1
|
Leypold T, Herbsthofer A, Craveiro RB, Wolf M, Beier JP, Ruhl T. Effects of cannabinoid receptor activation on Porphyromonas gingivalis lipopolysaccharide stimulation in human periodontal ligament stem cells in vitro. J Periodontal Implant Sci 2024; 54:54.e21. [PMID: 39058353 DOI: 10.5051/jpis.2303680184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
PURPOSE Periodontitis is an inflammatory disease that results in the loss of periodontal tissue. The endocannabinoid system has anti-inflammatory properties and displays considerable potential for tissue regeneration. In this study, we aimed to explore whether the activation of this system can alleviate or reverse the inflammatory phenotype of human periodontal ligament stem cells (hPDLSCs) induced by exposure to the inflammagen lipopolysaccharide (LPS). METHODS We investigated the effects of activating specific cannabinoid receptors (CB1 and CB2) on the inflammatory phenotype of LPS-stimulated hPDLSCs. The exogenous ligands WIN55,212-2 and JWH-133 were employed to target the cannabinoid receptors. We conducted a thorough assessment of cell proliferation, metabolic activity, and adipogenic, osteogenic, and chondrogenic differentiation potential. Additionally, we measured cytokine release using enzyme-linked immunosorbent assays. RESULTS Exposure to Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) caused an increase in cell proliferation while decreasing metabolic activity. While this exposure did not influence adipogenic or chondrogenic differentiation, it did result in reduced osteogenesis. Additionally, LPS induced the release of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein 1. Immunolabeling revealed the presence of CB1 and CB2 on the cellular membrane, with these receptors playing distinct roles in hPDLSCs. The CB1 agonist WIN55,212-2 was found to increase metabolic activity and promote adipogenic differentiation, whereas the CB2 agonist JWH-133 promoted cell proliferation and osteogenic differentiation. When hPDLSCs were co-exposed to Pg-LPS and CB ligands, JWH-133 slightly ameliorated the inhibition of osteogenic differentiation and suppressed the release of inflammatory cytokines. CONCLUSIONS This study clarifies the effects of specific CB receptor activation on hPDLCs and the inflammatory phenotype. Stimulation of the endocannabinoid system through the manipulation of endogenous or the application of exogenous cannabinoids in vivo may represent a potent therapeutic option for combating periodontal inflammatory disorders.
Collapse
Affiliation(s)
- Tim Leypold
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany.
| | - Alix Herbsthofer
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
2
|
Ponnaiyan D, Rughwani RR, Victor DJ, Shetty G. Stem Cells in the Periodontium-Anatomically Related Yet Physiologically Diverse. Eur J Dent 2024; 18:1-13. [PMID: 36588293 PMCID: PMC10959637 DOI: 10.1055/s-0042-1759487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Periodontitis is a complex chronic disease discernible by the deterioration of periodontal tissue. The goal of periodontal therapy is to achieve complete tissue regeneration, and one of the most promising treatment options is to harness the regenerative potential of stem cells available within the periodontal complex. Periodontal ligament stem cells, gingival mesenchymal stem cells, oral periosteal stem cells, and dental follicle stem cells have structural similarities, but their immunological responses and features differ. The qualities of diverse periodontal stem cells, their immune-modulatory effects, and variances in their phenotypes and characteristics will be discussed in this review. Although there is evidence on each stem cell population in the periodontium, understanding the differences in markers expressed, the various research conducted so far on their regenerative potential, will help in understanding which stem cell population will be a better candidate for tissue engineering. The possibility of selecting the most amenable stem cell population for optimal periodontal regeneration and the development and current application of superior tissue engineering treatment options such as autologous transplantation, three-dimensional bioengineered scaffolds, dental stem cell-derived extracellular vesicles will be explored.
Collapse
Affiliation(s)
- Deepa Ponnaiyan
- Department of Periodontics and Oral Implantology, SRM Dental College and Hospital, Ramapuram, Chennai, Tamil Nadu, India
| | - Roshan R. Rughwani
- Department of Periodontics and Oral Implantology, SRM Dental College and Hospital, Ramapuram, Chennai, Tamil Nadu, India
| | - Dhayanand John Victor
- Department of Periodontics and Oral Implantology, SRM Dental College and Hospital, Ramapuram, Chennai, Tamil Nadu, India
| | - Ganesh Shetty
- Dental and Orthodontic Clinic, Bangalore, Karnataka, India
| |
Collapse
|
3
|
Rupareliya M, Shende P. Therapeutic Potential of Stem Cells in Natural Killer-Like B Cell-Associated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:57-72. [PMID: 38418797 DOI: 10.1007/5584_2024_799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Stem cells are undifferentiated cells possessing a remarkable capacity to develop into multiple cell types. NKB cells, referred to "natural killer-like B cells," are recently identified subtype of B lymphocytes possessing characteristics that are similar to both natural killer (NK) cells and regular B lymphocytes. NK cells are lymphocyte-like in structure and cytotoxic in nature participating in the immediate immune response to the infected or malignant cells, whereas B lymphocytes produce antibodies and participate in adaptive immune response by binding to the specific antigen. The identification of NKB cells brings up new possibilities for studying and perhaps modulating immune responses in a variety of diseases, particularly those associated with microbial infections or inflammatory responses. Further, correlation of NKB cells with interleukins allows us to understand the molecular mechanism of diseases. Stem cell research offers a better understanding of NKB cell participation and provides new insights for novel treatment methods wherein mesenchymal stem cells (MSCs) have found to be the most promising stem cell showing positive outcomes in NKB cell-associated inflammatory diseases. Additionally, the perceptions acquired from researching NKB cells in diverse diseases leads to innovative treatment options, improving our capacity to control and cure immunological dysregulation-related ailments.
Collapse
Affiliation(s)
- Manali Rupareliya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India.
| |
Collapse
|
4
|
Haque MM, Yerex K, Kelekis-Cholakis A, Duan K. Advances in novel therapeutic approaches for periodontal diseases. BMC Oral Health 2022; 22:492. [PMID: 36380339 PMCID: PMC9664646 DOI: 10.1186/s12903-022-02530-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractPeriodontal diseases are pathological processes resulting from infections and inflammation affecting the periodontium or the tissue surrounding and supporting the teeth. Pathogenic bacteria living in complex biofilms initiate and perpetuate this disease in susceptible hosts. In some cases, broad-spectrum antibiotic therapy has been a treatment of choice to control bacterial infection. However, increasing antibiotic resistance among periodontal pathogens has become a significant challenge when treating periodontal diseases. Thanks to the improved understanding of the pathogenesis of periodontal disease, which involves the host immune response, and the importance of the human microbiome, the primary goal of periodontal therapy has shifted, in recent years, to the restoration of homeostasis in oral microbiota and its harmonious balance with the host periodontal tissues. This shift in therapeutic goals and the drug resistance challenge call for alternative approaches to antibiotic therapy that indiscriminately eliminate harmful or beneficial bacteria. In this review, we summarize the recent advancement of alternative methods and new compounds that offer promising potential for the treatment and prevention of periodontal disease. Agents that target biofilm formation, bacterial quorum-sensing systems and other virulence factors have been reviewed. New and exciting microbiome approaches, such as oral microbiota replacement therapy and probiotic therapy for periodontal disease, are also discussed.
Collapse
|
5
|
Ezhilarasan D, Varghese SS. Porphyromonas gingivalis and dental stem cells crosstalk amplify inflammation and bone loss in the periodontitis niche. J Cell Physiol 2022; 237:3768-3777. [PMID: 35926111 DOI: 10.1002/jcp.30848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
Periodontitis is the sixth most prevalent disease, and almost 3.5 billion people are affected globally by dental caries and periodontal diseases. The microbial shift from a symbiotic microbiota to a dysbiotic microbiota in the oral cavity generally initiates periodontal disease. Pathogens in the periodontal microenvironment interact with stem cells to modulate their regenerative potential. Therefore, this review focuses on the interaction between microbes and stem cells in periodontitis conditions. Microbes direct dental stem cells to secrete a variety of pro-inflammatory cytokines and chemokines, which increase the inflammatory burden in the damaged periodontal tissue, which further aggravates periodontitis. Microbial interaction also decreases the osteogenic differentiation potential of dental stem cells by downregulating alkaline phosphatase, runt-related transcription factor 2, type 1 collagen, osteocalcin, osteopontin, and so on. Microbe and stem cell interaction amplifies pro-inflammatory cytokine signaling in the periodontitis niche, decreasing the osteogenic commitment of dental stem cells. A clear understanding of microbial stem cell interactions is crucial in designing regenerative therapies using stem cells in the management of periodontitis.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Sheeja S Varghese
- Department of Periodontology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Iliopoulos JM, Layrolle P, Apatzidou DA. Microbial-stem cell interactions in periodontal disease. J Med Microbiol 2022; 71. [PMID: 35451943 DOI: 10.1099/jmm.0.001503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Periodontitis is initiated by hyper-inflammatory responses in the periodontal tissues that generate dysbiotic ecological changes within the microbial communities. As a result, supportive tissues of the tooth are damaged and periodontal attachment is lost. Gingival recession, formation of periodontal pockets with the presence of bleeding, and often suppuration and/or tooth mobility are evident upon clinical examination. These changes may ultimately lead to tooth loss. Mesenchymal stem cells (MSCs) are implicated in controlling periodontal disease progression and have been shown to play a key role in periodontal tissue homeostasis and regeneration. Evidence shows that MSCs interact with subgingival microorganisms and their by-products and modulate the activity of immune cells by either paracrine mechanisms or direct cell-to-cell contact. The aim of this review is to reveal the interactions that take place between microbes and in particular periodontal pathogens and MSCs in order to understand the factors and mechanisms that modulate the regenerative capacity of periodontal tissues and the ability of the host to defend against putative pathogens. The clinical implications of these interactions in terms of anti-inflammatory and paracrine responses of MSCs, anti-microbial properties and alterations in function including their regenerative potential are critically discussed based on literature findings. In addition, future directions to design periodontal research models and study ex vivo the microbial-stem cell interactions are introduced.
Collapse
Affiliation(s)
- Jordan M Iliopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Pierre Layrolle
- INSERM, ToNIC, Pavillon Baudot, CHU Purpan, University of Toulouse, Toulouse, UMR 1214, France
| | - Danae A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Bekić M, Radanović M, Đokić J, Tomić S, Eraković M, Radojević D, Duka M, Marković D, Marković M, Ismaili B, Bokonjić D, Čolić M. Mesenchymal Stromal Cells from Healthy and Inflamed Human Gingiva Respond Differently to Porphyromonas gingivalis. Int J Mol Sci 2022; 23:ijms23073510. [PMID: 35408871 PMCID: PMC8998418 DOI: 10.3390/ijms23073510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/09/2023] Open
Abstract
Gingiva-Derived Mesenchymal Stromal Cells (GMSCs) have been shown to play an important role in periodontitis. However, how P. gingivalis, one of the key etiological agents of the disease, affects healthy (H)- and periodontitis (P)-GMSCs is unknown. To address this problem, we established 10 H-GMSC and 12 P-GMSC lines. No significant differences in morphology, differentiation into chondroblasts and adipocytes, expression of characteristic MSCS markers, including pericyte antigens NG2 and PDGFR, were observed between H- and P-GMSC lines. However, proliferation, cell size and osteogenic potential were higher in P-GMSCs, in contrast to their lower ability to suppress mononuclear cell proliferation. P. gingivalis up-regulated the mRNA expression of IL-6, IL-8, MCP-1, GRO-α, RANTES, TLR-2, HIF-1α, OPG, MMP-3, SDF-1, HGF and IP-10 in P-GMSCs, whereas only IL-6, MCP-1 and GRO-α were up-regulated in H-GMSCs. The expression of MCP-1, RANTES, IP-10 and HGF was significantly higher in P-GMSCs compared to H-GMSCs, but IDO1 was lower. No significant changes in the expression of TLR-3, TLR-4, TGF-β, LAP, IGFBP4 and TIMP-1 were observed in both types of GMSCs. In conclusion, our results suggest that P-GMSCs retain their pro-inflammatory properties in culture, exhibit lower immunosuppressive potential than their healthy counterparts, and impaired regeneration-associated gene induction in culture. All these functions are potentiated significantly by P. gingivalis treatment.
Collapse
Affiliation(s)
- Marina Bekić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11060 Belgrade, Serbia; (M.B.); (S.T.); (M.M.)
| | - Marina Radanović
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (M.R.); (D.B.)
| | - Jelena Đokić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (J.Đ.); (D.R.)
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11060 Belgrade, Serbia; (M.B.); (S.T.); (M.M.)
| | - Mile Eraković
- Clinic for Stomatology, Medical Faculty of the Military Medical Academy, University of Defense, 11154 Belgrade, Serbia; (M.E.); (M.D.)
| | - Dušan Radojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (J.Đ.); (D.R.)
| | - Miloš Duka
- Clinic for Stomatology, Medical Faculty of the Military Medical Academy, University of Defense, 11154 Belgrade, Serbia; (M.E.); (M.D.)
| | - Dejan Marković
- Faculty of Dental Medicine, University of Belgrade, 11118 Belgrade, Serbia;
| | - Milan Marković
- Institute for the Application of Nuclear Energy, University of Belgrade, 11060 Belgrade, Serbia; (M.B.); (S.T.); (M.M.)
| | - Bashkim Ismaili
- Faculty of Dental Medicine, International Balkan University, 1000 Skopje, North Macedonia;
| | - Dejan Bokonjić
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (M.R.); (D.B.)
| | - Miodrag Čolić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11060 Belgrade, Serbia; (M.B.); (S.T.); (M.M.)
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina; (M.R.); (D.B.)
- Correspondence: ; Tel.: +381-11-2619525
| |
Collapse
|
8
|
Andrukhov O. Toll-Like Receptors and Dental Mesenchymal Stromal Cells. FRONTIERS IN ORAL HEALTH 2022; 2:648901. [PMID: 35048000 PMCID: PMC8757738 DOI: 10.3389/froh.2021.648901] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Dental mesenchymal stromal cells (MSCs) are a promising tool for clinical application in and beyond dentistry. These cells possess multilineage differentiation potential and immunomodulatory properties. Due to their localization in the oral cavity, these cells could sometimes be exposed to different bacteria and viruses. Dental MSCs express various Toll-like receptors (TLRs), and therefore, they can recognize different microorganisms. The engagement of TLRs in dental MSCs by various ligands might change their properties and function. The differentiation capacity of dental MSCs might be either inhibited or enhanced by TLRs ligands depending on their nature and concentrations. Activation of TLR signaling in dental MSCs induces the production of proinflammatory mediators. Additionally, TLR ligands alter the immunomodulatory ability of dental MSCs, but this aspect is still poorly explored. Understanding the role of TLR signaling in dental MSCs physiology is essential to assess their role in oral homeostasis, inflammatory diseases, and tissue regeneration.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Yang B, Pang X, Li Z, Chen Z, Wang Y. Immunomodulation in the Treatment of Periodontitis: Progress and Perspectives. Front Immunol 2021; 12:781378. [PMID: 34868054 PMCID: PMC8640126 DOI: 10.3389/fimmu.2021.781378] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is one of the most common dental diseases. Compared with healthy periodontal tissues, the immune microenvironment plays the key role in periodontitis by allowing the invasion of pathogens. It is possible that modulating the immune microenvironment can supplement traditional treatments and may even promote periodontal regeneration by using stem cells, bacteria, etc. New anti-inflammatory therapies can enhance the generation of a viable local immune microenvironment and promote cell homing and tissue formation, thereby achieving higher levels of immune regulation and tissue repair. We screened recent studies to summarize the advances of the immunomodulatory treatments for periodontitis in the aspects of drug therapy, microbial therapy, stem cell therapy, gene therapy and other therapies. In addition, we included the changes of immune cells and cytokines in the immune microenvironment of periodontitis in the section of drug therapy so as to make it clearer how the treatments took effects accordingly. In the future, more research needs to be done to improve immunotherapy methods and understand the risks and long-term efficacy of these methods in periodontitis.
Collapse
Affiliation(s)
- Bo Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xuefei Pang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhipeng Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Yu J, Chen S, Lei S, Li F, Wang Y, Shu X, Xu W, Tang X. The Effects of Porphyromonas gingivalis on Inflammatory and Immune Responses and Osteogenesis of Mesenchymal Stem Cells. Stem Cells Dev 2021; 30:1191-1201. [PMID: 34628938 DOI: 10.1089/scd.2021.0068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are increasingly used in tissue regeneration, not only because of their multilineage differentiation ability, but also because of their immunomodulatory function, which allows them to play a role in the inflammatory milieu, especially in periodontitis. Porphyromonas gingivalis (P. gingivalis) is an important pathogen associated with the progression of periodontitis. Heterogeneous MSC sources show differences in their inflammatory-immune responsiveness and osteogenesis capabilities when exposed to P. gingivalis and its virulence factors. This article reviews the promoted inflammatory and immune responses of periodontal ligament stem cells, which are potential pitfalls in bone regeneration. MSCs from other sources showed contradictory inflammatory and immune reactions in the few studies on this topic. We also summarize the mechanisms involved in the inflammatory, immune responses and osteogenic potential of MSCs exposed to P. gingivalis and its virulence factors to inform an improved utilization of MSCs in regenerative therapies for periodontitis.
Collapse
Affiliation(s)
- Jingjun Yu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Shuangshuang Chen
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Shuang Lei
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Fulong Li
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yan Wang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xiufang Shu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wanlin Xu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xiaolin Tang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
11
|
Sallustio F, Picerno A, Tatullo M, Rampino A, Rengo C, Valletta A, Torretta S, Falcone RM. Toll-Like Receptors in Stem/Progenitor Cells. Handb Exp Pharmacol 2021; 276:175-212. [PMID: 34595583 DOI: 10.1007/164_2021_539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the bridges that control the cross-talk between the innate and adaptive immune systems is toll-like receptors (TLRs). TLRs interact with molecules shared and maintained by the source pathogens, but also with endogenous molecules derived from injured tissues (damage/danger-associated molecular patterns - DAMPs). This is likely why some kinds of stem/progenitor cells (SCs) have been found to express TLRs. The role of TLRs in regulating basal motility, proliferation, processes of differentiation, self-renewal, and immunomodulation has been demonstrated in these cells. In this book chapter, we will discuss the many different functions assumed by the TLRs in SCs, pointing out that, depending on the context and the type of ligands they perceive, they may have different effects. In addition, the role of TLR in SC's response to specific tissue damage and in reparative processes will be addressed, as well as how the discovery of molecules mediating TLR signaling's differential function may be decisive for the development of new therapeutic strategies. Given the available studies on TLRs in SCs, the significance of TLRs in sensing an injury to stem/progenitor cells and evaluating their action and reparative activity, which depends on the circumstances, will be discussed here. It could also be possible that SCs used in therapy could theoretically be exposed to TLR ligands, which could modulate their in vivo therapeutic potential. In this context, we need to better understand the mechanisms of action of TLRs on SCs and learn how to regulate these receptors and their downstream pathways in a precise way in order to modulate SC proliferation, survival, migration, and differentiation in the pathological environment. In this way, cell therapy may be strengthened and made safer in the future.
Collapse
Affiliation(s)
- Fabio Sallustio
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy.
| | - Angela Picerno
- Nephrology, Dialysis and Transplantation Unit, DETO, University of Bari "Aldo Moro", Bari, Italy
| | - Marco Tatullo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs-University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Rampino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Carlo Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Alessandra Valletta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Silvia Torretta
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Rosa Maria Falcone
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
12
|
Maxillofacial-Derived Mesenchymal Stem Cells: Characteristics and Progress in Tissue Regeneration. Stem Cells Int 2021; 2021:5516521. [PMID: 34426741 PMCID: PMC8379387 DOI: 10.1155/2021/5516521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Maxillofacial-derived mesenchymal stem cells (MFSCs) are a particular collective type of mesenchymal stem cells (MSCs) that originate from the hard and soft tissue of the maxillofacial region. Recently, many types of MFSCs have been isolated and characterized. MFSCs have the common characteristics of being extremely accessible and amazingly multipotent and thus have become a promising stem cell resource in tissue regeneration. However, different MFSCs can give rise to different cell lineages, have different advantages in clinical use, and regulate the immune and inflammation microenvironment through paracrine mechanisms in different ways. Hence, in this review, we will concentrate on the updated new findings of all types of MFSCs in tissue regeneration and also introduce the recently discovered types of MFSCs. Important issues about proliferation and differentiation in vitro and in vivo, up-to-date clinical application, and paracrine effect of MFSCs in tissue regeneration will also be discussed. Our review may provide a better guide for the clinical use of MFSCs and further direction of research in MFSC regeneration medicine.
Collapse
|
13
|
Paduano F, Aiello E, Cooper PR, Marrelli B, Makeeva I, Islam M, Spagnuolo G, Maged D, De Vito D, Tatullo M. A Dedifferentiation Strategy to Enhance the Osteogenic Potential of Dental Derived Stem Cells. Front Cell Dev Biol 2021; 9:668558. [PMID: 34124050 PMCID: PMC8192975 DOI: 10.3389/fcell.2021.668558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Dental stem cells (DSCs) holds the ability to differentiate into numerous cell types. This property makes these cells particularly appropriate for therapeutic use in regenerative medicine. We report evidence that when DSCs undergo osteogenic differentiation, the osteoblast-like cells can be reverted back to a stem-like state and then further differentiated toward the osteogenic phenotype again, without gene manipulation. We have investigated two different MSCs types, both from dental tissues: dental follicle progenitor stem cells (DFPCs) and dental pulp stem cells (DPSCs). After osteogenic differentiation, both DFPCs and DPSCs can be reverted to a naïve stem cell-like status; importantly, dedifferentiated DSCs showed a greater potential to further differentiate toward the osteogenic phenotype. Our report aims to demonstrate for the first time that it is possible, under physiological conditions, to control the dedifferentiation of DSCs and that the rerouting of cell fate could potentially be used to enhance their osteogenic therapeutic potential. Significantly, this study first validates the use of dedifferentiated DSCs as an alternative source for bone tissue engineering.
Collapse
Affiliation(s)
- Francesco Paduano
- Stem Cells and Medical Genetics Units, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - Elisabetta Aiello
- Stem Cells and Medical Genetics Units, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - Paul Roy Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Benedetta Marrelli
- Stem Cells and Medical Genetics Units, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - Irina Makeeva
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mohammad Islam
- Department of Oral Surgery and Medicine, The Dental School, University of Dundee, Dundee, United Kingdom
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II," Naples, Italy
| | | | - Danila De Vito
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| | - Marco Tatullo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| |
Collapse
|
14
|
Immunomodulatory Properties of Stem Cells in Periodontitis: Current Status and Future Prospective. Stem Cells Int 2020; 2020:9836518. [PMID: 32724318 PMCID: PMC7366217 DOI: 10.1155/2020/9836518] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is the sixth-most prevalent chronic inflammatory disease and gradually devastates tooth-supporting tissue. The complexity of periodontal tissue and the local inflammatory microenvironment poses great challenges to tissue repair. Recently, stem cells have been considered a promising strategy to treat tissue damage and inflammation because of their remarkable properties, including stemness, proliferation, migration, multilineage differentiation, and immunomodulation. Several varieties of stem cells can potentially be applied to periodontal regeneration, including dental mesenchymal stem cells (DMSCs), nonodontogenic stem cells, and induced pluripotent stem cells (iPSCs). In particular, these stem cells possess extensive immunoregulatory capacities. In periodontitis, these cells can exert anti-inflammatory effects and regenerate the periodontium. Stem cells derived from infected tissue possess typical stem cell characteristics with lower immunogenicity and immunosuppression. Several studies have demonstrated that these cells can also regenerate the periodontium. Furthermore, the interaction of stem cells with the surrounding infected microenvironment is critical to periodontal tissue repair. Though the immunomodulatory capabilities of stem cells are not entirely clarified, they show promise for therapeutic application in periodontitis. Here, we summarize the potential of stem cells for periodontium regeneration in periodontitis and focus on their characteristics and immunomodulatory properties as well as challenges and perspectives.
Collapse
|
15
|
Keong JY, Low LW, Chong JM, Ong YY, Pulikkotil SJ, Singh G, Nagendrababu V, Banavar SR, Khoo SP. Effect of lipopolysaccharide on cell proliferation and vascular endothelial growth factor secretion of periodontal ligament stem cells. Saudi Dent J 2020; 32:148-154. [PMID: 32180672 PMCID: PMC7063416 DOI: 10.1016/j.sdentj.2019.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/20/2019] [Accepted: 08/18/2019] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Periodontal ligament stem cells (PDLSCs) have considerable potential for use as a means of achieving periodontal regeneration due to their noteworthy proliferative properties and secretory functions. In particular, PDLSCs secrete vascular endothelial growth factor (VEGF) which enhances angiogenesis and osteogenesis. The resulting repair and development of blood vessels and hard tissues which would occur in the presence of these cells could be central to an effective periodontal regeneration procedure.The bacterial biofilm of tooth surface related to the periodontium might provide either an inhibition or a stimulus to different factors involved in a regenerative process. Cell culture experiments have been investigated in vitro by adding lipopolysaccharide (LPS) to the culture medium but the effect of various concentration of LPS in these circumstances has not been investigated. Therefore, this study aimed to investigate the effect of LPS concentrations on proliferation of PDLSCs in vitro and on their secretion of VEGF. MATERIALS AND METHODS PDLSCs were treated with 0, 5, 10 and 20 µg/mL of Escherichia coli LPS. At 48 and 96 h, total cell numbers of control and LPS treated PDLSCs were counted by haemocytometer under a microscope. The VEGF concentration in the conditioned media of the PDLSCs was measured by ELISA. RESULTS Rate of cell proliferation of PDLSCs decreased significantly in all LPS treated groups at both 48 h and 96 h except for the group treated with 5 µg/mL of LPS at 48 h. At both 48 and 96 h, VEGF secretion from PDLSCs was reduced significantly at all three LPS concentrations. There was no statistically significant difference in cell proliferation and the amount of VEGF secretion of PDLSCs among the groups treated with different LPS concentrations. No statistically significant change was found in cell proliferation of LPS treated PDLSCs over time, whereas VEGF secretion of PDLSCs was found to have increased significantly with time despite the LPS treatment. CONCLUSIONS LPS reduced cell proliferation and VEGF secretion of PDLSCs, suggesting that periodontal pathogens might reduce the capability of PDLSCs in periodontal regeneration. Yet, LPS treated PDLSCs remained viable and VEGF secretion increased significantly over time. Further research is needed to study the potential use of PDLSCs in periodontal regeneration and the relationship of biofilm LPS accumulations.
Collapse
Affiliation(s)
- Jia Yee Keong
- School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Li Wei Low
- School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Jean Mun Chong
- School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Yan Yi Ong
- School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Shaju Jacob Pulikkotil
- Department of Periodontology and Implantology, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Gurbind Singh
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Venkateshbabu Nagendrababu
- Department of Endodontics, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Spoorthi Ravi Banavar
- Department of Oral Medicine and Pathology, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Suan Phaik Khoo
- Department of Oral Medicine and Pathology, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Zhou LL, Liu W, Wu YM, Sun WL, Dörfer CE, Fawzy El-Sayed KM. Oral Mesenchymal Stem/Progenitor Cells: The Immunomodulatory Masters. Stem Cells Int 2020; 2020:1327405. [PMID: 32184830 PMCID: PMC7060886 DOI: 10.1155/2020/1327405] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/08/2023] Open
Abstract
Oral mesenchymal stem/progenitor cells (MSCs) are renowned in the field of tissue engineering/regeneration for their multilineage differentiation potential and easy acquisition. These cells encompass the periodontal ligament stem/progenitor cells (PDLSCs), the dental pulp stem/progenitor cells (DPSCs), the stem/progenitor cells from human exfoliated deciduous teeth (SHED), the gingival mesenchymal stem/progenitor cells (GMSCs), the stem/progenitor cells from the apical papilla (SCAP), the dental follicle stem/progenitor cells (DFSCs), the bone marrow mesenchymal stem/progenitor cells (BM-MSCs) from the alveolar bone proper, and the human periapical cyst-mesenchymal stem cells (hPCy-MSCs). Apart from their remarkable regenerative potential, oral MSCs possess the capacity to interact with an inflammatory microenvironment. Although inflammation might affect the properties of oral MSCs, they could inversely exert a multitude of immunological actions to the local inflammatory microenvironment. The present review discusses the current understanding about the immunomodulatory role of oral MSCs both in periodontitis and systemic diseases, their "double-edged sword" uniqueness in inflammatory regulation, their affection of the immune system, and the underlying mechanisms, involving oral MSC-derived extracellular vesicles.
Collapse
Affiliation(s)
- Li-li Zhou
- Department of Periodontology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, China
| | - Wei Liu
- Department of Periodontology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, China
| | - Yan-min Wu
- Department of Periodontology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wei-lian Sun
- Department of Periodontology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - C. E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel 24105, Germany
| | - K. M. Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11435, Egypt
| |
Collapse
|
17
|
Ali M, Yang F, Jansen JA, Walboomers XF. Lipoxin suppresses inflammation via the TLR4/MyD88/NF-κB pathway in periodontal ligament cells. Oral Dis 2019; 26:429-438. [PMID: 31814225 PMCID: PMC7074052 DOI: 10.1111/odi.13250] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/16/2023]
Abstract
Objective The objective of the present study was to evaluate the anti‐inflammatory effects of lipoxin A4 (LXA4) for the treatment of periodontitis in an in vitro model. Methods Human PDLCs were challenged with Escherichia coli (E. coli) lipopolysaccharide (LPS) to evoke an inflammatory response. This was done either in monoculture or in coculture with THP‐1, a monocytic cell line. Thereafter, cytokine expression was measured by ELISA, with or without LXA4. In addition, the effects of LXA4 were analyzed on the TLR‐MyD88‐NF‐κB (TMN)‐mediated intracellular signal pathway using immunocytochemistry. Results In response to LPS, the level of the pro‐inflammatory cytokine tumor necrosis factor alpha increased, whereas the anti‐inflammatory cytokine interleukin‐4 decreased significantly (p < .05). These effects were consistently reversed when LPS‐challenged PDLCs were also treated with LXA4. The results in the coculture system were comparable to the monoculture. Immunohistochemistry and quantitative assessment confirmed the importance of the TMN signal pathway in these processes. Conclusion These results corroborate earlier findings that PDLCs play an important role in inflammation. Moreover, LXA4 might offer new approaches for the therapeutic treatment of periodontal disease.
Collapse
Affiliation(s)
- Muhanad Ali
- Department of Dentistry - Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fang Yang
- Department of Dentistry - Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Dentistry - Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Dentistry - Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Andrukhov O, Behm C, Blufstein A, Rausch-Fan X. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: Implication in disease and tissue regeneration. World J Stem Cells 2019; 11:604-617. [PMID: 31616538 PMCID: PMC6789188 DOI: 10.4252/wjsc.v11.i9.604] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/24/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are considered as an attractive tool for tissue regeneration and possess a strong immunomodulatory ability. Dental tissue-derived MSCs can be isolated from different sources, such as the dental pulp, periodontal ligament, deciduous teeth, apical papilla, dental follicles and gingiva. According to numerous in vitro studies, the effect of dental MSCs on immune cells might depend on several factors, such as the experimental setting, MSC tissue source and type of immune cell preparation. Most studies have shown that the immunomodulatory activity of dental MSCs is strongly upregulated by activated immune cells. MSCs exert mostly immunosuppressive effects, leading to the dampening of immune cell activation. Thus, the reciprocal interaction between dental MSCs and immune cells represents an elegant mechanism that potentially contributes to tissue homeostasis and inflammatory disease progression. Although the immunomodulatory potential of dental MSCs has been extensively investigated in vitro, its role in vivo remains obscure. A few studies have reported that the MSCs isolated from inflamed dental tissues have a compromised immunomodulatory ability. Moreover, the expression of some immunomodulatory proteins is enhanced in periodontal disease and even shows some correlation with disease severity. MSC-based immunomodulation may play an essential role in the regeneration of different dental tissues. Therefore, immunomodulation-based strategies may be a very promising tool in regenerative dentistry.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| | - Christian Behm
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| | - Alice Blufstein
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
19
|
Dental Follicle Cells: Roles in Development and Beyond. Stem Cells Int 2019; 2019:9159605. [PMID: 31636679 PMCID: PMC6766151 DOI: 10.1155/2019/9159605] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
Dental follicle cells (DFCs) are a group of mesenchymal progenitor cells surrounding the tooth germ, responsible for cementum, periodontal ligament, and alveolar bone formation in tooth development. Cascades of signaling pathways and transcriptional factors in DFCs are involved in directing tooth eruption and tooth root morphogenesis. Substantial researches have been made to decipher multiple aspects of DFCs, including multilineage differentiation, senescence, and immunomodulatory ability. DFCs were proved to be multipotent progenitors with decent amplification, immunosuppressed and acquisition ability. They are able to differentiate into osteoblasts/cementoblasts, adipocytes, neuron-like cells, and so forth. The excellent properties of DFCs facilitated clinical application, as exemplified by bone tissue engineering, tooth root regeneration, and periodontium regeneration. Except for the oral and maxillofacial regeneration, DFCs were also expected to be applied in other tissues such as spinal cord defects (SCD), cardiomyocyte destruction. This article reviewed roles of DFCs in tooth development, their properties, and clinical application potentials, thus providing a novel guidance for tissue engineering.
Collapse
|
20
|
Ramenzoni LL, Russo G, Moccia MD, Attin T, Schmidlin PR. Periodontal bacterial supernatants modify differentiation, migration and inflammatory cytokine expression in human periodontal ligament stem cells. PLoS One 2019; 14:e0219181. [PMID: 31269072 PMCID: PMC6609032 DOI: 10.1371/journal.pone.0219181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Periodontal ligament stem cells (PDLSC) play an important role in periodontal tissue homeostasis/turnover and could be applied in cell-based periodontal regenerative therapy. Bacterial supernatants secreted from diverse periodontal bacteria induce the production of cytokines that contribute to local periodontal tissue destruction. However, little is known about the impact of whole bacterial toxins on the biological behavior of PDLSC. Therefore this study investigated whether proliferation, migration, inflammatory cytokines expression and transcriptional profile would be affected by exposure to endotoxins from bacterial species found in the subgingival plaque. PDLSC were cultured with the following bacterial supernatants: S. mutans, S. anginosus, P. intermedia, F. nucleatum, P. gingivalis and T. denticola. These supernatants were prepared in dilutions of 1:1000, 1:500, 1:300 and 1:50. Using quantitative RT-PCR, gene expression of selected inflammatory cytokines (IL-6, IL-8 and IL-1β) and cell-surface receptors (TLR2, TLR4) showed upregulation of ≈2.0- to 3.0-fold, when exposed to P. intermedia, F. nucleatum, P. gingivalis and T. denticola. However, supernatants did not affect proliferation (MTT) and migration (wound scratch assays) of PDLSC. Next generation RNA sequencing confirmed modified lineage commitment of PDLSC by stimulating chondrogenesis, adipogenesis and inhibition of osteogenesis under P. gingivalis supernatant treatment compared to control. Taken together, this study shows stem cell immunomodulatory response to different periodontal bacteria supernatant and suggests that stem cell transcriptional capacity, migration/proliferation and osteogenesis may differ in the presence of those pathogens. These results bring into question stem cell contribution to periodontal tissue regeneration and onset of inflammation.
Collapse
Affiliation(s)
- Liza L. Ramenzoni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- Laboratory of Applied Periodontal and Peri-implantitis Sciences, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Giancarlo Russo
- Functional Genomics Center Zurich, ETH, University of Zurich, Zurich, Switzerland
| | - Maria D. Moccia
- Functional Genomics Center Zurich, ETH, University of Zurich, Zurich, Switzerland
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Patrick R. Schmidlin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- Laboratory of Applied Periodontal and Peri-implantitis Sciences, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Koch F, Ekat K, Kilian D, Hettich T, Germershaus O, Lang H, Peters K, Kreikemeyer B. A Versatile Biocompatible Antibiotic Delivery System Based on Self-Assembling Peptides with Antimicrobial and Regenerative Potential. Adv Healthc Mater 2019; 8:e1900167. [PMID: 30985084 DOI: 10.1002/adhm.201900167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/20/2019] [Indexed: 12/16/2022]
Abstract
Periodontitis is a chronic inflammatory and tissue-destructive disease. Since the polymicrobiome in the oral cavity makes it difficult to treat, novel therapeutic strategies are required. Hydrogels based on self-assembling peptides (SAP) can be suitable candidates for periodontal therapy due to their injectability, biocompatibility, cargo-loading capacity, and tunable physicochemical and mechanical properties. In this study, two SAP hydrogels (P11-4 and P11-28/29) are examined for their intrinsic antimicrobial activity, regenerative potential, and antibiotic delivery capacity. A significant antibacterial effect of P11-28/29 hydrogels on the periodontal pathogen Porphyromonas gingivalis and a less pronounced effect for P11-4 hydrogels is demonstrated. The metabolic activity rates of human dental follicle stem cells (DFSCs), which reflect cell viability and may thus indicate the regenerative capacity, are similar on tissue culture polystyrene (TCPS) and on P11-4 hydrogels after 14 days of culture. Noticeably, both SAP hydrogels strengthen the osteogenic differentiation of DFSCs compared with TCPS. The incorporation of tetracycline, ciprofloxacin, and doxycycline does not affect fibril formation of either SAP hydrogel and results in favorable release kinetics up to 120 h. In summary, this study reveals that P11-SAP hydrogels combine many favorable properties required to make them applicable as prospective novel treatment strategy for periodontal therapy.
Collapse
Affiliation(s)
- Franziska Koch
- School of Life SciencesInstitute for Chemistry and BioanalyticsUniversity of Applied Sciences and Arts Northwestern Switzerland 4132 Muttenz Switzerland
- Institute of Medical MicrobiologyVirology and HygieneUniversity Medicine Rostock 18057 Rostock Germany
- Department of Cell BiologyUniversity Medicine Rostock 18057 Rostock Germany
| | - Katharina Ekat
- Institute of Medical MicrobiologyVirology and HygieneUniversity Medicine Rostock 18057 Rostock Germany
- Department of Cell BiologyUniversity Medicine Rostock 18057 Rostock Germany
- Clinic for Restorative Dentistry and PeriodontologyUniversity Medicine Rostock 18057 Rostock Germany
| | - David Kilian
- School of Life SciencesInstitute for Chemistry and BioanalyticsUniversity of Applied Sciences and Arts Northwestern Switzerland 4132 Muttenz Switzerland
| | - Timm Hettich
- School of Life SciencesInstitute for Chemistry and BioanalyticsUniversity of Applied Sciences and Arts Northwestern Switzerland 4132 Muttenz Switzerland
| | - Oliver Germershaus
- School of Life SciencesInstitute of Pharma TechnologyUniversity of Applied Sciences and Arts Northwestern Switzerland 4132 Muttenz Switzerland
| | - Herrmann Lang
- Clinic for Restorative Dentistry and PeriodontologyUniversity Medicine Rostock 18057 Rostock Germany
| | - Kirsten Peters
- Department of Cell BiologyUniversity Medicine Rostock 18057 Rostock Germany
| | - Bernd Kreikemeyer
- Institute of Medical MicrobiologyVirology and HygieneUniversity Medicine Rostock 18057 Rostock Germany
| |
Collapse
|
22
|
Fawzy El-Sayed KM, Elahmady M, Adawi Z, Aboushadi N, Elnaggar A, Eid M, Hamdy N, Sanaa D, Dörfer CE. The periodontal stem/progenitor cell inflammatory-regenerative cross talk: A new perspective. J Periodontal Res 2019; 54:81-94. [PMID: 30295324 DOI: 10.1111/jre.12616] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/24/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
Abstract
Adult multipotent stem/progenitor cells, with remarkable regenerative potential, have been isolated from various components of the human periodontium. These multipotent stem/progenitor cells include the periodontal ligament stem/progenitor cells (PDLSCs), stem cells from the apical papilla (SCAP), the gingival mesenchymal stem/progenitor cells (G-MSCs), and the alveolar bone proper stem/progenitor cells (AB-MSCs). Whereas inflammation is regarded as the reason for tissue damage, it also remains a fundamental step of any early healing process. In performing their periodontal tissue regenerative/reparative activity, periodontal stem/progenitor cells interact with their surrounding inflammatory micro-environmental, through their expressed receptors, which could influence their fate and the outcome of any periodontal stem/progenitor cell-mediated reparative/regenerative activity. The present review discusses the current understanding about the interaction of periodontal stem/progenitor cells with their surrounding inflammatory micro-environment, elaborates on the inflammatory factors influencing their stemness, proliferation, migration/homing, differentiation, and immunomodulatory attributes, the possible underlying intracellular mechanisms, as well as their proposed relationship to the canonical and noncanonical Wnt pathways.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | | | - Zeina Adawi
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | | | - Ali Elnaggar
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | - Maryam Eid
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | - Nayera Hamdy
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | - Dalia Sanaa
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | - Christof E Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
23
|
Kriebel K, Hieke C, Engelmann R, Potempa J, Müller-Hilke B, Lang H, Kreikemeyer B. Porphyromonas gingivalis Peptidyl Arginine Deiminase Can Modulate Neutrophil Activity via Infection of Human Dental Stem Cells. J Innate Immun 2018; 10:264-278. [PMID: 29860256 DOI: 10.1159/000489020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Periodontitis (PD) is a widespread chronic inflammatory disease in the human population. Porphyromonas gingivalis is associated with PD and can citrullinate host proteins via P. gingivalis peptidyl arginine deiminase (PPAD). Here, we hypothesized that infection of human dental follicle stem cells (hDFSCs) with P. gingivalis and subsequent interaction with neutrophils will alter the neutrophil phenotype. To test this hypothesis, we established and analyzed a triple-culture system of neutrophils and hDFSCs primed with P. gingivalis. Mitogen-activated pathway blocking reagents were applied to gain insight into stem cell signaling after infection. Naïve hDFSCs do not influence the neutrophil phenotype. However, infection of hDFSCs with P. gingivalis prolongs the survival of neutrophils and increases their migration. These phenotypic changes depend on direct cellular contacts and PPAD expression by P. gingivalis. Active JNK and ERK pathways in primed hDFSCs are essential for the phenotypic changes in neutrophils. Collectively, our results confirm that P. gingivalis modifies hDFSCs, thereby causing an immune imbalance.
Collapse
Affiliation(s)
- Katja Kriebel
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, Rostock, Germany
| | - Cathleen Hieke
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Robby Engelmann
- Institute of Immunology, Rostock University Medical Center, Rostock, Germany
| | - Jan Potempa
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Krakow, Poland.,University of Louisville School of Dentistry, Department of Oral Immunity and Infectious Diseases, Louisville, Kentucky, USA
| | | | - Hermann Lang
- Department of Operative Dentistry and Periodontology, Rostock University Medical Center, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
24
|
Kriebel K, Hieke C, Müller-Hilke B, Nakata M, Kreikemeyer B. Oral Biofilms from Symbiotic to Pathogenic Interactions and Associated Disease -Connection of Periodontitis and Rheumatic Arthritis by Peptidylarginine Deiminase. Front Microbiol 2018; 9:53. [PMID: 29441048 PMCID: PMC5797574 DOI: 10.3389/fmicb.2018.00053] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
A wide range of bacterial species are harbored in the oral cavity, with the resulting complex network of interactions between the microbiome and host contributing to physiological as well as pathological conditions at both local and systemic levels. Bacterial communities inhabit the oral cavity as primary niches in a symbiotic manner and form dental biofilm in a stepwise process. However, excessive formation of biofilm in combination with a corresponding deregulated immune response leads to intra-oral diseases, such as dental caries, gingivitis, and periodontitis. Moreover, oral commensal bacteria, which are classified as so-called “pathobionts” according to a now widely accepted terminology, were recently shown to be present in extra-oral lesions with distinct bacterial species found to be involved in the onset of various pathophysiological conditions, including cancer, atherosclerosis, chronic infective endocarditis, and rheumatoid arthritis. The present review focuses on oral pathobionts as commensal and healthy members of oral biofilms that can turn into initiators of disease. We will shed light on the processes involved in dental biofilm formation and also provide an overview of the interactions of P. gingivalis, as one of the most prominent oral pathobionts, with host cells, including epithelial cells, phagocytes, and dental stem cells present in dental tissues. Notably, a previously unknown interaction of P. gingivalis bacteria with human stem cells that has impact on human immune response is discussed. In addition to this very specific interaction, the present review summarizes current knowledge regarding the immunomodulatory effect of P. gingivalis and other oral pathobionts, members of the oral microbiome, that pave the way for systemic and chronic diseases, thereby showing a link between periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Katja Kriebel
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Cathleen Hieke
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | | | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| |
Collapse
|
25
|
TLR expression profile of human alveolar bone proper-derived stem/progenitor cells and osteoblasts. J Craniomaxillofac Surg 2017; 45:2054-2060. [DOI: 10.1016/j.jcms.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/07/2017] [Accepted: 09/11/2017] [Indexed: 02/08/2023] Open
|
26
|
Effects of Lipopolysaccharide on the Proliferation and Osteogenic Differentiation of Stem Cells from the Apical Papilla. J Endod 2017; 43:1835-1840. [DOI: 10.1016/j.joen.2017.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/09/2017] [Accepted: 06/16/2017] [Indexed: 02/07/2023]
|
27
|
Zhou L, Dörfer CE, Chen L, Fawzy El-Sayed KM. Porphyromonas gingivalislipopolysaccharides affect gingival stem/progenitor cells attributes through NF-κB, but not Wnt/β-catenin, pathway. J Clin Periodontol 2017; 44:1112-1122. [DOI: 10.1111/jcpe.12777] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Lili Zhou
- Clinic of Conservative Dentistry and Periodontology; School of Dental Medicine; Christian-Albrechts Universität at Kiel; Kiel Germany
- Department of Oral Medicine; The Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Christof E. Dörfer
- Clinic of Conservative Dentistry and Periodontology; School of Dental Medicine; Christian-Albrechts Universität at Kiel; Kiel Germany
| | - Lili Chen
- Department of Oral Medicine; The Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Karim M. Fawzy El-Sayed
- Clinic of Conservative Dentistry and Periodontology; School of Dental Medicine; Christian-Albrechts Universität at Kiel; Kiel Germany
- Oral Medicine and Periodontology Department; Faculty of Oral and Dental Medicine; Cairo University; Cairo Egypt
| |
Collapse
|
28
|
Human dental stem cells suppress PMN activity after infection with the periodontopathogens Prevotella intermedia and Tannerella forsythia. Sci Rep 2016; 6:39096. [PMID: 27974831 PMCID: PMC5156907 DOI: 10.1038/srep39096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is characterized by inflammation associated with the colonization of different oral pathogens. We here aimed to investigate how bacteria and host cells shape their environment in order to limit inflammation and tissue damage in the presence of the pathogen. Human dental follicle stem cells (hDFSCs) were co-cultured with gram-negative P. intermedia and T. forsythia and were quantified for adherence and internalization as well as migration and interleukin secretion. To delineate hDFSC-specific effects, gingival epithelial cells (Ca9-22) were used as controls. Direct effects of hDFSCs on neutrophils (PMN) after interaction with bacteria were analyzed via chemotactic attraction, phagocytic activity and NET formation. We show that P. intermedia and T. forsythia adhere to and internalize into hDFSCs. This infection decreased the migratory capacity of the hDFSCs by 50%, did not disturb hDFSC differentiation potential and provoked an increase in IL-6 and IL-8 secretion while leaving IL-10 levels unaltered. These environmental modulations correlated with reduced PMN chemotaxis, phagocytic activity and NET formation. Our results suggest that P. intermedia and T. forsythia infected hDFSCs maintain their stem cell functionality, reduce PMN-induced tissue and bone degradation via suppression of PMN-activity, and at the same time allow for the survival of the oral pathogens.
Collapse
|
29
|
Kell DB, Pretorius E. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death. Integr Biol (Camb) 2016; 7:1339-77. [PMID: 26345428 DOI: 10.1039/c5ib00158g] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have recently highlighted (and added to) the considerable evidence that blood can contain dormant bacteria. By definition, such bacteria may be resuscitated (and thus proliferate). This may occur under conditions that lead to or exacerbate chronic, inflammatory diseases that are normally considered to lack a microbial component. Bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, are well known as potent inflammatory agents, but should normally be cleared. Thus, their continuing production and replenishment from dormant bacterial reservoirs provides an easy explanation for the continuing, low-grade inflammation (and inflammatory cytokine production) that is characteristic of many such diseases. Although experimental conditions and determinants have varied considerably between investigators, we summarise the evidence that in a great many circumstances LPS can play a central role in all of these processes, including in particular cell death processes that permit translocation between the gut, blood and other tissues. Such localised cell death processes might also contribute strongly to the specific diseases of interest. The bacterial requirement for free iron explains the strong co-existence in these diseases of iron dysregulation, LPS production, and inflammation. Overall this analysis provides an integrative picture, with significant predictive power, that is able to link these processes via the centrality of a dormant blood microbiome that can resuscitate and shed cell wall components.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK.
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa.
| |
Collapse
|
30
|
The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering. Stem Cells Int 2016; 2016:9762871. [PMID: 27688777 PMCID: PMC5027319 DOI: 10.1155/2016/9762871] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs) have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair.
Collapse
|
31
|
Soluble CD14 Enhances the Response of Periodontal Ligament Stem Cells to P. gingivalis Lipopolysaccharide. PLoS One 2016; 11:e0160848. [PMID: 27504628 PMCID: PMC4978456 DOI: 10.1371/journal.pone.0160848] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023] Open
Abstract
Periodontal ligament stem cells (PDLSCs) are lacking membrane CD14, which is an important component of lipopolysaccharide (LPS) signaling through toll-like receptor (TLR) 4. In the present study we investigated the effect of soluble CD14 on the response of human PDLSCs to LPS of Porphyromonas (P.) gingivalis. Human PDLSCs (hPDLSCs) were stimulated with P. gingivalis LPS in the presence or in the absence of soluble CD14 (sCD14) and the production of interleukin (IL)-6, chemokine C-X-C motif ligand 8 (CXCL8), and chemokine C-C motif ligand 2 (CCL2) was measured. The response to P. gingivalis LPS was compared with that to TLR4 agonist Escherichia coli LPS and TLR2-agonist Pam3CSK4. The response of hPDLSCs to both P. gingivalis LPS and E. coli LPS was significantly enhanced by sCD14. In the absence of sCD14, no significant difference in the hPDLSCs response to two kinds of LPS was observed. These responses were significantly lower compared to that to Pam3CSK4. In the presence of sCD14, the response of hPdLSCs to P. gingivalis LPS was markedly higher than that to E. coli LPS and comparable with that to Pam3CSK4. The response of hPdLSCs to bacterial LPS is strongly augmented by sCD14. Local levels of sCD14 could be an important factor for modulation of the host response against periodontal pathogens.
Collapse
|
32
|
Abstract
Adult or somatic stem cells are tissue-resident cells with the ability to proliferate, exhibit self-maintenance as well as to generate new cells with the principal phenotypes of the tissue in response to injury or disease. Due to their easy accessibility and their potential use in regenerative medicine, adult stem cells raise the hope for future personalisable therapies. After infection or during injury, they are exposed to broad range of pathogen or damage-associated molecules leading to changes in their proliferation, migration and differentiation. The sensing of such damage and infection signals is mostly achieved by Toll-Like Receptors (TLRs) with Toll-like receptor 4 being responsible for recognition of bacterial lipopolysaccharides (LPS) and endogenous danger-associated molecular patterns (DAMPs). In this review, we examine the current state of knowledge on the TLR4-mediated signalling in different adult stem cell populations. Specifically, we elaborate on the role of TLR4 and its ligands on proliferation, differentiation and migration of mesenchymal stem cells, hematopoietic stem cells as well as neural stem cells. Finally, we discuss conceptual and technical pitfalls in investigation of TLR4 signalling in stem cells.
Collapse
|
33
|
Herzmann N, Salamon A, Fiedler T, Peters K. Analysis of migration rate and chemotaxis of human adipose-derived mesenchymal stem cells in response to LPS and LTA in vitro. Exp Cell Res 2016; 342:95-103. [PMID: 26997527 DOI: 10.1016/j.yexcr.2016.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/17/2016] [Accepted: 03/16/2016] [Indexed: 11/18/2022]
Abstract
Mesenchymal stem cells (MSC) are able to stimulate the regeneration of injured tissue. Since bacterial infections are common complications in wound healing, bacterial pathogens and their components come into direct contact with MSC. The interaction with bacterial structures influences the proliferation, differentiation and migratory activity of the MSC, which might be of relevance during regeneration. Studies on MSC migration in response to bacterial components have shown different results depending on the cell type. Here, we analyzed the migration rate and chemotaxis of human adipose-derived MSC (adMSC) in response to the basic cell-wall components lipopolysaccharide (LPS) of Gram-negative bacteria and lipoteichoic acid (LTA) of Gram-positive bacteria in vitro. To this end, we used transwell and scratch assays, as well as a specific chemotaxis assay combined with live-cell imaging. We found no significant influence of LPS or LTA on the migration rate of adMSC in transwell or scratch assays. Furthermore, in the µ-slide chemotaxis assay, the stimulation with LPS did not exert any chemotactic effect on adMSC.
Collapse
Affiliation(s)
- Nicole Herzmann
- Department of Cell Biology, University Medicine Rostock, Schillingallee 69, D-18057 Rostock, Germany
| | - Achim Salamon
- Department of Cell Biology, University Medicine Rostock, Schillingallee 69, D-18057 Rostock, Germany
| | - Tomas Fiedler
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Schillingallee 70, D-18057 Rostock, Germany
| | - Kirsten Peters
- Department of Cell Biology, University Medicine Rostock, Schillingallee 69, D-18057 Rostock, Germany.
| |
Collapse
|
34
|
Fawzy-El-Sayed K, Mekhemar M, Adam-Klages S, Kabelitz D, Dörfer C. TlR expression profile of human gingival margin-derived stem progenitor cells. Med Oral Patol Oral Cir Bucal 2016; 21:e30-8. [PMID: 26615501 PMCID: PMC4765758 DOI: 10.4317/medoral.20593] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 08/07/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Gingival margin-derived stem/progenitor cells (G-MSCs) show remarkable periodontal regenerative potential in vivo. During regeneration, G-MSCs may interact with their inflammatory environment via toll-like-receptors (TLRs). The present study aimed to depict the G-MSCs TLRs expression profile. MATERIAL AND METHODS Cells were isolated from free gingival margins, STRO-1-immunomagnetically sorted and seeded to obtain single colony forming units (CFUs). G-MSCs were characterized for CD14, CD34, CD45, CD73, CD90, CD105, CD146 and STRO-1 expression, and for multilineage differentiation potential. Following G-MSCs' incubation in basic or inflammatory medium (IL-1β, IFN-γ, IFN-α, TNF-α) a TLR expression profile was generated. RESULTS G-MSCs showed all stem/progenitor cells' characteristics. In basic medium G-MSCs expressed TLRs 1, 2, 3, 4, 5, 6, 7, and 10. The inflammatory medium significantly up-regulated TLRs 1, 2, 4, 5, 7 and 10 and diminished TLR 6 (p≤0.05, Wilcoxon-Signed-Ranks-Test). CONCLUSIONS The current study describes for the first time the distinctive TLRs expression profile of G-MSCs under uninflamed and inflamed conditions.
Collapse
Affiliation(s)
- Karim Fawzy-El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts-Universität zu Kiel, Arnold-Heller-Str. 3, Haus 26, 24105 Kiel, Germany,
| | | | | | | | | |
Collapse
|
35
|
Chatzivasileiou K, Kriebel K, Steinhoff G, Kreikemeyer B, Lang H. Do oral bacteria alter the regenerative potential of stem cells? A concise review. J Cell Mol Med 2015; 19:2067-74. [PMID: 26058313 PMCID: PMC4568911 DOI: 10.1111/jcmm.12613] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/15/2015] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are widely recognized as critical players in tissue regeneration. New insights into stem cell biology provide evidence that MSCs may also contribute to host defence and inflammation. In case of tissue injury or inflammatory diseases, e.g. periodontitis, stem cells are mobilized towards the site of damage, thus coming in close proximity to bacteria and bacterial components. Specifically, in the oral cavity, complex ecosystems of commensal bacteria live in a mutually beneficial state with the host. However, the formation of polymicrobial biofilm communities with pathogenic properties may trigger an inadequate host inflammatory-immune response, leading to the disruption of tissue homoeostasis and development of disease. Because of their unique characteristics, MSCs are suggested as crucial regulators of tissue regeneration even under such harsh environmental conditions. The heterogeneous effects of bacteria on MSCs across studies imply the complexity underlying the interactions between stem cells and bacteria. Hence, a better understanding of stem cell behaviour at sites of inflammation appears to be a key strategy in developing new approaches for in situ tissue regeneration. Here, we review the literature on the effects of oral bacteria on cell proliferation, differentiation capacity and immunomodulation of dental-derived MSCs.
Collapse
Affiliation(s)
- Kyriaki Chatzivasileiou
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| | - Katja Kriebel
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| | - Gustav Steinhoff
- Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, University of Rostock, Rostock, Germany
| |
Collapse
|
36
|
Tang J, Wu T, Xiong J, Su Y, Zhang C, Wang S, Tang Z, Liu Y. Porphyromonas gingivalis lipopolysaccharides regulate functions of bone marrow mesenchymal stem cells. Cell Prolif 2015; 48:239-48. [PMID: 25676907 DOI: 10.1111/cpr.12173] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/11/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Periodontitis is one of the most widespread inflammatory diseases; it causes tooth loss and is also associated with a variety of systemic diseases. Mesenchymal stem cells (MSCs) have been used to treat periodontitis. However, it is unknown whether bacterial toxins in the periodontal environment affect MSC-mediated periodontal regeneration. Porphyromonas gingivalis lipopolysaccharides (Pg-LPS) are key toxins for development of periodontitis. The purpose of the present study was to investigate effects of P. gingivalis LPS on biological properties of MSCs. MATERIALS AND METHODS Mesenchymal stem cells from bone marrow (BMMSCs) were treated with different concentrations of P. gingivalis LPS (0.1-10 μg/ml), then its effects were evaluated on biological properties of BMMSCs including proliferation, apoptosis, osteogenic differentiation and capacities to inhibit activated T cells. RESULTS Low concentration of P. gingivalis LPS (0.1 μg/ml) accelerated MSC proliferation, osteogenic differentiation and capacities to inhibit activated T cells via up-regulation of nitric oxide. However, high concentration of P. gingivalis LPS (10 μg/ml) reduced MSC proliferation, osteogenic differentiation and capacities to inhibit activated T cells. CONCLUSIONS Mesenchymal stem cells were functionally different following exposure to P. gingivalis LPS at the investigated concentrations. These findings suggest that MSC-mediated periodontal regeneration may be regulated by P. gingivalis LPS.
Collapse
Affiliation(s)
- J Tang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, 410008, China; Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Li D, Fu L, Zhang Y, Yu Q, Ma F, Wang Z, Luo Z, Zhou Z, Cooper PR, He W. The effects of LPS on adhesion and migration of human dental pulp stem cells in vitro. J Dent 2014; 42:1327-34. [DOI: 10.1016/j.jdent.2014.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/26/2014] [Accepted: 07/07/2014] [Indexed: 01/09/2023] Open
|
38
|
Liu Y, Gao Y, Zhan X, Cui L, Xu S, Ma D, Yue J, Wu B, Gao J. TLR4 Activation by Lipopolysaccharide and Streptococcus mutans Induces Differential Regulation of Proliferation and Migration in Human Dental Pulp Stem Cells. J Endod 2014; 40:1375-81. [DOI: 10.1016/j.joen.2014.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/22/2014] [Accepted: 03/10/2014] [Indexed: 12/28/2022]
|
39
|
Carvalho LKHD, Araujo AVPD, Silva MGLD, Laiso RAN, Maria DA. Response Proliferative Capacity of Undifferentiated Stem Cells of Obtained Human Adult Dental Follicle. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/scd.2014.44013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|