment, ringlike LGE remained independently associated with the presence of sustained VA (adjusted hazard ratio: 6.91, 95% confidence intervals: 1.89-54.60; P = 0.036). Adding ringlike LGE to the 2019 ARVC risk model showed significantly incremental prognostic value for sustained VA (AUC: 0.80 vs. 0.67; P = 0.024). CONCLUSION Ringlike LGE provides independent and incremental prognostic value over the 2019 ARVC risk model in patients with non-classical ACM.
Collapse
Affiliation(s)
- Yuelong Yang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xiaoyu Wei
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Guanyu Lu
- Department of Interventional Diagnosis and Therapy, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jiajun Xie
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510080, China
| | - Zekun Tan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhicheng Du
- Department of Medical Statistics, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Weitao Ye
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Huanwen Xu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xiaodan Li
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Entao Liu
- WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qianhuan Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yang Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jinglei Li
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Hui Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
18
|
Kirkels FP, Rootwelt-Norberg C, Bosman LP, Aabel EW, Muller SA, Castrini AI, Taha K, van Osta N, Lie ØH, Asselbergs FW, Lumens J, te Riele ASJM, Hasselberg NE, Cramer MJ, Haugaa KH, Teske AJ. The added value of abnormal regional myocardial function for risk prediction in arrhythmogenic right ventricular cardiomyopathy. Eur Heart J Cardiovasc Imaging 2023; 24:1710-1718. [PMID: 37474315 PMCID: PMC10667035 DOI: 10.1093/ehjci/jead174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
AIMS A risk calculator for individualized prediction of first-time sustained ventricular arrhythmia (VA) in arrhythmogenic right ventricular cardiomyopathy (ARVC) patients has recently been developed and validated (www.ARVCrisk.com). This study aimed to investigate whether regional functional abnormalities, measured by echocardiographic deformation imaging, can provide additional prognostic value. METHODS AND RESULTS From two referral centres, 150 consecutive patients with a definite ARVC diagnosis, no prior sustained VA, and an echocardiogram suitable for deformation analysis were included (aged 41 ± 17 years, 50% female). During a median follow-up of 6.3 (interquartile range 3.1-9.8) years, 37 (25%) experienced a first-time sustained VA. All tested left and right ventricular (LV and RV) deformation parameters were univariate predictors for first-time VA. While LV function did not add predictive value in multivariate analysis, two RV deformation parameters did; RV free wall longitudinal strain and regional RV deformation patterns remained independent predictors after adjusting for the calculator-predicted risk [hazard ratio 1.07 (95% CI 1.02-1.11); P = 0.004 and 4.45 (95% CI 1.07-18.57); P = 0.040, respectively] and improved its discriminative value (from C-statistic 0.78 to 0.82 in both; Akaike information criterion change > 2). Importantly, all patients who experienced VA within 5 years from the echocardiographic assessment had abnormal regional RV deformation patterns at baseline. CONCLUSIONS This study showed that regional functional abnormalities measured by echocardiographic deformation imaging can further refine personalized arrhythmic risk prediction when added to the ARVC risk calculator. The excellent negative predictive value of normal RV deformation could support clinicians considering the timing of implantable cardioverter defibrillator implantation in patients with intermediate arrhythmic risk.
Collapse
Affiliation(s)
- Feddo P Kirkels
- Division of Heart and Lungs, Department of Cardiology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3582 CX, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- ProCardio Centre for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Christine Rootwelt-Norberg
- ProCardio Centre for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Laurens P Bosman
- Division of Heart and Lungs, Department of Cardiology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3582 CX, The Netherlands
| | - Eivind W Aabel
- ProCardio Centre for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Steven A Muller
- Division of Heart and Lungs, Department of Cardiology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3582 CX, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Anna I Castrini
- ProCardio Centre for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karim Taha
- Division of Heart and Lungs, Department of Cardiology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3582 CX, The Netherlands
| | - Nick van Osta
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Øyvind H Lie
- ProCardio Centre for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Anneline S J M te Riele
- Division of Heart and Lungs, Department of Cardiology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3582 CX, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Nina E Hasselberg
- ProCardio Centre for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Maarten J Cramer
- Division of Heart and Lungs, Department of Cardiology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3582 CX, The Netherlands
| | - Kristina H Haugaa
- ProCardio Centre for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arco J Teske
- Division of Heart and Lungs, Department of Cardiology, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3582 CX, The Netherlands
| |
Collapse
|
19
|
Santos LD, Walker AL. The Role of Autoantibodies in Companion Animal Cardiac Disease. Vet Clin North Am Small Anim Pract 2023; 53:1367-1377. [PMID: 37423843 DOI: 10.1016/j.cvsm.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Clinical studies exploring the role of autoimmune diseases in cardiac dysfunction have become increasingly common in both human and veterinary literature. Autoantibodies (AABs) specific to cardiac receptors have been found in human and canine dilated cardiomyopathy, and circulating autoantibodies have been suggested as a sensitive biomarker for arrhythmogenic right ventricular cardiomyopathy in people and Boxer dogs. In this article, we will summarize recent literature on AABs and their role in cardiac diseases of small animals. Despite the potential for new discoveries in veterinary cardiology, current data in veterinary medicine are limited and further studies are needed.
Collapse
Affiliation(s)
- Luís Dos Santos
- Department of Veterinary Clinical Sciences, Purdue University, College of Veterinary Medicine, 625 Harrison Street, West Lafayette, IN 47907, USA.
| | - Ashley L Walker
- William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, 1 Garrod Drive, Davis, CA 9561, USA
| |
Collapse
|
20
|
Tadros HJ, Miyake CY, Kearney DL, Kim JJ, Denfield SW. The Many Faces of Arrhythmogenic Cardiomyopathy: An Overview. Appl Clin Genet 2023; 16:181-203. [PMID: 37933265 PMCID: PMC10625769 DOI: 10.2147/tacg.s383446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a disease that involves electromechanical uncoupling of cardiomyocytes. This leads to characteristic histologic changes that ultimately lead to the arrhythmogenic clinical features of the disease. Initially thought to affect the right ventricle predominantly, more recent data show that it can affect both the ventricles or the left ventricle alone. Throughout the recent era, diagnostic modalities and criteria for AC have continued to evolve and our understanding of its clinical features in different age groups as well as the genotype to the phenotype correlations have improved. In this review, we set out to detail the epidemiology, etiologies, presentations, evaluation, and management of AC across the age continuum.
Collapse
Affiliation(s)
- Hanna J Tadros
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Christina Y Miyake
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Debra L Kearney
- Department of Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey J Kim
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Susan W Denfield
- Department of Pediatrics, Division of Pediatric Cardiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
21
|
Zhang Y, Zhang K, Prakosa A, James C, Zimmerman SL, Carrick R, Sung E, Gasperetti A, Tichnell C, Murray B, Calkins H, Trayanova NA. Predicting ventricular tachycardia circuits in patients with arrhythmogenic right ventricular cardiomyopathy using genotype-specific heart digital twins. eLife 2023; 12:RP88865. [PMID: 37851708 PMCID: PMC10584370 DOI: 10.7554/elife.88865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic cardiac disease that leads to ventricular tachycardia (VT), a life-threatening heart rhythm disorder. Treating ARVC remains challenging due to the complex underlying arrhythmogenic mechanisms, which involve structural and electrophysiological (EP) remodeling. Here, we developed a novel genotype-specific heart digital twin (Geno-DT) approach to investigate the role of pathophysiological remodeling in sustaining VT reentrant circuits and to predict the VT circuits in ARVC patients of different genotypes. This approach integrates the patient's disease-induced structural remodeling reconstructed from contrast-enhanced magnetic-resonance imaging and genotype-specific cellular EP properties. In our retrospective study of 16 ARVC patients with two genotypes: plakophilin-2 (PKP2, n = 8) and gene-elusive (GE, n = 8), we found that Geno-DT accurately and non-invasively predicted the VT circuit locations for both genotypes (with 100%, 94%, 96% sensitivity, specificity, and accuracy for GE patient group, and 86%, 90%, 89% sensitivity, specificity, and accuracy for PKP2 patient group), when compared to VT circuit locations identified during clinical EP studies. Moreover, our results revealed that the underlying VT mechanisms differ among ARVC genotypes. We determined that in GE patients, fibrotic remodeling is the primary contributor to VT circuits, while in PKP2 patients, slowed conduction velocity and altered restitution properties of cardiac tissue, in addition to the structural substrate, are directly responsible for the formation of VT circuits. Our novel Geno-DT approach has the potential to augment therapeutic precision in the clinical setting and lead to more personalized treatment strategies in ARVC.
Collapse
Affiliation(s)
- Yingnan Zhang
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins UniversityBaltimoreUnited States
| | - Kelly Zhang
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins UniversityBaltimoreUnited States
| | - Adityo Prakosa
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins UniversityBaltimoreUnited States
| | - Cynthia James
- Division of Cardiology, Department of Medicine, Johns Hopkins HospitalBaltimoreUnited States
| | | | - Richard Carrick
- Division of Cardiology, Department of Medicine, Johns Hopkins HospitalBaltimoreUnited States
| | - Eric Sung
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins UniversityBaltimoreUnited States
| | - Alessio Gasperetti
- Division of Cardiology, Department of Medicine, Johns Hopkins HospitalBaltimoreUnited States
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins HospitalBaltimoreUnited States
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins HospitalBaltimoreUnited States
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins HospitalBaltimoreUnited States
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
22
|
Basharat SA, Hsiung I, Garg J, Alsaid A. Arrhythmogenic Cardiomyopathy: Evolving Diagnostic Criteria and Insight from Cardiac Magnetic Resonance Imaging. Heart Fail Clin 2023; 19:429-444. [PMID: 37714585 DOI: 10.1016/j.hfc.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an umbrella term encompassing a wide variety of overlapping hereditary and nonhereditary disorders that can result in malignant ventricular arrhythmias and sudden cardiac death. Cardiac MRI plays a critical role in accurate diagnosis of various ACM entities and is increasingly showing promise in risk stratification that can further guide management particularly in decisions regarding use of implantable cardioverter defibrillator. Genotyping plays an important role in cascade testing but challenges remain due to incomplete penetrance and wide phenotypic variability of ACM as well as the presence of gene-elusive cases.
Collapse
Affiliation(s)
- Sohaib Ahmad Basharat
- Division of Cardiology, Loma Linda University Medical Center, 11234 Anderson Street, MC2426, Loma Linda, CA 92354, USA
| | - Ingrid Hsiung
- Department of Cardiology, Baylor Scott & White The Heart Hospital, 1100 Allied Drive, Plano, TX 75093, USA
| | - Jalaj Garg
- Division of Cardiology, Loma Linda University Medical Center, 11234 Anderson Street, MC2426, Loma Linda, CA 92354, USA. https://twitter.com/drjalajgarg
| | - Amro Alsaid
- Department of Cardiology, Baylor Scott & White The Heart Hospital, 1100 Allied Drive, Plano, TX 75093, USA.
| |
Collapse
|
23
|
Castillo E. Recurrent Syncope in a Patient With Arrhythmogenic Right Ventricular Cardiomyopathy. Cureus 2023; 15:e45850. [PMID: 37881382 PMCID: PMC10597589 DOI: 10.7759/cureus.45850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/27/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an autosomal inherited cardiac condition characterized by fibroadipose tissue replacement of the right ventricular muscle, leading to structural changes and a high risk for ventricular arrhythmias, a gradual decline in right ventricular function, and sudden cardiac death. ARVC has an autosomal dominant inheritance pattern with variable expression among patients, typically affecting young adults. Genetic mutations affecting the cardiac desmosome genes have been widely reported. Intense exercise has been hypothesized as one of the drivers of ARVC's pathogenesis. Due to its non-specific presentation, it can become a diagnostic challenge for physicians with delayed care. We report a case of a male adult with a history of recurrent syncope and atypical chest pain who developed ventricular tachycardia on admission. This case aims to highlight the unspecific manifestations of ARVC and its main electrocardiographic features for an early diagnosis.
Collapse
|
24
|
Kirkels FP, van Osta N, Rootwelt-Norberg C, Chivulescu M, van Loon T, Aabel EW, Castrini AI, Lie ØH, Asselbergs FW, Delhaas T, Cramer MJ, Teske AJ, Haugaa KH, Lumens J. Monitoring of Myocardial Involvement in Early Arrhythmogenic Right Ventricular Cardiomyopathy Across the Age Spectrum. J Am Coll Cardiol 2023; 82:785-797. [PMID: 37612010 DOI: 10.1016/j.jacc.2023.05.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by fibrofatty replacement of primarily the right ventricular myocardium, a substrate for life-threatening ventricular arrhythmias (VAs). Repeated cardiac imaging of at-risk relatives is important for early disease detection. However, it is not known whether screening should be age-tailored. OBJECTIVES The goal of this study was to assess the need for age-tailoring of follow-up protocols in early ARVC by evaluating myocardial disease progression in different age groups. METHODS We divided patients with early-stage ARVC and genotype-positive relatives without overt structural disease and VA at first evaluation into 3 groups: age <30 years, 30 to 50 years, and ≥50 years. Longitudinal biventricular deformation characteristics were used to monitor disease progression. To link deformation abnormalities to underlying myocardial disease substrates, Digital Twins were created using an imaging-based computational modeling framework. RESULTS We included 313 echocardiographic assessments from 82 subjects (57% female, age 39 ± 17 years, 10% probands) during 6.7 ± 3.3 years of follow-up. Left ventricular global longitudinal strain slightly deteriorated similarly in all age groups (0.1%-point per year [95% CI: 0.05-0.15]). Disease progression in all age groups was more pronounced in the right ventricular lateral wall, expressed by worsening in longitudinal strain (0.6%-point per year [95% CI: 0.46-0.70]) and local differences in myocardial contractility, compliance, and activation delay in the Digital Twin. Six patients experienced VA during follow-up. CONCLUSIONS Disease progression was similar in all age groups, and sustained VA also occurred in patients aged >50 years without overt ARVC phenotype at first evaluation. Unlike recommended by current guidelines, our study suggests that follow-up of ARVC patients and relatives should not stop at older age.
Collapse
Affiliation(s)
- Feddo P Kirkels
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands; Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | - Nick van Osta
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Christine Rootwelt-Norberg
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Monica Chivulescu
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Tim van Loon
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Eivind W Aabel
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anna I Castrini
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øyvind H Lie
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Folkert W Asselbergs
- Amsterdam University Medical Centers, Department of Cardiology, University of Amsterdam, Amsterdam, the Netherlands; Health Data Research UK and Institute of Health Informatics, University College London, London, United Kingdom
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Maarten J Cramer
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Arco J Teske
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kristina H Haugaa
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. https://twitter.com/KristinaHaugaa
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
25
|
Zhang Y, Zhang K, Prakosa A, James C, Zimmerman SL, Carrick R, Sung E, Gasperetti A, Tichnell C, Murray B, Calkins H, Trayanova N. Predicting Ventricular Tachycardia Circuits in Patients with Arrhythmogenic Right Ventricular Cardiomyopathy using Genotype-specific Heart Digital Twins. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.31.23290587. [PMID: 37398074 PMCID: PMC10312861 DOI: 10.1101/2023.05.31.23290587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic cardiac disease that leads to ventricular tachycardia (VT), a life-threatening heart rhythm disorder. Treating ARVC remains challenging due to the complex underlying arrhythmogenic mechanisms, which involve structural and electrophysiological (EP) remodeling. Here, we developed a novel genotype-specific heart digital twin (Geno-DT) approach to investigate the role of pathophysiological remodeling in sustaining VT reentrant circuits and to predict the VT circuits in ARVC patients of different genotypes. This approach integrates the patient's disease-induced structural remodeling reconstructed from contrast-enhanced magnetic-resonance imaging and genotype-specific cellular EP properties. In our retrospective study of 16 ARVC patients with two genotypes: plakophilin-2 (PKP2, n = 8) and gene-elusive (GE, n = 8), we found that Geno-DT accurately and non-invasively predicted the VT circuit locations for both genotypes (with 100%, 94%, 96% sensitivity, specificity, and accuracy for GE patient group, and 86%, 90%, 89% sensitivity, specificity, and accuracy for PKP2 patient group), when compared to VT circuit locations identified during clinical EP studies. Moreover, our results revealed that the underlying VT mechanisms differ among ARVC genotypes. We determined that in GE patients, fibrotic remodeling is the primary contributor to VT circuits, while in PKP2 patients, slowed conduction velocity and altered restitution properties of cardiac tissue, in addition to the structural substrate, are directly responsible for the formation of VT circuits. Our novel Geno-DT approach has the potential to augment therapeutic precision in the clinical setting and lead to more personalized treatment strategies in ARVC.
Collapse
Affiliation(s)
- Yingnan Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
| | - Kelly Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
| | - Adityo Prakosa
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
| | - Cynthia James
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Stefan L Zimmerman
- Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Richard Carrick
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Eric Sung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
| | - Alessio Gasperetti
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Natalia Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
26
|
Xia C, Xu J, Xu H. Multimodal evaluation of arrhythmogenic right ventricular cardiomyopathy with thrombus: a case description. Quant Imaging Med Surg 2023; 13:5463-5467. [PMID: 37581049 PMCID: PMC10423369 DOI: 10.21037/qims-22-1358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/19/2023] [Indexed: 08/16/2023]
Affiliation(s)
- Chengjun Xia
- Department of Echocardiography, The First Bethune Hospital of Jilin University, Changchun, China
| | - Jing Xu
- Department of Echocardiography, The First Bethune Hospital of Jilin University, Changchun, China
| | - Hui Xu
- Department of Echocardiography, The First Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Kloosterman M, Boonstra MJ, Roudijk RW, Bourfiss M, van der Schaaf I, Velthuis BK, Eijsvogels TMH, Kirkels FP, van Dam PM, Loh P. Body surface potential mapping detects early disease onset in plakophilin-2-pathogenic variant carriers. Europace 2023; 25:euad197. [PMID: 37433034 PMCID: PMC10368448 DOI: 10.1093/europace/euad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023] Open
Abstract
AIMS Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a progressive inherited cardiac disease. Early detection of disease and risk stratification remain challenging due to heterogeneous phenotypic expression. The standard configuration of the 12 lead electrocardiogram (ECG) might be insensitive to identify subtle ECG abnormalities. We hypothesized that body surface potential mapping (BSPM) may be more sensitive to detect subtle ECG abnormalities. METHODS AND RESULTS We obtained 67 electrode BSPM in plakophilin-2 (PKP2)-pathogenic variant carriers and control subjects. Subject-specific computed tomography/magnetic resonance imaging based models of the heart/torso and electrode positions were created. Cardiac activation and recovery patterns were visualized with QRS- and STT-isopotential map series on subject-specific geometries to relate QRS-/STT-patterns to cardiac anatomy and electrode positions. To detect early signs of functional/structural heart disease, we also obtained right ventricular (RV) echocardiographic deformation imaging. Body surface potential mapping was obtained in 25 controls and 42 PKP2-pathogenic variant carriers. We identified five distinct abnormal QRS-patterns and four distinct abnormal STT-patterns in the isopotential map series of 31/42 variant carriers. Of these 31 variant carriers, 17 showed no depolarization or repolarization abnormalities in the 12 lead ECG. Of the 19 pre-clinical variant carriers, 12 had normal RV-deformation patterns, while 7/12 showed abnormal QRS- and/or STT-patterns. CONCLUSION Assessing depolarization and repolarization by BSPM may help in the quest for early detection of disease in variant carriers since abnormal QRS- and/or STT-patterns were found in variant carriers with a normal 12 lead ECG. Because electrical abnormalities were observed in subjects with normal RV-deformation patterns, we hypothesize that electrical abnormalities develop prior to functional/structural abnormalities in ARVC.
Collapse
Affiliation(s)
- Manon Kloosterman
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Machteld J Boonstra
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob W Roudijk
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mimount Bourfiss
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Iris van der Schaaf
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Birgitta K Velthuis
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Feddo P Kirkels
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter M van Dam
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- ECG-Excellence BV, Nieuwerbrug, The Netherlands
| | - Peter Loh
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
28
|
Sato M, Kato T, Ito M, Watanabe Y, Ito J, Takamura C, Terashima M. Transverse and longitudinal right ventricular fractional parameters derived from four-chamber cine MRI are associated with right ventricular dysfunction etiology. Sci Rep 2023; 13:5229. [PMID: 36997599 PMCID: PMC10063639 DOI: 10.1038/s41598-023-32284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/25/2023] [Indexed: 04/01/2023] Open
Abstract
Studies of the usefulness of transverse right ventricular (RV) shortening are limited. We retrospectively analyzed the CMR images of 67 patients (age: 50.8 ± 19.0 years; men: 53.7%; Control: n = 20, Overloaded RV (atrial septal defect): n = 15, Constricted RV (pericarditis): n = 17, Degenerated RV (arrhythmogenic right ventricular cardiomyopathy): n = 15) (all enrolled consecutively for each disease) in a single center. We defined RV longitudinal (fractional longitudinal change: FLC) and transverse (fractional transverse change: FTC) contraction parameters. We assessed the FTC/FLC (T/L) ratio on four-chamber cine CMR views and compared the four groups regarding the fractional parameters. FTC had a stronger correlation (R2 = 0.650; p < 0.001) with RV ejection fraction than that with FLC (R2 = 0.211; p < 0.001) in the linear regression analysis. Both FLC and FTC were significantly lower in the Degenerated RV and Constricted RV groups compared with those in the Control and Overloaded RV groups. The T/L ratio was significantly lower in the Degenerated RV group (p = 0.008), while the Overloaded RV (p = 0.986) and Constricted RV (p = 0.582) groups had preserved T/L ratios, compared with the Control group. Transverse shortening contributes to RV function more significantly compared with longitudinal contraction. Impaired T/L ratios may reflect RV myocardial degeneration. RV fractional parameters may help precisely understand RV dysfunction.
Collapse
Affiliation(s)
- Makito Sato
- Cardiovascular Imaging Clinic Iidabashi, Shin-Ogawamachi 1-14, Shinjuku-ku, Tokyo, 162-0814, Japan.
| | - Tomoko Kato
- Department of Cardiology, International University of Health and Welfare Narita Hospital, Chiba, 286-8520, Japan
| | - Miyuki Ito
- Cardiovascular Imaging Clinic Iidabashi, Shin-Ogawamachi 1-14, Shinjuku-ku, Tokyo, 162-0814, Japan
| | - Yoko Watanabe
- Cardiovascular Imaging Clinic Iidabashi, Shin-Ogawamachi 1-14, Shinjuku-ku, Tokyo, 162-0814, Japan
| | - Junko Ito
- Cardiovascular Imaging Clinic Iidabashi, Shin-Ogawamachi 1-14, Shinjuku-ku, Tokyo, 162-0814, Japan
| | - Chisato Takamura
- Cardiovascular Imaging Clinic Iidabashi, Shin-Ogawamachi 1-14, Shinjuku-ku, Tokyo, 162-0814, Japan
| | - Masahiro Terashima
- Cardiovascular Imaging Clinic Iidabashi, Shin-Ogawamachi 1-14, Shinjuku-ku, Tokyo, 162-0814, Japan
| |
Collapse
|
29
|
Alblaihed L, Kositz C, Brady WJ, Al-Salamah T, Mattu A. Diagnosis and management of arrhythmogenic right ventricular cardiomyopathy. Am J Emerg Med 2023; 65:146-153. [PMID: 36638611 DOI: 10.1016/j.ajem.2022.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic disorder of the myocardium that can lead to ventricular arrhythmia and sudden cardiac death. The condition has been identified as a significant cause of arrhythmic death among young people and athletes, therefore, early recognition of the disease by emergency clinicians is critical to prevent subsequent death. The diagnosis of ARVC can be very challenging and requires a systematic approach. This publication reviews the pathophysiology, classification, clinical presentations, and appropriate approach to diagnosis and management of ARVC.
Collapse
Affiliation(s)
- Leen Alblaihed
- Department of Emergency Medicine, University of Maryland School of Medicine, 110 S Paca Street, 6(th) Floor, Suite 200, Baltimore, MD 21201, United States of America.
| | - Christine Kositz
- Depratment of Emergency Medicine, University of Maryland Shore Medical Center at Easton, 219 S Washington St, Easton, MD 21601, United States of America
| | - William J Brady
- Department of Emergency Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Tareq Al-Salamah
- Department of Emergency Medicine, College of Medicine, King Saud University, PO Box 7805, Riyadh 11472, Saudi Arabia
| | - Amal Mattu
- Department of Emergency Medicine, University of Maryland School of Medicine, 110 S Paca Street, 6(th) Floor, Suite 200, Baltimore, MD 21201, United States of America
| |
Collapse
|
30
|
Delasnerie H, Gandjbakhch E, Sauve R, Beneyto M, Domain G, Voglimacci-Stephanopoli Q, Mandel F, Badenco N, Waintraub X, Mondoly P, Fressart V, Rollin A, Maury P. Correlations Between Endocardial Voltage Mapping, Diagnosis, and Genetics in Patients With Arrhythmogenic Right Ventricular Cardiomyopathy. Am J Cardiol 2023; 190:113-120. [PMID: 36621286 DOI: 10.1016/j.amjcard.2022.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/01/2022] [Accepted: 11/19/2022] [Indexed: 01/09/2023]
Abstract
The relations between endocardial voltage mapping and the genetic background of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) have not been investigated so far. A total of 97 patients with proved or suspected ARVC who underwent 3-dimensional endocardial mapping and genetic testing have been retrospectively included. Presence, localization, and size of scar areas were correlated to ARVC diagnosis and the presence of a pathogenic variant. A total of 78 patients (80%) presented with some bipolar or unipolar scar on endocardial voltage mapping, whereas 43 carried pathogenic variants (44%). Significant associations were observed between presence of endocardial scars on voltage mapping and previous or inducible ventricular tachycardia, right ventricular function and dimensions, or electrocardiogram features of ARVC. A total of 60 of the 78 patients (77%) with an endocardial scar fulfilled the criteria for a definitive arrhythmogenic right ventricular dysplasia diagnosis versus 8 of 19 patients (42%) without scar (p = 0.003). Patients with a definitive diagnosis of ARVC had more scars from any location and the scars were larger in patients with ARVC. In the 68 patients with a definitive diagnosis of ARVC, the presence of any endocardial scar was similar whether an ARVC-causal mutation was present or not. Only scar extent was significantly greater in patients with pathogenic variants. There was no difference in the presence and characteristics of scars in PKP2 mutated versus other mutated patients. The 3-dimensional endocardial mapping could have an important role for refining ARVC diagnosis and may be able to detect minor forms with otherwise insufficient criteria for diagnosis. The trend for larger scar extent were observed in mutated patients, without any difference according to the mutated genes.
Collapse
Affiliation(s)
- Hubert Delasnerie
- Department of Cardiology, Cardiology University Hospital Toulouse, Toulouse, France
| | - Estelle Gandjbakhch
- Department of Cardiology, Sorbonne Universités, AP-HP, Heart Institute, La Pitié-Salpêtrière University Hospital, Paris, France
| | - Romain Sauve
- Biosense, Johnson & Johnson, Issy-les-Moulineaux, France
| | - Maxime Beneyto
- Department of Cardiology, Cardiology University Hospital Toulouse, Toulouse, France
| | - Guillaume Domain
- Department of Cardiology, Cardiology University Hospital Toulouse, Toulouse, France
| | | | - Franck Mandel
- Department of Cardiology, Cardiology University Hospital Toulouse, Toulouse, France
| | - Nicolas Badenco
- Department of Cardiology, Sorbonne Universités, AP-HP, Heart Institute, La Pitié-Salpêtrière University Hospital, Paris, France
| | - Xavier Waintraub
- Department of Cardiology, Sorbonne Universités, AP-HP, Heart Institute, La Pitié-Salpêtrière University Hospital, Paris, France
| | - Pierre Mondoly
- Department of Cardiology, Cardiology University Hospital Toulouse, Toulouse, France
| | - Véronique Fressart
- Service de Biochimie Métabolique, La Pitié-Salpêtrière University Hospital, Paris, France
| | - Anne Rollin
- Department of Cardiology, Cardiology University Hospital Toulouse, Toulouse, France
| | - Philippe Maury
- Department of Cardiology, Cardiology University Hospital Toulouse, Toulouse, France; I2MC, Inserm UMR 1297, Toulouse, France.
| |
Collapse
|
31
|
Unexplained Syncope With Abnormal ECG Findings in the Emergency Department: Don't Miss the Epsilon Wave! Adv Emerg Nurs J 2023; 45:51-58. [PMID: 36757748 DOI: 10.1097/tme.0000000000000448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Arrhythmogenic cardiomyopathy (AC) is a genetic cardiac disorder associated with sudden cardiac death, specifically in young adults (D. Corrado, C. Basso, & D. Judge, 2017). AC is a disease of the heart muscle fibers and it is not usually diagnosed until its advanced stages. Typical AC presentation in the emergency department (ED) includes cardiac syncope, palpitations, ventricular arrhythmias, or resolved cardiac arrest. The epsilon wave is the hallmark and the major electrocardiographic (ECG) diagnostic criterion for AC in the later stages of the disease process (A. R. Perez-Riera et al., 2019). A definite diagnosis of AC is of high complexity and not typically made by emergency providers; however, many cases of advanced AC are discovered in the ED as a result of syncope. The purpose of this case review is to discuss the typical presentation, ECG findings, and emergency providers' role in the management of patients with suspected AC.
Collapse
|
32
|
Boonstra MJ, Oostendorp TF, Roudijk RW, Kloosterman M, Asselbergs FW, Loh P, Van Dam PM. Incorporating structural abnormalities in equivalent dipole layer based ECG simulations. Front Physiol 2022; 13:1089343. [PMID: 36620207 PMCID: PMC9814485 DOI: 10.3389/fphys.2022.1089343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: Electrical activity of the myocardium is recorded with the 12-lead ECG. ECG simulations can improve our understanding of the relation between abnormal ventricular activation in diseased myocardium and body surface potentials (BSP). However, in equivalent dipole layer (EDL)-based ECG simulations, the presence of diseased myocardium breaks the equivalence of the dipole layer. To simulate diseased myocardium, patches with altered electrophysiological characteristics were incorporated within the model. The relation between diseased myocardium and corresponding BSP was investigated in a simulation study. Methods: Activation sequences in normal and diseased myocardium were simulated and corresponding 64-lead BSP were computed in four models with distinct patch locations. QRS-complexes were compared using correlation coefficient (CC). The effect of different types of patch activation was assessed. Of one patient, simulated electrograms were compared to electrograms recorded during invasive electro-anatomical mapping. Results: Hundred-fifty-three abnormal activation sequences were simulated. Median QRS-CC of delayed versus dyssynchronous were significantly different (1.00 vs. 0.97, p < 0.001). Depending on the location of the patch, BSP leads were affected differently. Within diseased regions, fragmentation, low bipolar voltages and late potentials were observed in both recorded and simulated electrograms. Discussion: A novel method to simulate cardiomyopathy in EDL-based ECG simulations was established and evaluated. The new patch-based approach created a realistic relation between ECG waveforms and underlying activation sequences. Findings in the simulated cases were in agreement with clinical observations. With this method, our understanding of disease progression in cardiomyopathies may be further improved and used in advanced inverse ECG procedures.
Collapse
Affiliation(s)
- Machteld J Boonstra
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,*Correspondence: Machteld J Boonstra,
| | - Thom F Oostendorp
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, Netherlands
| | - Rob W Roudijk
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon Kloosterman
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, United Kingdom,Health Data Research UK and Institute of Health Informatics, University College London, London, United Kingdom
| | - Peter Loh
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Peter M Van Dam
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,ECG Excellence BV, Nieuwerbrug aan den Rijn, Weijland, Netherlands
| |
Collapse
|
33
|
Venlet J, Piers SR, Hoogendoorn J, Androulakis AFA, de Riva M, van der Geest RJ, Zeppenfeld K. The transmural activation interval: a new mapping tool to identify ventricular tachycardia substrates in right ventricular cardiomyopathy. Europace 2022; 25:478-486. [PMID: 36480385 PMCID: PMC9935041 DOI: 10.1093/europace/euac220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/23/2022] [Indexed: 12/13/2022] Open
Abstract
AIMS In right ventricular cardiomyopathy (RVCM), intramural scar may prevent rapid transmural activation, which may facilitate subepicardial ventricular tachycardia (VT) circuits. A critical transmural activation delay determined during sinus rhythm (SR) may identify VT substrates in RVCM. METHODS AND RESULTS Consecutive patients with RVCM who underwent detailed endocardial-epicardial mapping and ablation for scar-related VT were enrolled. The transmural activation interval (TAI, first endocardial to first epicardial activation) and maximal activation interval (MAI, first endocardial to last epicardial activation) were determined in endocardial-epicardial point pairs located <10 mm apart. VT-related sites were determined by conventional substrate mapping and limited activation mapping when possible. Nineteen patients (46 ± 16 years, 84% male, 63% arrhythmogenic right ventricular cardiomyopathy, 37% exercise-induced arrhythmogenic remodelling) were inducible for 44 VT [CL 283 (interquartile range, IQR 240-325)ms]. A total of 2569 endocardial-epicardial coupled point pairs were analysed, including 98 (4%) epicardial VT-related sites.The TAI and MAI were significantly longer at VT-related sites compared with other electroanatomical scar sites [TAI median 31 (IQR 11-50) vs. 2 (-7-11)ms, P < 0.001; MAI median 65 (IQR 45-87) vs. 23 (13-39)ms, P < 0.001]. TAI and MAI allowed highly accurate identification of epicardial VT-related sites (optimal cut-off TAI 17 ms and MAI 45 ms, both AUC 0.81). Both TAI and MAI had a better predictive accuracy for VT-related sites than endocardial and epicardial voltage and electrogram (EGM) duration (AUC 0.51-0.73). CONCLUSION The transmural activation delay in SR can be used to identify VT substrates in patients with RVCM and predominantly hemodynamically non-tolerated VT, and may be an important new mapping tool for substrate-based ablation.
Collapse
Affiliation(s)
- Jeroen Venlet
- Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Department of Cardiology, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Sebastiaan R Piers
- Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Department of Cardiology, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Jarieke Hoogendoorn
- Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Department of Cardiology, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Alexander F A Androulakis
- Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Department of Cardiology, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Marta de Riva
- Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Department of Cardiology, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Rob J van der Geest
- Department of Image Processing, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Katja Zeppenfeld
- Corresponding author. Tel: +31715262020; Fax: +31715266809. E-mail address
| |
Collapse
|
34
|
Gasperetti A, Tandri H. Catheter Ablation of Ventricular Tachycardia in Arrhythmogenic Right Ventricular Cardiomyopathy. Card Electrophysiol Clin 2022; 14:679-683. [PMID: 36396184 DOI: 10.1016/j.ccep.2022.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy is an inherited desmosomal myopathy characterized by progressive fibrofatty replacement of the myocardium, right ventricular enlargement, and malignant ventricular arrhythmias. Ventricular tachycardias is one of the most common initial presentation of ARVC. This manuscript addresses invasive VT ablation options for the managmenet of VT in patients with ARVC.
Collapse
Affiliation(s)
- Alessio Gasperetti
- ARVC Program, Division of Cardiology, Johns Hopkins University School of Medicine, 600 Wolfe Street, Baltimore, MD 21287, USA
| | - Harikrishna Tandri
- ARVC Program, Division of Cardiology, Johns Hopkins University School of Medicine, 600 Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
35
|
Samesima N, God EG, Kruse JCL, Leal MG, Pinho C, França FFDAC, Pimenta J, Cardoso AF, Paixão A, Fonseca A, Pérez-Riera AR, Ribeiro ALP, Madaloso BA, Luna Filho B, Oliveira CARD, Grupi CJ, Moreira DAR, Kaiser E, Paixão GMDM, Feitosa Filho G, Pereira Filho HG, Grindler J, Aziz JL, Molina MS, Facin M, Tobias NMMDO, Oliveira PAD, Sanches PCR, Teixeira RA, Atanes SM, Pastore CA. Brazilian Society of Cardiology Guidelines on the Analysis and Issuance of Electrocardiographic Reports - 2022. Arq Bras Cardiol 2022; 119:638-680. [PMID: 36287420 PMCID: PMC9563889 DOI: 10.36660/abc.20220623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Nelson Samesima
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo , SP - Brasil
| | | | | | | | - Claudio Pinho
- Pontifícia Universidade Católida (PUC), Campinas , SP - Brasil
- Clínica Pinho , Valinhos , SP - Brasil
| | | | - João Pimenta
- Hospital do Servidor Público Estadual , São Paulo , SP - Brasil
| | - Acácio Fernandes Cardoso
- Serviço de Eletrocardiologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo , SP - Brasil
| | - Adail Paixão
- Hospital Unimec , Vitória Da Conquista , BA - Brasil
| | - Alfredo Fonseca
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo , SP - Brasil
| | | | | | - Bruna Affonso Madaloso
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo , SP - Brasil
| | - Bráulio Luna Filho
- Hospital São Paulo , Universidade Federal de São Paulo (UNIFESP), São Paulo , SP - Brasil
| | | | - César José Grupi
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo , SP - Brasil
| | | | - Elisabeth Kaiser
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo , SP - Brasil
| | | | | | - Horacio Gomes Pereira Filho
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo , SP - Brasil
| | - José Grindler
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo , SP - Brasil
| | - José Luiz Aziz
- Faculdade de Medicina do ABC , Santo André , SP - Brasil
| | | | - Mirella Facin
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo , SP - Brasil
| | - Nancy M M de Oliveira Tobias
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo , SP - Brasil
| | - Patricia Alves de Oliveira
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo , SP - Brasil
| | | | - Ricardo Alkmin Teixeira
- Hospital Renascentista , Pouso Alegre , MG - Brasil
- Faculdade de Medicina da Universidade do Vale do Sapucaí (UNIVÁS), Pouso Alegre , MG - Brasil
| | | | - Carlos Alberto Pastore
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo , SP - Brasil
| |
Collapse
|
36
|
Cheng WH, Chung FP, Lin YJ, Lo LW, Chang SL, Hu YF, Tuan TC, Chao TF, Liao JN, Lin CY, Chang TY, Kuo L, Wu CI, Liu CM, Liu SH, Chen SA. Catheter Ablation in Arrhythmic Cardiac Diseases: Endocardial and Epicardial Ablation. Rev Cardiovasc Med 2022; 23:324. [PMID: 39077706 PMCID: PMC11262352 DOI: 10.31083/j.rcm2309324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 07/31/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a group of arrhythmogenic disorders of the myocardium that are not caused by ischemic, hypertensive, or valvular heart disease. The clinical manifestations of ACMs may overlap those of dilated cardiomyopathy, complicating the differential diagnosis. In several ACMs, ventricular tachycardia (VT) has been observed at an early stage, regardless of the severity of the disease. Therefore, preventing recurrences of VT can be a clinical challenge. There is a wide range of efficacy and side effects associated with the use of antiarrhythmic drugs (AADs) in the treatment of VT. In addition to AADs, patients with ACM and ventricular tachyarrhythmias may benefit from catheter ablation, especially if they are drug-refractory. The differences in pathogenesis between the various types of ACMs can lead to heterogeneous distributions of arrhythmogenic substrates, non-uniform ablation strategies, and distinct ablation outcomes. Ablation has been documented to be effective in eliminating ventricular tachyarrhythmias in arrhythmogenic right ventricular dysplasia (ARVC), sarcoidosis, Chagas cardiomyopathy, and Brugada syndrome (BrS). As an entity that is rare in nature, ablation for ventricular tachycardia in certain forms of ACM may only be reported through case reports, such as amyloidosis and left ventricular noncompaction. Several types of ACMs, including ARVC, sarcoidosis, Chagas cardiomyopathy, BrS, and left ventricular noncompaction, may exhibit diseased substrates within or adjacent to the epicardium that may be accountable for ventricular arrhythmogenesis. As a result, combining endocardial and epicardial ablation is of clinical importance for successful ablation. The purpose of this article is to provide a comprehensive overview of the substrate characteristics, ablation strategies, and ablation outcomes of various types of ACMs using endocardial and epicardial approaches.
Collapse
Affiliation(s)
- Wen-Han Cheng
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
- Department of Medicine, Taipei Veterans General Hospital Taitung Branch, 95050 Taitung, Taiwan
| | - Fa-Po Chung
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Yenn-Jiang Lin
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Li-Wei Lo
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Shih-Lin Chang
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Yu-Feng Hu
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Ta-Chuan Tuan
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Tze-Fan Chao
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Jo-Nan Liao
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Chin-Yu Lin
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Ting-Yung Chang
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Ling Kuo
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Cheng-I Wu
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Chih-Min Liu
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Shin-Huei Liu
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, 40705 Taichung, Taiwan
| |
Collapse
|
37
|
Arrhythmogenic cardiomyopathy and differential diagnosis with physiological right ventricular remodelling in athletes using cardiovascular magnetic resonance. Int J Cardiovasc Imaging 2022; 38:2723-2732. [DOI: 10.1007/s10554-022-02684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
|
38
|
Arrhythmogenic Right Ventricular Cardiomyopathy. JACC Clin Electrophysiol 2022; 8:533-553. [PMID: 35450611 DOI: 10.1016/j.jacep.2021.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/21/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) encompasses a group of conditions characterized by right ventricular fibrofatty infiltration, with a predominant arrhythmic presentation. First described in the late 1970s and early 1980s, it is now frequently recognized to have biventricular involvement. The prevalence is ∼1:2,000 to 1:5,000, depending on geographic location, and it has a slight male predominance. The diagnosis of ARVC is determined on the basis of fulfillment of task force criteria incorporating electrophysiological parameters, cardiac imaging findings, genetic factors, and histopathologic features. Risk stratification of patients with ARVC aims to identify those who are at increased risk of sudden cardiac death or sustained ventricular tachycardia. Factors including age, sex, electrophysiological features, and cardiac imaging investigations all contribute to risk stratification. The current management of ARVC includes exercise restriction, β-blocker therapy, consideration for implantable cardioverter-defibrillator insertion, and catheter ablation. This review summarizes our current understanding of ARVC and provides clinicians with a practical approach to diagnosis and management.
Collapse
|
39
|
Franciosi S, Abrams DJ, Ingles J, Sanatani S. Sudden Cardiac Arrest in the Paediatric Population. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2022; 1:45-59. [PMID: 37969243 PMCID: PMC10642157 DOI: 10.1016/j.cjcpc.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2023]
Abstract
Sudden cardiac arrest in the young is a rare event with a range of potential causes including cardiomyopathies, ion channelopathies, and autonomic nervous system dysfunction. Investigations into the cause involve a multidisciplinary team, including cardiologists, geneticists, and psychologists. In addition to a detailed medical history, family history and circumstances surrounding the event are important in determining the cause. Clinical investigations including an electrocardiogram are fundamental in diagnosis and should be interpreted cautiously because some children may have atypical presentations and an evolving phenotype. The potential for misdiagnosis exists that could lead to incorrect long-term management strategies. If an inherited condition is suspected, genetic testing of the patient and cascade screening of family members is recommended with genetic counselling and psychological support. Medical management is left to the treating physician acknowledging that a clear diagnosis cannot be made in approximately half of cases. Secondary prevention implantable defibrillators are widely deployed but can be associated with complications in young patients. A plan for safe return to activity is recommended along with a proper transition of care into adulthood. Broad screening of the general population for arrhythmia syndromes is not recommended; preventative measures include screening paediatric patients for risk factors by their primary care physician. Several milestone events or activities that take place in youth could be used as opportunities to promote safety. Further work into risk stratification of this paediatric population through patient registries and greater awareness of cardiopulmonary resuscitation and automated external defibrillator use in saving lives is warranted.
Collapse
Affiliation(s)
- Sonia Franciosi
- BC Children’s Hospital Heart Centre, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic J. Abrams
- Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Shubhayan Sanatani
- BC Children’s Hospital Heart Centre, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
40
|
[Catheter ablation of ventricular tachycardia in patients with structural heart disease]. Herz 2022; 47:129-134. [PMID: 35262743 DOI: 10.1007/s00059-022-05103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 11/04/2022]
Abstract
Ventricular cardiac rhythm disorders are potentially life-threatening arrhythmias. Ventricular tachycardia (VT) in patients with structural heart disease carries an increased risk of sudden cardiac death. Interventional radiofrequency catheter ablation is increasingly becoming the focus of treatment for ventricular arrhythmias. So far, no randomized study has been able to demonstrate a reduction in mortality; however, depending on the existing cardiomyopathy, interventional VT ablation has proven to be more effective for rhythm stabilization than antiarrhythmic therapy and is subsequently associated with improve quality of life through reduced implantable cardioverter defibrillator (ICD) treatment. The aim of this work is to discuss the pathophysiology, mechanism and treatment of VT with structural heart disease in order to define the role of catheter ablation.
Collapse
|
41
|
Molitor N, Duru F. Arrhythmogenic Right Ventricular Cardiomyopathy and Differential Diagnosis with Diseases Mimicking Its Phenotypes. J Clin Med 2022; 11:jcm11051230. [PMID: 35268321 PMCID: PMC8911116 DOI: 10.3390/jcm11051230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease, which is characterized by fibro-fatty replacement of predominantly the right ventricle (RV). The disease can result in ventricular tachyarrhythmias and sudden cardiac death. Our understanding of the pathophysiology and clinical expressivity of ARVC has been continuously evolving. The diagnosis can be challenging due to its variable expressivity, incomplete penetrance and the lack of specific diagnostic criteria. Idiopathic RV outflow tract tachycardia, Brugada Syndrome, athlete’s heart, dilated cardiomyopathy, myocarditis, cardiac sarcoidosis, congenital aneurysms and diverticula may mimic clinical phenotypes of ARVC. This review aims to provide an update on the differential diagnosis of ARVC.
Collapse
Affiliation(s)
- Nadine Molitor
- Division of Arrhythmias and Electrophysiology, Clinic for Cardiology, University Heart Center Zurich, 8091 Zurich, Switzerland;
| | - Firat Duru
- Division of Arrhythmias and Electrophysiology, Clinic for Cardiology, University Heart Center Zurich, 8091 Zurich, Switzerland;
- Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland
- Correspondence: ; Tel.: +41-44-2553565
| |
Collapse
|
42
|
Echocardiographic Deformation Imaging for Early Detection of Genetic Cardiomyopathies: JACC Review Topic of the Week. J Am Coll Cardiol 2022; 79:594-608. [PMID: 35144751 DOI: 10.1016/j.jacc.2021.11.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
Clinical screening of the relatives of patients with genetic cardiomyopathies is challenging, as they often lack detectable cardiac abnormalities at presentation. Life-threatening adverse events can already occur in these early stages of disease, so sensitive tools to reveal the earliest signs of disease are needed. The utility of echocardiographic deformation imaging for early detection has been explored for this population in multiple studies but has not been broadly implemented in clinical practice. The authors discuss contemporary evidence on the utility of deformation imaging in relatives of patients with genetic cardiomyopathies. The available body of data shows that deformation imaging reveals early disease-specific abnormalities in dilated cardiomyopathy, hypertrophic cardiomyopathy, and arrhythmogenic cardiomyopathy. Deformation imaging seems promising to enhance the screening and follow-up protocols in relatives, and the authors propose measures to accelerate its implementation in clinical care.
Collapse
|
43
|
Malik N, Mukherjee M, Wu KC, Zimmerman SL, Zhan J, Calkins H, James CA, Gilotra NA, Sheikh FH, Tandri H, Kutty S, Hays AG. Multimodality Imaging in Arrhythmogenic Right Ventricular Cardiomyopathy. Circ Cardiovasc Imaging 2022; 15:e013725. [PMID: 35147040 DOI: 10.1161/circimaging.121.013725] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare, heritable myocardial disease associated with the development of ventricular arrhythmias, heart failure, and sudden cardiac death in early adulthood. Multimodality imaging is a central component in the diagnosis and evaluation of ARVC. Diagnostic criteria established by an international task force in 2010 include noninvasive parameters from echocardiography and cardiac magnetic resonance imaging. These criteria identify right ventricular structural abnormalities, chamber and outflow tract dilation, and reduced right ventricular function as features of ARVC. Echocardiography is a widely available and cost-effective technique, and it is often selected for initial evaluation. Beyond fulfillment of diagnostic criteria, features such as abnormal tricuspid annular plane excursion, increased right ventricular basal diameter, and abnormal strain patterns have been described. 3-dimensional echocardiography may also expand opportunities for structural and functional assessment of ARVC. Cardiac magnetic resonance has the ability to assess morphological and functional cardiac features of ARVC and is also a core modality in evaluation, however, tissue characterization of the right ventricle is limited by spatial resolution and low specificity for detection of pathological changes. Nonetheless, the ability of cardiac magnetic resonance to identify left ventricular involvement, offer high negative predictive value, and provide a reproducible structural evaluation of the right ventricle enhance the ability and scope of the modality. In this review, the prognostic significance of multimodality imaging is outlined, including the supplemental value of multidetector computed tomography and nuclear imaging. Strengths and weaknesses of imaging techniques, as well as future direction of multimodality assessment, are also described.
Collapse
Affiliation(s)
- Nitin Malik
- MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC (N.M., F.H.S.).,Georgetown University, Washington, DC (N.M., F.H.S.)
| | - Monica Mukherjee
- Johns Hopkins University Department of Medicine, Division of Cardiology, Baltimore, MD (M.M., K.C.W., H.C., C.A.J., N.A.G., H.T., A.G.H.)
| | - Katherine C Wu
- Johns Hopkins University Department of Medicine, Division of Cardiology, Baltimore, MD (M.M., K.C.W., H.C., C.A.J., N.A.G., H.T., A.G.H.)
| | - Stefan L Zimmerman
- Johns Hopkins University Department of Radiology, Baltimore, MD (S.L.Z.)
| | - Junzhen Zhan
- Johns Hopkins University Department of Pediatrics, Division of Pediatric Cardiology, Baltimore, MD (J.Z., S.K.)
| | - Hugh Calkins
- Johns Hopkins University Department of Medicine, Division of Cardiology, Baltimore, MD (M.M., K.C.W., H.C., C.A.J., N.A.G., H.T., A.G.H.)
| | - Cynthia A James
- Johns Hopkins University Department of Medicine, Division of Cardiology, Baltimore, MD (M.M., K.C.W., H.C., C.A.J., N.A.G., H.T., A.G.H.)
| | - Nisha A Gilotra
- Johns Hopkins University Department of Medicine, Division of Cardiology, Baltimore, MD (M.M., K.C.W., H.C., C.A.J., N.A.G., H.T., A.G.H.)
| | - Farooq H Sheikh
- MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC (N.M., F.H.S.).,Georgetown University, Washington, DC (N.M., F.H.S.)
| | - Harikrishna Tandri
- Johns Hopkins University Department of Medicine, Division of Cardiology, Baltimore, MD (M.M., K.C.W., H.C., C.A.J., N.A.G., H.T., A.G.H.)
| | - Shelby Kutty
- Johns Hopkins University Department of Pediatrics, Division of Pediatric Cardiology, Baltimore, MD (J.Z., S.K.)
| | - Allison G Hays
- Johns Hopkins University Department of Medicine, Division of Cardiology, Baltimore, MD (M.M., K.C.W., H.C., C.A.J., N.A.G., H.T., A.G.H.)
| |
Collapse
|
44
|
Manole S, Pintican R, Popa G, Rancea R, Dadarlat-Pop A, Vulturar R, Palade E. Diagnostic Challenges in Rare Causes of Arrhythmogenic Cardiomyopathy—The Role of Cardiac MRI. J Pers Med 2022; 12:jpm12020187. [PMID: 35207675 PMCID: PMC8878419 DOI: 10.3390/jpm12020187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
Arrhythmogenic right ventricular dysplasia (ARVD) is a rare genetic condition of the myocardium, with a significantly high risk of sudden death. Recent genetic research and improved understanding of the pathophysiology tend to change the ARVD definition towards a larger spectrum of myocardial involvement, which includes, in various proportions, both the right (RV) and left ventricle (LV), currently referred to as ACM (arrhythmogenic cardiomyopathy). Its pathological substrate is defined by the replacement of the ventricular myocardium with fibrous adipose tissue that further leads to inadequate electrical impulses and translates into varies degrees of malignant ventricular arrythmias and dyskinetic myocardium movements. Particularly, the cardio-cutaneous syndromes of Carvajal/Naxos represent rare causes of ACM that might be suspected from early childhood. The diagnostic is sometimes challenging, even with well-established rTFC or Padua criteria, especially for pediatric patients or ACM with LV involvement. Cardiac MRI gain more and more importance in ACM diagnostic especially in non-classical forms. Furthermore, MRI is useful in highlighting myocardial fibrosis, fatty replacement or wall movement with high accuracy, thus guiding not only the depiction, but also the patient’s stratification and management.
Collapse
Affiliation(s)
- Simona Manole
- Department of Radiology and Medical Imaging, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj Napoca, 8, Victor Babes St., 400012 Cluj-Napoca, Romania;
- Department of Radiology, “Niculae Stancioiu” Heart Institute, 19-21, Calea Motilor St., 400001 Cluj-Napoca, Romania
| | - Roxana Pintican
- Department of Radiology and Medical Imaging, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj Napoca, 8, Victor Babes St., 400012 Cluj-Napoca, Romania;
- Correspondence: (R.P.); (G.P.)
| | - George Popa
- Department of Radiology, “Niculae Stancioiu” Heart Institute, 19-21, Calea Motilor St., 400001 Cluj-Napoca, Romania
- Correspondence: (R.P.); (G.P.)
| | - Raluca Rancea
- Department of Cardiology, “Niculae Stăncioiu” Heart Institute, 400001 Cluj-Napoca, Romania; (R.R.); (A.D.-P.)
| | - Alexandra Dadarlat-Pop
- Department of Cardiology, “Niculae Stăncioiu” Heart Institute, 400001 Cluj-Napoca, Romania; (R.R.); (A.D.-P.)
- Department of Cardiology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj Napoca, 8, Victor Babes, St., 400012 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Emanuel Palade
- Department of Cardiovascular and Thoracic Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj Napoca, 8, Victor Babes, St., 400012 Cluj-Napoca, Romania;
- Department of Thoracic Surgery, “Leon Daniello” Pneumophtysiology Hospital Cluj-Napoca, Bogdan Petriceicu Hasdeu Street, Nr 6, 400332 Cluj-Napoca, Romania
| |
Collapse
|
45
|
Sharif ZI, Lubitz SA. Ventricular arrhythmia management in patients with genetic cardiomyopathies. Heart Rhythm O2 2021; 2:819-831. [PMID: 34988533 PMCID: PMC8710624 DOI: 10.1016/j.hroo.2021.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic cardiomyopathies are associated with increased risk for cardiac arrhythmias and sudden cardiac death. The management of ventricular arrhythmias (VAs) in patients with these conditions can be nuanced due to particular disease-based considerations, yet data specifically addressing management in these patients are limited. Here we describe the current evidence-based approach to the management of ventricular rhythm disorders in patients with genetic forms of cardiomyopathy, namely, hypertrophic cardiomyopathy, arrhythmogenic cardiomyopathy, left ventricular noncompaction, and Brugada syndrome, including recommendations from consensus guideline statements when available.
Collapse
Affiliation(s)
- Zain I. Sharif
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts
| | - Steven A. Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
46
|
van der Voorn SM, Te Riele ASJM, Basso C, Calkins H, Remme CA, van Veen TAB. Arrhythmogenic cardiomyopathy: pathogenesis, pro-arrhythmic remodelling, and novel approaches for risk stratification and therapy. Cardiovasc Res 2021; 116:1571-1584. [PMID: 32246823 PMCID: PMC7526754 DOI: 10.1093/cvr/cvaa084] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a life-threatening cardiac disease caused by mutations in genes predominantly encoding for desmosomal proteins that lead to alterations in the molecular composition of the intercalated disc. ACM is characterized by progressive replacement of cardiomyocytes by fibrofatty tissue, ventricular dilatation, cardiac dysfunction, and heart failure but mostly dominated by the occurrence of life-threatening arrhythmias and sudden cardiac death (SCD). As SCD appears mostly in apparently healthy young individuals, there is a demand for better risk stratification of suspected ACM mutation carriers. Moreover, disease severity, progression, and outcome are highly variable in patients with ACM. In this review, we discuss the aetiology of ACM with a focus on pro-arrhythmic disease mechanisms in the early concealed phase of the disease. We summarize potential new biomarkers which might be useful for risk stratification and prediction of disease course. Finally, we explore novel therapeutic strategies to prevent arrhythmias and SCD in the early stages of ACM.
Collapse
Affiliation(s)
- Stephanie M van der Voorn
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, PO Box 85060, Utrecht 3508 AB, The Netherlands
| | - Anneline S J M Te Riele
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, PO Box 85060, Utrecht 3508 AB, The Netherlands
| | - Cristina Basso
- Cardiovascular Pathology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Via A. Gabelli, 61 35121 Padova, Italy
| | - Hugh Calkins
- Johns Hopkins Hospital, Sheikh Zayed Tower 7125R, Baltimore, MD 21287, USA
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Toon A B van Veen
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, PO Box 85060, Utrecht 3508 AB, The Netherlands
| |
Collapse
|
47
|
Biernacka EK, Borowiec K, Franaszczyk M, Szperl M, Rampazzo A, Woźniak O, Roszczynko M, Śmigielski W, Lutyńska A, Hoffman P. Pathogenic variants in plakophilin-2 gene (PKP2) are associated with better survival in arrhythmogenic right ventricular cardiomyopathy. J Appl Genet 2021; 62:613-620. [PMID: 34191271 PMCID: PMC8571136 DOI: 10.1007/s13353-021-00647-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is mainly caused by mutations in genes encoding desmosomal proteins. Variants in plakophilin-2 gene (PKP2) are the most common cause of the disease, associated with conventional ARVC phenotype. The study aims to evaluate the prevalence of PKP2 variants and examine genotype-phenotype correlation in Polish ARVC cohort. All 56 ARVC patients fulfilling the current criteria were screened for genetic variants in PKP2 using denaturing high-performance liquid chromatography or next-generation sequencing. The clinical evaluation involved medical history, electrocardiogram, echocardiography, and follow-up. Ten variants (5 frameshift, 2 nonsense, 2 splicing, and 1 missense) in PKP2 were found in 28 (50%) cases. All truncating variants are classified as pathogenic/likely pathogenic, while the missense variant is classified as variant of uncertain significance. Patients carrying a PKP2 mutation were younger at diagnosis (p = 0.003), more often had negative T waves in V1-V3 (p = 0.01), had higher left ventricular ejection fraction (p = 0.04), and were less likely to present symptoms of heart failure (p = 0.01) and left ventricular damage progression (p = 0.04). Combined endpoint of death or heart transplant was more frequent in subgroup without PKP2 mutation (p = 0.03). Pathogenic variants in PKP2 are responsible for 50% of ARVC cases in the Polish population and are associated with a better prognosis. ARVC patients with PKP2 mutation are less likely to present left ventricular involvement and heart failure symptoms. Combined endpoint of death or heart transplant was less frequent in this group.
Collapse
Affiliation(s)
- Elżbieta K Biernacka
- Department of Congenital Heart Diseases, National Institute of Cardiology, Alpejska 42, 04-628, Warsaw, Poland
| | - Karolina Borowiec
- Department of Congenital Heart Diseases, National Institute of Cardiology, Alpejska 42, 04-628, Warsaw, Poland.
| | - Maria Franaszczyk
- Molecular Biology Laboratory, Department of Medical Biology, National Institute of Cardiology, Warsaw, Poland
| | - Małgorzata Szperl
- Molecular Biology Laboratory, Department of Medical Biology, National Institute of Cardiology, Warsaw, Poland
| | | | - Olgierd Woźniak
- Department of Congenital Heart Diseases, National Institute of Cardiology, Alpejska 42, 04-628, Warsaw, Poland
| | - Marta Roszczynko
- Molecular Biology Laboratory, Department of Medical Biology, National Institute of Cardiology, Warsaw, Poland
| | | | - Anna Lutyńska
- Department of Medical Biology, National Institute of Cardiology, Warsaw, Poland
| | - Piotr Hoffman
- Department of Congenital Heart Diseases, National Institute of Cardiology, Alpejska 42, 04-628, Warsaw, Poland
| |
Collapse
|
48
|
Migliore F, Mattesi G, Zorzi A, Bauce B, Rigato I, Corrado D, Cipriani A. Arrhythmogenic Cardiomyopathy-Current Treatment and Future Options. J Clin Med 2021; 10:2750. [PMID: 34206637 PMCID: PMC8268983 DOI: 10.3390/jcm10132750] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inheritable heart muscle disease characterised pathologically by fibrofatty myocardial replacement and clinically by ventricular arrhythmias (VAs) and sudden cardiac death (SCD). Although, in its original description, the disease was believed to predominantly involve the right ventricle, biventricular and left-dominant variants, in which the myocardial lesions affect in parallel or even mostly the left ventricle, are nowadays commonly observed. The clinical management of these patients has two main purposes: the prevention of SCD and the control of arrhythmic and heart failure (HF) events. An implantable cardioverter defibrillator (ICD) is the only proven lifesaving treatment, despite significant morbidity because of device-related complications and inappropriate shocks. Selection of patients who can benefit the most from ICD therapy is one of the most challenging issues in clinical practice. Risk stratification in ACM patients is mostly based on arrhythmic burden and ventricular dysfunction severity, although other clinical features resulting from electrocardiogram and imaging modalities such as cardiac magnetic resonance may have a role. Medical therapy is crucial for treatment of VAs and the prevention of negative ventricular remodelling. In this regard, the efficacy of novel anti-HF molecules and drugs acting on the inflammatory pathway in patients with ACM is, to date, unknown. Catheter ablation represents an effective strategy to treat ventricular tachycardia relapses and recurrent ICD shocks. The present review will address the current strategies for prevention of SCD and treatment of VAs and HF in patients with ACM.
Collapse
Affiliation(s)
- Federico Migliore
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Giulia Mattesi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Ilaria Rigato
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Alberto Cipriani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
49
|
Laczay B, Patel D, Grimm R, Xu B. State-of-the-art narrative review: multimodality imaging in electrophysiology and cardiac device therapies. Cardiovasc Diagn Ther 2021; 11:881-895. [PMID: 34295711 PMCID: PMC8261739 DOI: 10.21037/cdt-20-724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/30/2020] [Indexed: 12/07/2022]
Abstract
Cardiac electrophysiology procedures have evolved to provide improvement in morbidity and mortality for many patients. Cardiac resynchronization therapy (CRT), implantable cardioverter/defibrillator (ICD) placement and lead extraction procedures are proven procedures, associated with significant reductions in patient morbidity and mortality as well as improved quality of life. The applications and optimization of these therapies are an evolving field. The optimal use and outcomes of cardiac electrophysiology procedures require a multidisciplinary approach to patient selection, device selection, and procedural planning. Cardiac imaging using echocardiography plays a key role in selection of patients for CRT therapy, for guidance of left ventricular (LV) lead placement, and for optimization of atrioventricular pacing delays in patients with CRT. Cardiac computed tomography (CT) is an important tool in assessment of lead perforation, as well as assessing risk of lead extraction and procedural planning. Cardiac magnetic resonance imaging (MRI) is an important adjunct to transthoracic echocardiography for patient selection and risk stratification for defibrillator therapy for multiple disease states including ischemic cardiomyopathy, hypertrophic cardiomyopathy, cardiac sarcoidosis, and arrhythmogenic right ventricular cardiomyopathy (ARVC). Cardiac positron emission tomography (PET) is a useful adjunct to the diagnosis of device infections as well as inflammatory conditions including cardiac sarcoidosis. Our review attempts to summarize the contemporary roles of multimodality imaging in CRT therapy, ICD therapy and lead extraction therapy.
Collapse
Affiliation(s)
- Balint Laczay
- Heart, Vascular & Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Divyang Patel
- Heart, Vascular & Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Richard Grimm
- Heart, Vascular & Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bo Xu
- Heart, Vascular & Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
50
|
Brugada-Terradellas C, Hellemans A, Brugada P, Smets P. Sudden cardiac death: A comparative review of humans, dogs and cats. Vet J 2021; 274:105696. [PMID: 34148018 DOI: 10.1016/j.tvjl.2021.105696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Sudden death is one of the most common causes of death in humans in Western countries. Approximately 85% of these cases are of cardiac origin. In dogs and cats, sudden cardiac death (SCD) also commonly occurs, but fewer pathophysiological and prevalence data are available. Both structural, primarily 'electrical' and ischemic heart diseases are known to cause SCD, many of which share similar underlying arrhythmogenic mechanisms between humans and companion animals. As for underlying genetics, numerous mutations on multiple loci have been related to SCD in humans, but only a few mutations associated with dilated cardiomyopathy and SCD have been identified in dogs, e.g. in the phospholamban and titin genes. Information published from human medicine can therefore inform future veterinary studies, but also dogs and cats could act as spontaneous models of SCD in humans. Further research in both fields is therefore warranted to better understand the pathophysiology, genetics, and prevention of SCD.
Collapse
Affiliation(s)
- Celine Brugada-Terradellas
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Arnaut Hellemans
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Pedro Brugada
- Pedro Brugada, Cardiovascular Division, UZ Brussel - VUB, Avenue du Laerbeek 101, 1090 Brussels, Belgium
| | - Pascale Smets
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|