1
|
Kopyeva I, Goldner EC, Hoye JW, Yang S, Regier MC, Bradford JC, Vera KR, Bretherton RC, Robinson JL, DeForest CA. Stepwise Stiffening/Softening of and Cell Recovery from Reversibly Formulated Hydrogel Interpenetrating Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404880. [PMID: 39240007 PMCID: PMC11530321 DOI: 10.1002/adma.202404880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Indexed: 09/07/2024]
Abstract
Biomechanical contributions of the extracellular matrix underpin cell growth and proliferation, differentiation, signal transduction, and other fate decisions. As such, biomaterials whose mechanics can be spatiotemporally altered- particularly in a reversible manner- are extremely valuable for studying these mechanobiological phenomena. Herein, a poly(ethylene glycol) (PEG)-based hydrogel model consisting of two interpenetrating step-growth networks is introduced that are independently formed via largely orthogonal bioorthogonal chemistries and sequentially degraded with distinct recombinant sortases, affording reversibly tunable stiffness ranges that span healthy and diseased soft tissues (e.g., 500 Pa-6 kPa) alongside terminal cell recovery for pooled and/or single-cell analysis in a near "biologically invisible" manner. Spatiotemporal control of gelation within the primary supporting network is achieved via mask-based and two-photon lithography; these stiffened patterned regions can be subsequently returned to the original soft state following sortase-based secondary network degradation. Using this approach, the effects of 4D-triggered network mechanical changes on human mesenchymal stem cell morphology and Hippo signaling, as well as Caco-2 colorectal cancer cell mechanomemory using transcriptomics and metabolic assays are investigated. This platform is expected to be of broad utility for studying and directing mechanobiological phenomena, patterned cell fate, and disease resolution in softer matrices.
Collapse
Affiliation(s)
- Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
| | - Ethan C. Goldner
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Jack W. Hoye
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Shiyu Yang
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Mary C. Regier
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - John C. Bradford
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Kaitlyn R. Vera
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ross C. Bretherton
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Jennifer L. Robinson
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Department of Orthopedic Surgery and Sports Medicine, University of Washington, Seattle WA 98105, USA
- Department of Mechanical Engineering, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
2
|
Liu W, Cui Z, Wan Q, Liu Y, Chen M, Cheng Y, Sang X, Su Y, Gu S, Li C, Liu C, Chen S, Wang Z, Wang X. The BET inhibitor JQ1 suppresses tumor survival by ABCB5-mediated autophagy in uveal melanoma. Cell Signal 2024; 125:111483. [PMID: 39442901 DOI: 10.1016/j.cellsig.2024.111483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Uveal melanoma (UM), the most common adult ocular tumor, is aggressive and resistant to treatment, posing threat to patients' lives. The novel, effective therapies and the exploration of chemosensitizer for UM are imperative. The anticancer efficacy was evaluated with and without JQ1 treatment or ABCB5 gene silencing or overexpression. RNA sequencing identified downstream effectors in JQ1-treated cells. Integrated analysis of The Cancer Genome Atlas data (TCGA) and immunohistochemistry (IHC) revealed the oncogenic role of ABCB5. Functional analyses of JQ1 and defective ABCB5 were conducted using flow cytometry, transmission electron microscopy (TEM), IHC and western blot. The effects of JQ1 were validated in a heterotopic tumor model derived from OCM-1 cells. JQ1 inhibited cell proliferation, migration and invasion, induced cell cycle arrest and promoted apoptosis. JQ1 also suppressed the survival of UM in heterotopic tumor model. RNA sequencing indicated that JQ1 down-regulated the expressions of ABCB5 and autophagy-related genes, which was confirmed in vitro and in vivo by western blot. ABCB5, a marker associated with cancer stem cells and chemo-resistance, exhibited heightened expression in UM tissues, linked to immune infiltration. Notably, disrupting ABCB5 expression impeded UM cell proliferation and interfered with autophagy. Moreover, the overexpression of ABCB5 promoted cell proliferation, migration and invasion, and rescued autophagy related gene expression. Of note, JQ1 enhanced the sensitivity of OCM-1 cells to chemotherapy. Thus JQ1 inhibits UM survival via ABCB5-mediated autophagy and enhances chemo-sensitivity, suggesting potential for BET-based approaches in UM clinical management.
Collapse
Affiliation(s)
- Weiqin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Zedu Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Qi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China; West China Hospital of Sichuan University, 610041 Chengdu, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Minghao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yaqi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yaru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Simin Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Chang Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Shuxia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Pathology Department, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| |
Collapse
|
3
|
Gerard L, Gillet JP. The uniqueness of ABCB5 as a full transporter ABCB5FL and a half-transporter-like ABCB5β. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:29. [PMID: 39267923 PMCID: PMC11391348 DOI: 10.20517/cdr.2024.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024]
Abstract
The ABCB5 gene encodes several isoforms, including two transporters (i.e., ABCB5FL, ABCB5β) and several soluble proteins, such as ABCB5α which has been hypothesized to have a regulatory function. ABCB5FL is a full ABC transporter and is expressed in the testis and prostate, whereas ABCB5β is an atypical half-transporter with a ubiquitous expression pattern. ABCB5β has been shown to mark cancer stem cells in several cancer types. In addition, ABCB5β and ABCB5FL have been shown to play a role in tumorigenesis and multidrug resistance. However, ABCB5β shares its entire protein sequence with ABCB5FL, making them difficult to distinguish. It cannot be excluded that some biological effects described for one transporter may be mediated by the other isoform. Therefore, it is difficult to interpret the available data and some controversies remain regarding their function in cancer cells. In this review, we discuss the data collected on ABCB5 isoforms over the last 20 years and propose a common ground on which we can build further to unravel the pathophysiological roles of ABCB5 transporters.
Collapse
Affiliation(s)
- Louise Gerard
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur 5000, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur 5000, Belgium
| |
Collapse
|
4
|
Zehtabcheh S, Sheikh-Zeineddini N, Yousefi AM, Bashash D. Anti-Leukemic Effects of Small Molecule Inhibitor of c-Myc (10058-F4) on Chronic Myeloid Leukemia Cells. Asian Pac J Cancer Prev 2024; 25:1959-1967. [PMID: 38918657 PMCID: PMC11382868 DOI: 10.31557/apjcp.2024.25.6.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND As one of the main molecules in BCR-ABL signaling, c-Myc acts as a pivotal key in disease progression and disruption of long-term remission in patients with CML. OBJECTIVES To clarify the effects of c-Myc inhibition in CML, we examined the anti-tumor property of a well-known small molecule inhibitor of c-Myc 10058-F4 on K562 cell line. METHODS This experimental study was conducted in K562 cell line for evaluation of cytotoxic activity of 10058-F4 using Trypan blue and MTT assays. Flow cytometry and Quantitative RT-PCR analysis were also conducted to determine its mechanism of action. Additionally, Annexin/PI staining was performed for apoptosis assessment. RESULTS The results of Trypan blue and MTT assay demonstrated that inhibition of c-Myc, as shown by suppression of c-Myc expression and its associated genes PP2A, CIP2A, and hTERT, could decrease viability and metabolic activity of K562 cells, respectively. Moreover, a robust elevation in cell population in G1-phase coupled with up-regulation of p21 and p27 expression shows that 10058-F4 could hamper cell proliferation, at least partly, through induction of G1 arrest. Accordingly, we found that 10058-F4 induced apoptosis via increasing Bax and Bad; In contrast, no significant alterations were observed NF-KB pathway-targeted anti-apoptotic genes in the mRNA levels. Notably, disruption of the NF-κB pathway with bortezomib as a common proteasome inhibitor sensitized K562 cells to the cytotoxic effect of 10058-F4, substantiating the fact that the NF-κB axis functions probably attenuate the K562 cells sensitivity to c-Myc inhibition. CONCLUSIONS It can be concluded from the results of this study that inhibition of c-Myc induces anti-neoplastic effects on CML-derived K562 cells as well as increases the efficacy of imatinib. For further insight into the safety and effectiveness of 10058-F4 in CML, in vivo studies will be required.
Collapse
Affiliation(s)
- Sara Zehtabcheh
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Sheikh-Zeineddini
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zhang H, Li Q, Guo X, Wu H, Hu C, Liu G, Yu T, Hu X, Qiu Q, Guo G, She J, Chen Y. MGMT activated by Wnt pathway promotes cisplatin tolerance through inducing slow-cycling cells and nonhomologous end joining in colorectal cancer. J Pharm Anal 2024; 14:100950. [PMID: 39027911 PMCID: PMC11255892 DOI: 10.1016/j.jpha.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 07/20/2024] Open
Abstract
Chemotherapy resistance plays a pivotal role in the prognosis and therapeutic failure of patients with colorectal cancer (CRC). Cisplatin (DDP)-resistant cells exhibit an inherent ability to evade the toxic chemotherapeutic drug effects which are characterized by the activation of slow-cycle programs and DNA repair. Among the elements that lead to DDP resistance, O 6-methylguanine (O 6-MG)-DNA-methyltransferase (MGMT), a DNA-repair enzyme, performs a quintessential role. In this study, we clarify the significant involvement of MGMT in conferring DDP resistance in CRC, elucidating the underlying mechanism of the regulatory actions of MGMT. A notable upregulation of MGMT in DDP-resistant cancer cells was found in our study, and MGMT repression amplifies the sensitivity of these cells to DDP treatment in vitro and in vivo. Conversely, in cancer cells, MGMT overexpression abolishes their sensitivity to DDP treatment. Mechanistically, the interaction between MGMT and cyclin dependent kinase 1 (CDK1) inducing slow-cycling cells is attainted via the promotion of ubiquitination degradation of CDK1. Meanwhile, to achieve nonhomologous end joining, MGMT interacts with XRCC6 to resist chemotherapy drugs. Our transcriptome data from samples of 88 patients with CRC suggest that MGMT expression is co-related with the Wnt signaling pathway activation, and several Wnt inhibitors can repress drug-resistant cells. In summary, our results point out that MGMT is a potential therapeutic target and predictive marker of chemoresistance in CRC.
Collapse
Affiliation(s)
- Haowei Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qixin Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaolong Guo
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hong Wu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chenhao Hu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Gaixia Liu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianyu Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiake Hu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Quanpeng Qiu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Gang Guo
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yinnan Chen
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
6
|
Kopyeva I, Goldner EC, Hoye JW, Yang S, Regier MC, Vera KR, Bretherton RC, DeForest CA. Stepwise Stiffening/Softening of and Cell Recovery from Reversibly Formulated Hydrogel Double Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588191. [PMID: 38645065 PMCID: PMC11030224 DOI: 10.1101/2024.04.04.588191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Biomechanical contributions of the ECM underpin cell growth and proliferation, differentiation, signal transduction, and other fate decisions. As such, biomaterials whose mechanics can be spatiotemporally altered - particularly in a reversible manner - are extremely valuable for studying these mechanobiological phenomena. Herein, we introduce a poly(ethylene glycol) (PEG)-based hydrogel model consisting of two interpenetrating step-growth networks that are independently formed via largely orthogonal bioorthogonal chemistries and sequentially degraded with distinct bacterial transpeptidases, affording reversibly tunable stiffness ranges that span healthy and diseased soft tissues (e.g., 500 Pa - 6 kPa) alongside terminal cell recovery for pooled and/or single-cell analysis in a near "biologically invisible" manner. Spatiotemporal control of gelation within the primary supporting network was achieved via mask-based and two-photon lithography; these stiffened patterned regions could be subsequently returned to the original soft state following sortase-based secondary network degradation. Using this approach, we investigated the effects of 4D-triggered network mechanical changes on human mesenchymal stem cell (hMSC) morphology and Hippo signaling, as well as Caco-2 colorectal cancer cell mechanomemory at the global transcriptome level via RNAseq. We expect this platform to be of broad utility for studying and directing mechanobiological phenomena, patterned cell fate, as well as disease resolution in softer matrices.
Collapse
Affiliation(s)
- Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
| | - Ethan C. Goldner
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Jack W. Hoye
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Shiyu Yang
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Mary C. Regier
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Kaitlyn R. Vera
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ross C. Bretherton
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
7
|
Gerard L, Duvivier L, Fourrez M, Salazar P, Sprimont L, Xia D, Ambudkar SV, Gottesman MM, Gillet JP. Identification of two novel heterodimeric ABC transporters in melanoma: ABCB5β/B6 and ABCB5β/B9. J Biol Chem 2024; 300:105594. [PMID: 38145744 PMCID: PMC10828454 DOI: 10.1016/j.jbc.2023.105594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/18/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023] Open
Abstract
ABCB5 is a member of the ABC transporter superfamily composed of 48 transporters, which have been extensively studied for their role in cancer multidrug resistance and, more recently, in tumorigenesis. ABCB5 has been identified as a marker of skin progenitor cells, melanoma, and limbal stem cells. It has also been associated with multidrug resistance in several cancers. The unique feature of ABCB5 is that it exists as both a full transporter (ABCB5FL) and a half transporter (ABCB5β). Several studies have shown that the ABCB5β homodimer does not confer multidrug resistance, in contrast to ABCB5FL. In this study, using three complementary techniques, (1) nanoluciferase-based bioluminescence resonance energy transfer, (2) coimmunoprecipitation, and (3) proximity ligation assay, we identified two novel heterodimers in melanoma: ABCB5β/B6 and ABCB5β/B9. Both heterodimers could be expressed in High-Five insect cells and ATPase assays revealed that both functional nucleotide-binding domains of homodimers and heterodimers are required for their basal ATPase activity. These results are an important step toward elucidating the functional role of ABCB5β in melanocytes and melanoma.
Collapse
Affiliation(s)
- Louise Gerard
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Laurent Duvivier
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Marie Fourrez
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Paula Salazar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lindsay Sprimont
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium.
| |
Collapse
|
8
|
Zhu X, Li C, Gao Y, Zhang Q, Wang T, Zhou H, Bu F, Chen J, Mao X, He Y, Wu K, Li N, Luo H. The feedback loop of EFTUD2/c-MYC impedes chemotherapeutic efficacy by enhancing EFTUD2 transcription and stabilizing c-MYC protein in colorectal cancer. J Exp Clin Cancer Res 2024; 43:7. [PMID: 38163859 PMCID: PMC10759692 DOI: 10.1186/s13046-023-02873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Chemoresistance presents a significant obstacle in the treatment of colorectal cancer (CRC), yet the molecular basis underlying CRC chemoresistance remains poorly understood, impeding the development of new therapeutic interventions. Elongation factor Tu GTP binding domain containing 2 (EFTUD2) has emerged as a potential oncogenic factor implicated in various cancer types, where it fosters tumor growth and survival. However, its specific role in modulating the sensitivity of CRC cells to chemotherapy is still unclear. METHODS Public dataset analysis and in-house sample validation were conducted to assess the expression of EFTUD2 in 5-fluorouracil (5-FU) chemotherapy-resistant CRC cells and the potential of EFTUD2 as a prognostic indicator for CRC. Experiments both in vitro, including MTT assay, EdU cell proliferation assay, TUNEL assay, and clone formation assay and in vivo, using cell-derived xenograft models, were performed to elucidate the function of EFTUD2 in sensitivity of CRC cells to 5-FU treatment. The molecular mechanism on the reciprocal regulation between EFTUD2 and the oncogenic transcription factor c-MYC was investigated through molecular docking, ubiquitination assay, chromatin immunoprecipitation (ChIP), dual luciferase reporter assay, and co-immunoprecipitation (Co-IP). RESULTS We found that EFTUD2 expression was positively correlated with 5-FU resistance, higher pathological grade, and poor prognosis in CRC patients. We also demonstrated both in vitro and in vivo that knockdown of EFTUD2 sensitized CRC cells to 5-FU treatment, whereas overexpression of EFTUD2 impaired such sensitivity. Mechanistically, we uncovered that EFTUD2 physically interacted with and stabilized c-MYC protein by preventing its ubiquitin-mediated proteasomal degradation. Intriguingly, we found that c-MYC directly bound to the promoter region of EFTUD2 gene, activating its transcription. Leveraging rescue experiments, we further confirmed that the effect of EFTUD2 on 5-FU resistance was dependent on c-MYC stabilization. CONCLUSION Our findings revealed a positive feedback loop involving an EFTUD2/c-MYC axis that hampers the efficacy of 5-FU chemotherapy in CRC cells by increasing EFTUD2 transcription and stabilizing c-MYC oncoprotein. This study highlights the potential of EFTUD2 as a promising therapeutic target to surmount chemotherapy resistance in CRC patients.
Collapse
Affiliation(s)
- Xiaojian Zhu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Changxue Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yunfei Gao
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Department of Otolaryngology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qingyuan Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Tao Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Huaixiang Zhou
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Fanqin Bu
- Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Disease, Capital Medical University, Beijing, 100050, China
| | - Jia Chen
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinjun Mao
- Department of Anesthesiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yulong He
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Kaiming Wu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
- China-UK Institute for Frontier Science, Shenzhen, 518107, China.
| | - Hongliang Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
9
|
Abdelmaksoud NM, Abulsoud AI, Doghish AS, Abdelghany TM. From resistance to resilience: Uncovering chemotherapeutic resistance mechanisms; insights from established models. Biochim Biophys Acta Rev Cancer 2023; 1878:188993. [PMID: 37813202 DOI: 10.1016/j.bbcan.2023.188993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Despite the tremendous advances in cancer treatment, resistance to chemotherapeutic agents impedes higher success rates and accounts for major relapses in cancer therapy. Moreover, the resistance of cancer cells to chemotherapy is linked to low efficacy and high recurrence of cancer. To stand up against chemotherapy resistance, different models of chemotherapy resistance have been established to study various molecular mechanisms of chemotherapy resistance. Consequently, this review is going to discuss different models of induction of chemotherapy resistance, highlighting the most common mechanisms of cancer resistance against different chemotherapeutic agents, including overexpression of efflux pumps, drug inactivation, epigenetic modulation, and epithelial-mesenchymal transition. This review aims to open a new avenue for researchers to lower the resistance to the existing chemotherapeutic agents, develop new therapeutic agents with low resistance potential, and establish possible prognostic markers for chemotherapy resistance.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt.
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt.
| |
Collapse
|
10
|
Ebrahimi N, Afshinpour M, Fakhr SS, Kalkhoran PG, Shadman-Manesh V, Adelian S, Beiranvand S, Rezaei-Tazangi F, Khorram R, Hamblin MR, Aref AR. Cancer stem cells in colorectal cancer: Signaling pathways involved in stemness and therapy resistance. Crit Rev Oncol Hematol 2023; 182:103920. [PMID: 36702423 DOI: 10.1016/j.critrevonc.2023.103920] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Colorectal cancer (CRC) is the third cause of cancer death worldwide. Although, in some cases, treatment can increase patient survival and reduce cancer recurrence, in many cases, tumors can develop resistance to therapy leading to recurrence. One of the main reasons for recurrence and therapy resistance is the presence of cancer stem cells (CSCs). CSCs possess a self-renewal ability, and their stemness properties lead to the avoidance of apoptosis, and allow a new clone of cancer cells to emerge. Numerous investigations inidicated the involvment of cellular signaling pathways in embryonic development, and growth, repair, and maintenance of tissue homeostasis, also participate in the generation and maintenance of stemness in colorectal CSCs. This review discusses the role of Wnt, NF-κB, PI3K/AKT/mTOR, Sonic hedgehog, and Notch signaling pathways in colorectal CSCs, and the possible modulating drugs that could be used in treatment for resistant CRC.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Division of Genetics, Department of cell and molecular & microbiology, Faculty of Science and technology, University of Isfahan, Isfahan, Iran
| | - Maral Afshinpour
- Department of chemistry and Biochemistry, South Dakota State University (SDSU), Brookings, SD, USA
| | - Siavash Seifollahy Fakhr
- Department of Biotechnology; Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Hamar, Norway
| | - Paniz Ghasempour Kalkhoran
- Department of Cellular and Molecular Biology_Microbiology, Faculty of Advanced Science and Technology, Tehran Medical science, Islamic Azad University, Tehran, Iran
| | - Vida Shadman-Manesh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sheida Beiranvand
- Department of Biotechnology, School of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA 02210, USA.
| |
Collapse
|
11
|
Zhu Y, Li X. Advances of Wnt Signalling Pathway in Colorectal Cancer. Cells 2023; 12:cells12030447. [PMID: 36766788 PMCID: PMC9913588 DOI: 10.3390/cells12030447] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the most common cancers worldwide, with a high mortality rate despite the decreasing incidence and new diagnostic and therapeutic strategies. CRC arises from both epidemiologic and molecular backgrounds. In addition to hereditary factor and genetic mutations, the strongly varying incidence of CRC is closely linked to chronic inflammatory disorders of the intestine and terrible dietary habits. The Wnt signalling pathway is a complex regulatory network that is implicated in many CRC physiological processes, including cancer occurrence, development, prognosis, invasion, and metastasis. It is currently believed to include classical Wnt/β-catenin, Wnt/PCP, and Wnt/Ca2+. In this review, we summarise the recent mechanisms and potential regulators of the three branches of the Wnt signalling pathway in CRC.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Marine College, Shandong University, Weihai 264200, China
| | - Xia Li
- Marine College, Shandong University, Weihai 264200, China
- Shandong Kelun Pharmaceutical Co., Ltd., Binzhou 256600, China
- Correspondence: ; Tel.: +86-0531-8838-2612
| |
Collapse
|
12
|
Niebergall-Roth E, Frank NY, Ganss C, Frank MH, Kluth MA. Skin-Derived ABCB5 + Mesenchymal Stem Cells for High-Medical-Need Inflammatory Diseases: From Discovery to Entering Clinical Routine. Int J Mol Sci 2022; 24:66. [PMID: 36613507 PMCID: PMC9820160 DOI: 10.3390/ijms24010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The ATP-binding cassette superfamily member ABCB5 identifies a subset of skin-resident mesenchymal stem cells (MSCs) that exhibit potent immunomodulatory and wound healing-promoting capacities along with superior homing ability. The ABCB5+ MSCs can be easily accessed from discarded skin samples, expanded, and delivered as a highly homogenous medicinal product with standardized potency. A range of preclinical studies has suggested therapeutic efficacy of ABCB5+ MSCs in a variety of currently uncurable skin and non-skin inflammatory diseases, which has been substantiated thus far by distinct clinical trials in chronic skin wounds or recessive dystrophic epidermolysis bullosa. Therefore, skin-derived ABCB5+ MSCs have the potential to provide a breakthrough at the forefront of MSC-based therapies striving to fulfill current unmet medical needs. The most recent milestones in this regard are the approval of a phase III pivotal trial of ABCB5+ MSCs for treatment of recessive dystrophic and junctional epidermolysis bullosa by the US Food and Drug Administration, and national market access of ABCB5+ MSCs (AMESANAR®) for therapy-refractory chronic venous ulcers under the national hospital exemption pathway in Germany.
Collapse
Affiliation(s)
| | - Natasha Y. Frank
- Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Ganss
- TICEBA GmbH, 69120 Heidelberg, Germany
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| | - Markus H. Frank
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
| | - Mark A. Kluth
- TICEBA GmbH, 69120 Heidelberg, Germany
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Donati G, Amati B. MYC and therapy resistance in cancer: risks and opportunities. Mol Oncol 2022; 16:3828-3854. [PMID: 36214609 PMCID: PMC9627787 DOI: 10.1002/1878-0261.13319] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
The MYC transcription factor, encoded by the c-MYC proto-oncogene, is activated by growth-promoting signals, and is a key regulator of biosynthetic and metabolic pathways driving cell growth and proliferation. These same processes are deregulated in MYC-driven tumors, where they become critical for cancer cell proliferation and survival. As other oncogenic insults, overexpressed MYC induces a series of cellular stresses (metabolic, oxidative, replicative, etc.) collectively known as oncogenic stress, which impact not only on tumor progression, but also on the response to therapy, with profound, multifaceted consequences on clinical outcome. On one hand, recent evidence uncovered a widespread role for MYC in therapy resistance in multiple cancer types, with either standard chemotherapeutic or targeted regimens. Reciprocally, oncogenic MYC imparts a series of molecular and metabolic dependencies to cells, thus giving rise to cancer-specific vulnerabilities that may be exploited to obtain synthetic-lethal interactions with novel anticancer drugs. Here we will review the current knowledge on the links between MYC and therapeutic responses, and will discuss possible strategies to overcome resistance through new, targeted interventions.
Collapse
Affiliation(s)
- Giulio Donati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| | - Bruno Amati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| |
Collapse
|
14
|
Dhanyamraju PK, Schell TD, Amin S, Robertson GP. Drug-Tolerant Persister Cells in Cancer Therapy Resistance. Cancer Res 2022; 82:2503-2514. [PMID: 35584245 PMCID: PMC9296591 DOI: 10.1158/0008-5472.can-21-3844] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 01/21/2023]
Abstract
One of the current stumbling blocks in our fight against cancer is the development of acquired resistance to therapy, which is attributable to approximately 90% of cancer-related deaths. Undercutting this process during treatment could significantly improve cancer management. In many cases, drug resistance is mediated by a drug-tolerant persister (DTP) cell subpopulation present in tumors, often referred to as persister cells. This review provides a summary of currently known persister cell subpopulations and approaches to target them. A specific DTP cell subpopulation with elevated levels of aldehyde dehydrogenase (ALDH) activity has stem cell-like characteristics and a high level of plasticity, enabling them to switch rapidly between high and low ALDH activity. Further studies are required to fully elucidate the functions of ALDH-high DTP cells, how they withstand drug concentrations that kill other cells, and how they rapidly adapt under levels of high cellular stress and eventually lead to more aggressive, recurrent, and drug-resistant cancer. Furthermore, this review addresses the processes used by the ALDH-high persister cell subpopulation to enable cancer progression, the ALDH isoforms important in these processes, interactions of ALDH-high DTPs with the tumor microenvironment, and approaches to therapeutically modulate this subpopulation in order to more effectively manage cancer.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Todd D Schell
- Departments of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- The Penn State Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
15
|
Abdel-Latif RT, Wadie W, Abdel-mottaleb Y, Abdallah DM, El-Maraghy NN, El-Abhar HS. Reposition of the anti-inflammatory drug diacerein in an in-vivo colorectal cancer model. Saudi Pharm J 2021; 30:72-90. [PMID: 35145347 PMCID: PMC8802128 DOI: 10.1016/j.jsps.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
|
16
|
Siri M, Behrouj H, Dastghaib S, Zamani M, Likus W, Rezaie S, Hudecki J, Khazayel S, Łos MJ, Mokarram P, Ghavami S. Casein Kinase-1-Alpha Inhibitor (D4476) Sensitizes Microsatellite Instable Colorectal Cancer Cells to 5-Fluorouracil via Authophagy Flux Inhibition. Arch Immunol Ther Exp (Warsz) 2021; 69:26. [PMID: 34536148 PMCID: PMC8449776 DOI: 10.1007/s00005-021-00629-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Adjuvant chemotherapy with 5-fluorouracil (5-FU) does not improve survival of patients suffering from a form of colorectal cancer (CRC) characterized by high level of microsatellite instability (MSI-H). Given the importance of autophagy and multi-drug-resistant (MDR) proteins in chemotherapy resistance, as well as the role of casein kinase 1-alpha (CK1α) in the regulation of autophagy, we tested the combined effect of 5-FU and CK1α inhibitor (D4476) on HCT116 cells as a model of MSI-H colorectal cancer. To achieve this goal, the gene expression of Beclin1 and MDR genes, ABCG2 and ABCC3 were analyzed using quantitative real-time polymerase chain reaction. We used immunoblotting to measure autophagy flux (LC3, p62) and flow cytometry to detect apoptosis. Our findings showed that combination treatment with 5-FU and D4476 inhibited autophagy flux. Moreover, 5-FU and D4476 combination therapy induced G2, S and G1 phase arrests and it depleted mRNA of both cell proliferation-related genes and MDR-related genes (ABCG2, cyclin D1 and c-myc). Hence, our data indicates that targeting of CK1α may increase the sensitivity of HCT116 cells to 5-FU. To our knowledge, this is the first description of sensitization of CRC cells to 5-FU chemotherapy by CK1α inhibitor.
Collapse
Affiliation(s)
- Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, P.O Box: 1167, Shiraz, Iran
| | - Hamid Behrouj
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, P.O Box: 1167, Shiraz, Iran
| | - Sanaz Dastghaib
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, P.O Box: 1167, Shiraz, Iran
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Wirginia Likus
- Department of Anatomy, School of Health Science in Katowice, Medical University of Silesia, ul. Medyków 18, 40-762, Katowice, Poland
| | - Sedigheh Rezaie
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, P.O Box: 1167, Shiraz, Iran
| | - Jacek Hudecki
- Laryngology Department, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Saeed Khazayel
- Department of Research and Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marek J Łos
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pathology, Unii Lubelskiej 1, Pomeranian Medical University, 71-344, Szczecin, Poland.
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, P.O Box: 1167, Shiraz, Iran.
| | - Saeid Ghavami
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada.
- Faculty of Medicine, Katowice School of Technology, Katowice, Poland.
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
17
|
Comprehensive Omics Analysis of a Novel Small-Molecule Inhibitor of Chemoresistant Oncogenic Signatures in Colorectal Cancer Cell with Antitumor Effects. Cells 2021; 10:cells10081970. [PMID: 34440739 PMCID: PMC8392328 DOI: 10.3390/cells10081970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023] Open
Abstract
Tumor recurrence from cancer stem cells (CSCs) and metastasis often occur post-treatment in colorectal cancer (CRC), leading to chemoresistance and resistance to targeted therapy. MYC is a transcription factor in the nuclei that modulates cell growth and development, and regulates immune response in an antitumor direction by mediating programmed death ligand 1 (PD-L1) and promoting CRC tumor recurrence after adjuvant chemotherapy. However, the molecular mechanism through which c-MYC maintains stemness and confers treatment resistance still remains elusive in CRC. In addition, recent reports demonstrated that CRC solid colon tumors expresses C-X-C motif chemokine ligand 8 (CXCL8). Expression of CXCL8 in CRC was reported to activate the expression of PD-L1 immune checkpoint through c-MYC, this ultimately induces chemoresistance in CRC. Accumulating studies have also demonstrated increased expression of CXCL8, matrix metalloproteinase 7 (MMP7), tissue inhibitor of metalloproteinase 1 (TIMP1), and epithelial-to-mesenchymal transition (EMT) components, in CRC tumors suggesting their potential collaboration to promote EMT and CSCs. TIMP1 is MMP-independent and regulates cell development and apoptosis in various cancer cell types, including CRC. Recent studies showed that TIMP1 cleaves CXCL8 on its chemoattractant, thereby influencing its mechanistic response to therapy. This therefore suggests crosstalk among the c-MYC/CXCL8/TIMP1 oncogenic signatures. In this study, we explored computer simulations through bioinformatics to identify and validate that the MYC/CXCL8/TIMP1 oncogenic signatures are overexpressed in CRC, Moreover, our docking results exhibited putative binding affinities of the above-mentioned oncogenes, with our novel small molecule, RV59, Finally, we demonstrated the anticancer activities of RV59 against NCI human CRC cancer cell lines both as single-dose and dose-dependent treatments, and also demonstrated the MYC/CXCL8/TIMP1 signaling pathway as a potential RV59 drug target.
Collapse
|
18
|
Frank MH, Wilson BJ, Gold JS, Frank NY. Clinical Implications of Colorectal Cancer Stem Cells in the Age of Single-Cell Omics and Targeted Therapies. Gastroenterology 2021; 160:1947-1960. [PMID: 33617889 PMCID: PMC8215897 DOI: 10.1053/j.gastro.2020.12.080] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
The cancer stem cell (CSC) concept emerged from the recognition of inherent tumor heterogeneity and suggests that within a given tumor, in analogy to normal tissues, there exists a cellular hierarchy composed of a minority of more primitive cells with enhanced longevity (ie, CSCs) that give rise to shorter-lived, more differentiated cells (ie, cancer bulk populations), which on their own are not capable of tumor perpetuation. CSCs can be responsible for cancer therapeutic resistance to conventional, targeted, and immunotherapeutic treatment modalities, and for cancer progression through CSC-intrinsic molecular mechanisms. The existence of CSCs in colorectal cancer (CRC) was first established through demonstration of enhanced clonogenicity and tumor-forming capacity of this cell subset in human-to-mouse tumor xenotransplantation experiments and subsequently confirmed through lineage-tracing studies in mice. Surface markers for CRC CSC identification and their prospective isolation are now established. Therefore, the application of single-cell omics technologies to CSC characterization, including whole-genome sequencing, RNA sequencing, and epigenetic analyses, opens unprecedented opportunities to discover novel targetable molecular pathways and hence to develop novel strategies for CRC eradication. We review recent advances in this field and discuss the potential implications of next-generation CSC analyses for currently approved and experimental targeted CRC therapies.
Collapse
Affiliation(s)
- Markus H. Frank
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts;,Department of Dermatology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts;,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts;,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Brian J. Wilson
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts;,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Jason S. Gold
- Department of Surgery, Veterans Affairs Boston Healthcare System, Boston, Massachusetts;,Department of Surgery, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Natasha Y. Frank
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts;,Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts;,Division of Genetics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Koshkin SA, Anatskaya OV, Vinogradov AE, Uversky VN, Dayhoff GW, Bystriakova MA, Pospelov VA, Tolkunova EN. Isolation and Characterization of Human Colon Adenocarcinoma Stem-Like Cells Based on the Endogenous Expression of the Stem Markers. Int J Mol Sci 2021; 22:4682. [PMID: 33925224 PMCID: PMC8124683 DOI: 10.3390/ijms22094682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer stem cells' (CSCs) self-maintenance is regulated via the pluripotency pathways promoting the most aggressive tumor phenotype. This study aimed to use the activity of these pathways for the CSCs' subpopulation enrichment and separating cells characterized by the OCT4 and SOX2 expression. METHODS To select and analyze CSCs, we used the SORE6x lentiviral reporter plasmid for viral transduction of colon adenocarcinoma cells. Additionally, we assessed cell chemoresistance, clonogenic, invasive and migratory activity and the data of mRNA-seq and intrinsic disorder predisposition protein analysis (IDPPA). RESULTS We obtained the line of CSC-like cells selected on the basis of the expression of the OCT4 and SOX2 stem cell factors. The enriched CSC-like subpopulation had increased chemoresistance as well as clonogenic and migration activities. The bioinformatic analysis of mRNA seq data identified the up-regulation of pluripotency, development, drug resistance and phototransduction pathways, and the downregulation of pathways related to proliferation, cell cycle, aging, and differentiation. IDPPA indicated that CSC-like cells are predisposed to increased intrinsic protein disorder. CONCLUSION The use of the SORE6x reporter construct for CSCs enrichment allows us to obtain CSC-like population that can be used as a model to search for the new prognostic factors and potential therapeutic targets for colon cancer treatment.
Collapse
Affiliation(s)
- Sergei A. Koshkin
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA 19107, USA
| | - Olga V. Anatskaya
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Alexander E. Vinogradov
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Guy W. Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL 33620, USA;
| | - Margarita A. Bystriakova
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Valery A. Pospelov
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Elena N. Tolkunova
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| |
Collapse
|
20
|
Orozco-Nunnelly DA, Pruet J, Rios-Ibarra CP, Bocangel Gamarra EL, Lefeber T, Najdeska T. Characterizing the cytotoxic effects and several antimicrobial phytocompounds of Argemone mexicana. PLoS One 2021; 16:e0249704. [PMID: 33826680 PMCID: PMC8026029 DOI: 10.1371/journal.pone.0249704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Commonly called the Mexican prickly poppy, Argemone mexicana is a stress-resistant member of the Papaveraceae family of plants that has been used in traditional medicine for centuries by indigenous communities in Mexico and Western parts of the United States. This plant has been exploited to treat a wide variety of ailments, with reported antimicrobial and antioxidant properties, as well as cytotoxic effects against some human cancer cell lines. Due to its various therapeutic uses and its abundance of secondary metabolites, A. mexicana has great potential as a drug discovery candidate. Herein, the germination conditions of A. mexicana are described and the cytotoxic activities of different parts (seeds, leaves, inner vs. outer roots) of the plant from methanol or hexane extracts are preliminarily characterized against cells of seven unique organisms. When comparing 1 mg of each sample normalized to background solvent alone, A. mexicana methanol outer root and leaf extracts possessed the strongest antimicrobial activity, with greatest effects against the Gram-positive bacteria tested, and less activity against the Gram-negative bacteria and fungi tested. Additionally, using the MTT colorimetric assay, the outer root methanol and seed hexane extracts displayed pronounced inhibitory effects against human colon cancer cells. Quantification of c-MYC (oncogene) and APC (tumor suppressor) mRNA levels help elucidate how the A. mexicana root methanol extract may be affecting colon cancer cells. After ultra-performance liquid chromatography coupled with mass spectrometry and subsequent nuclear magnetic resonance analysis of the root and leaf methanol fractions, two main antibacterial compounds, chelerythrine and berberine, have been identified. The roots were found to possess both phytocompounds, while the leaf lacked chelerythrine. These data highlight the importance of plants as an invaluable pharmaceutical resource at a time when antimicrobial and anticancer drug discovery has plateaued.
Collapse
Affiliation(s)
| | - Jeffery Pruet
- Department of Chemistry, Valparaiso University, Valparaiso, IN, United States of America
| | - Clara Patricia Rios-Ibarra
- Department of Biotechnology, Tecnológico de Monterrey, Campus Guadalajara, Guadalajara, Jalisco, México
- Institute of Research in Biomedical Sciences, University Center for Health Science, University of Guadalajara, Guadalajara, Jalisco, México
| | | | - Theodore Lefeber
- Department of Biology, Valparaiso University, Valparaiso, IN, United States of America
| | - Teodora Najdeska
- Department of Biology, Valparaiso University, Valparaiso, IN, United States of America
| |
Collapse
|
21
|
Castoldi DF, Malafaia O, Santos-Neto PHD, Postiglioni TV, Vasconcelos C, Bremer FP, Czeczko LEA, Gasser M, Waaga-Gasser AM, Ribas CAPM. IS THERE A CLINICAL PATHOLOGICAL CORRELATION OF COLORECTAL ADENOCARCINOMA WITH THE IMMUNOHISTOCHEMICAL EXPRESSION OF OPN AND ABCB5? ACTA ACUST UNITED AC 2021; 33:e1569. [PMID: 33759959 PMCID: PMC7983527 DOI: 10.1590/0102-672020200004e1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/09/2020] [Indexed: 11/30/2022]
Abstract
Background: Studies with biomarkers in TMA (tissue microarray) have been showing important results regarding its expression in colon cancer.
Aim: Correlate the expression profile of the OPN and ABCB5 biomarkers with the epidemiological and clinicopathological characteristics of the patients, the impact on the progression of the disease and the death.
Method: A total of 122 CRC patients who underwent surgical resection, immunomarking and their relationship with progression and death events were evaluated.
Result: The average age was 61.9 (±13.4) years. The cases were distributed in 42 (35.9%) in the ascending/transverse colon, 31 (26.5%) in the sigmoid, 27 in the rectum (23.1%), 17 (14.5%) in the descending colon. Most patients had advanced disease (stages III and IV) in 74 cases (60.9%). There was a predominance of moderately differentiated tumors in 101 samples (82.8%); despite this, the poorly differentiated subtype proved to be an independent risk factor for death in 70%. Metastasis to the liver proved to be an independent risk factor for death in 75% (18/24), as well as patients with primary rectal tumors in 81.5% (22/27).
Conclusion: The immunohistochemical expression of the OPN and ABCB5 markers was not associated with epidemiological and clinicopathological characteristics. Regarding the progression of disease and death, it was not possible to observe a correspondence relationship with the evaluated markers.
Collapse
Affiliation(s)
- Diogo Francesco Castoldi
- Medical Research Institute, Mackenzie Evangelical School of Paraná, Curitiba, PR, Brazil.,Evangelical Mackenzie University Hospital, Curitiba, Paraná, Brazil
| | - Osvaldo Malafaia
- Medical Research Institute, Mackenzie Evangelical School of Paraná, Curitiba, PR, Brazil.,Department of Surgery, Mackenzie Evangelical School of Paraná, Curitiba, PR, Brazil.,Evangelical Mackenzie University Hospital, Curitiba, Paraná, Brazil
| | | | | | - Cecilia Vasconcelos
- Department of Hematology, Mackenzie Evangelical School of Paraná, Curitiba, PR, Brazil
| | - Fabiola Past Bremer
- Department of Oncology, Mackenzie Evangelical School of Paraná, Curitiba, PR, Brazil
| | | | - Martin Gasser
- Department of Surgery, University Hospital Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
22
|
Hu L, Liang Y, Wu K, Wang C, Zhang T, Peng R, Zou F. Repressing PDCD4 activates JNK/ABCG2 pathway to induce chemoresistance to fluorouracil in colorectal cancer cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:114. [PMID: 33569416 PMCID: PMC7867943 DOI: 10.21037/atm-20-4292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Colorectal cancer (CRC) is the third major cause of cancer-related death worldwide, and fluorouracil (5-FU) is widely used in the treatment of CRC. However, acquired resistance to 5-FU has become an obstacle in the effective treatment of CRC. Adenosine triphosphate (ATP)-binding cassette sub-family G member 2 (ABCG2) has been found highly expressed in CRC patients with poor responsiveness to folinic acid/5-FU/irinotecan. However, the mechanisms of 5-FU resistance regulated by ABCG2 in CRC cells remain to be comprehensively understood. We aimed to explore the upstream mechanisms of ABCG2 involved in the regulation of chemoresistance in CRC cells. Methods We investigated the potential mechanisms of 5-FU resistance in HCT116, RKO, RKO microRNA-21 (miR-21) knockout, and acquired 5-FU-resistant HCT116 (HCT116/FUR) cells. The biochemical and biological analyses were conducted using semiquantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, transfections, and rescue experiments, along with cell proliferation, viability, and colony formation assays. In order to investigate the efficacy of inhibiting the c-Jun NH2 terminal kinase (JNK) pathway to overcome 5-FU resistance, HCT116 and 5-FU-resistant HCT116 cells were inoculated into BALB/c-nu/nu mice to establish the cell-derived xenograft model. Results The results showed that ABCG2 expression in HCT116/FUR cells was higher compared to HCT116 cells. Overexpression of ABCG2 decreased sensitivity to 5-FU in HCT116 cells, but knockdown of ABCG2 decreased the survival rate in HCT116/FUR cells. Additionally, repressing programmed cell death 4 (PDCD4) activated the JNK pathway in HCT116/FUR cells. Overexpression of PDCD4 inhibited phosphorylation of c-Jun and ABCG2 expression, and recovered sensitivity to 5-FU in HCT116/FUR cells. Moreover, treatment with the JNK pathway inhibitor SP600125 downregulated ABCG2 expression and rescued sensitivity to 5-FU in HCT116/FUR cells. We also found that miR-21 expression in HCT116/FUR cells was higher compared to HCT116 cells. Finally, 5-FU treatment in combination with SP600125 significantly decreased tumorigenicity compared to other treatments in vivo. Conclusions Our results demonstrated that 5-FU treatment upregulated miR-21, which directly repressed PDCD4, and subsequently activated the JNK pathway, leading to the upregulation of ABCG2 in CRC cells. Inhibition of the JNK pathway overcame acquired 5-FU resistance both in vivo and in vitro.
Collapse
Affiliation(s)
- Lanlin Hu
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yutong Liang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Kelv Wu
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Caixia Wang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Tao Zhang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Rui Peng
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Fangdong Zou
- College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Zhu GX, Gao D, Shao ZZ, Chen L, Ding WJ, Yu QF. Wnt/β‑catenin signaling: Causes and treatment targets of drug resistance in colorectal cancer (Review). Mol Med Rep 2020; 23:105. [PMID: 33300082 PMCID: PMC7723170 DOI: 10.3892/mmr.2020.11744] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in humans. Chemotherapy is used for the treatment of CRC. However, the effect of chemotherapy remains unsatisfactory due to drug resistance. Growing evidence has shown that the presence of highly metastatic tumor stem cells, regulation of non-coding RNAs and the tumor microenvironment contributes to drug resistance mechanisms in CRC. Wnt/β-catenin signaling mediates the chemoresistance of CRC in these three aspects. Therefore, the present study analyzed the abundant evidence of the contribution of Wnt/β-catenin signaling to the development of drug resistance in CRC and discussed its possible role in improving the chemosensitivity of CRC, which may provide guidelines for its clinical treatment.
Collapse
Affiliation(s)
- Gui-Xian Zhu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhao-Zhao Shao
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Chen
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen-Jie Ding
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiong-Fang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
24
|
Zhou C, Yi C, Yi Y, Qin W, Yan Y, Dong X, Zhang X, Huang Y, Zhang R, Wei J, Ali DW, Michalak M, Chen XZ, Tang J. LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/β-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes. Mol Cancer 2020; 19:118. [PMID: 32727463 PMCID: PMC7389684 DOI: 10.1186/s12943-020-01237-y] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal malignancies and has an extremely poor diagnosis and prognosis. The development of resistance to gemcitabine is still a major challenge. The long noncoding RNA PVT1 was reported to be involved in carcinogenesis and chemoresistance; however, the mechanism by which PVT1 regulates the sensitivity of pancreatic cancer to gemcitabine remains poorly understood. METHODS The viability of pancreatic cancer cells was assessed by MTT assay in vitro and xenograft tumor formation assay in vivo. The expression levels of PVT1 and miR-619-5p were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Western blotting analysis and qRT-PCR were performed to assess the protein and mRNA levels of Pygo2 and ATG14, respectively. Autophagy was explored via autophagic flux detection under confocal microscopy and autophagic vacuole investigation under transmission electron microscopy (TEM). The functional role and mechanism of PVT1 were further investigated by gain- and loss-of-function assays in vitro. RESULTS In the present study, we demonstrated that PVT1 was up-regulated in gemcitabine-resistant pancreatic cancer cell lines. Gain- and loss-of-function assays revealed that PVT1 impaired sensitivity to gemcitabine in vitro and in vivo. We further found that PVT1 up-regulated the expression of both Pygo2 and ATG14 and thus regulated Wnt/β-catenin signaling and autophagic activity to overcome gemcitabine resistance through sponging miR-619-5p. Moreover, we discovered three TCF/LEF binding elements (TBEs) in the promoter region of PVT1, and activation of Wnt/β-catenin signaling mediated by the up-regulation of Pygo2 increased PVT1 expression by direct binding to the TBE region. Furthermore, PVT1 was discovered to interact with ATG14, thus promoting assembly of the autophagy specific complex I (PtdIns3K-C1) and ATG14-dependent class III PtdIns3K activity. CONCLUSIONS These data indicate that PVT1 plays a critical role in the sensitivity of pancreatic cancer to gemcitabine and highlight its potential as a valuable target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, 28 NanLi Road, Wuhan, 430068, Hubei, China
| | - Changhua Yi
- Nanjing Clinical Medical Center for Infectious Diseases, the Second Affiliated Hospital of Southeast University (the Second Hospital of Nanjing), Nanjing, China
| | - Yongxiang Yi
- Nanjing Clinical Medical Center for Infectious Diseases, the Second Affiliated Hospital of Southeast University (the Second Hospital of Nanjing), Nanjing, China
| | - Wenying Qin
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, 28 NanLi Road, Wuhan, 430068, Hubei, China
| | - Yanan Yan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, 28 NanLi Road, Wuhan, 430068, Hubei, China
| | - Xueying Dong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, 28 NanLi Road, Wuhan, 430068, Hubei, China
| | - Xuewen Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, 28 NanLi Road, Wuhan, 430068, Hubei, China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, 28 NanLi Road, Wuhan, 430068, Hubei, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, 28 NanLi Road, Wuhan, 430068, Hubei, China
| | - Jie Wei
- Nanjing Clinical Medical Center for Infectious Diseases, the Second Affiliated Hospital of Southeast University (the Second Hospital of Nanjing), Nanjing, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, 28 NanLi Road, Wuhan, 430068, Hubei, China.
| |
Collapse
|
25
|
A Peptidic Thymidylate-Synthase Inhibitor Loaded on Pegylated Liposomes Enhances the Antitumour Effect of Chemotherapy Drugs in Human Ovarian Cancer Cells. Int J Mol Sci 2020; 21:ijms21124452. [PMID: 32585842 PMCID: PMC7352236 DOI: 10.3390/ijms21124452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 12/24/2022] Open
Abstract
There is currently no effective long-term treatment for ovarian cancer (OC) resistant to poly-chemotherapy regimens based on platinum drugs. Preclinical and clinical studies have demonstrated a strong association between development of Pt-drug resistance and increased thymidylate synthase (hTS) expression, and the consequent cross-resistance to the hTS inhibitors 5-fluorouracil (5-FU) and raltitrexed (RTX). In the present work, we propose a new tool to combat drug resistance. We propose to treat OC cell lines, both Pt-sensitive and -resistant, with dual combinations of one of the four chemotherapeutic agents that are widely used in the clinic, and the new peptide, hTS inhibitor, [D-Gln4]LR. This binds hTS allosterically and, unlike classical inhibitors that bind at the catalytic pocket, causes cell growth inhibition without inducing hTS overexpression. The dual drug combinations showed schedule-dependent synergistic antiproliferative and apoptotic effects. We observed that the simultaneous treatment or 24h pre-treatment of OC cells with the peptide followed by either agent produced synergistic effects even in resistant cells. Similar synergistic or antagonistic effects were obtained by delivering the peptide into OC cells either by means of a commercial delivery system (SAINT-PhD) or by pH sensitive PEGylated liposomes. Relative to non-PEGylated liposomes, the latter had been previously characterized and found to allow macrophage escape, thus increasing their chance to reach the tumour tissue. The transition from the SAINT-PhD delivery system to the engineered liposomes represents an advancement towards a more drug-like delivery system and a further step towards the use of peptides for in vivo studies. Overall, the results suggest that the association of standard drugs, such as cDDP and/or 5-FU and/or RTX, with the novel peptidic TS inhibitor encapsulated into PEGylated pH-sensitive liposomes can represent a promising strategy for fighting resistance to cDDP and anti-hTS drugs.
Collapse
|
26
|
Chen W, Liang JL, Zhou K, Zeng QL, Ye JW, Huang MJ. Effect of CIP2A and its mechanism of action in the malignant biological behavior of colorectal cancer. Cell Commun Signal 2020; 18:67. [PMID: 32321509 PMCID: PMC7178757 DOI: 10.1186/s12964-020-00545-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background Increasing evidence has revealed a close correlation between cancerous inhibitor of protein phosphatase 2A (CIP2A) and cancer progression. CIP2A has been shown to participate in diverse biological processes, such as development, tumorigenic transformation and chemoresistance. However, the functions of CIP2A in colorectal cancer (CRC) and its underlying mechanisms of action are not yet completely understood. The purpose of this study was to explore its clinical significance, function and relevant pathways in CRC. Methods Quantitative RT-PCR (qRT-PCR), immunohistochemistry (IHC), western blotting and enzyme-linked immunosorbent assay (ELISA) were used to identify the expression of CIP2A in CRC tissues, sera and CRC cell lines. The association between the expressions of CIP2A and patient survival was analyzed using the Kaplan-Meier curves. Additionally, the functional role of CIP2A in the cell lines was identified through small interfering RNA (siRNA)-mediated depletion of the protein followed by analyses of proliferation and xenograft growth in vivo using short hairpin (sh) RNAs. Effects of the C-myc inhibitor 10,058-F4 on the expressions of C-myc, and CIP2A in CRC cell lines and its potential mechanisms of action were investigated. Finally, the potential molecular pathways associated with CIP2A were screened using the phosphokinase array and identified through western blotting. Results CIP2A mRNA and protein levels were upregulated in CRC tissues compared to those of the corresponding normal tissues. It can be used as an independent prognostic indicator to determine overall survival (OS) and disease-free survival (DFS). Depletion of CIP2A substantially suppressed the growth of CRC cells and colony formation in vitro, and inhibited the growth of xenograft tumors in vivo. Additionally, the levels of CIP2A in the sera of patients with CRC were higher than those of the control subjects. Multivariate analyses revealed that the levels of CIP2A in the sera were not independent prognostic indicators in patients with CRC. Moreover, 10,058-F4 could effectively inhibit the growth of CRC cells in vitro, which could be correlated with an inhibition in the expressions of C-myc, CIP2A and its downstream regulatory anti-apoptotic proteins. Furthermore, the Human Phosphokinase Antibody Array was used to gain insights into the CIP2A-dependent intermediary signaling pathways. The results revealed that several signaling pathways were affected and the protein levels of p-p53 (S392), p-STAT5a (Y694), Cyclin D1, p-ERK1/2 and p-AKT (T308) had decreased in CIP2A-shRNA group based on the results of the western blot analysis. Conclusions CIP2A could promote the development of CRC cells and predict poor prognosis in patients with CRC, suggesting that it may serve as a potential prognostic marker and therapeutic target against CRC. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Wei Chen
- Department of Colorectal Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Jing-Lin Liang
- Department of Colorectal Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Kai Zhou
- Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China
| | - Qing-Li Zeng
- Jiangxi Provincial People's Hospital, Nanchang, 330006, Jiangxi, China.,The 334 Hospital Affiliated of Nanchang University, Nanchang, 330024, Jiangxi, China
| | - Jun-Wen Ye
- Department of Colorectal Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Mei-Jin Huang
- Department of Colorectal Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China. .,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China. .,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|
27
|
Voutsadakis IA. The pluripotency network in colorectal cancer pathogenesis and prognosis: an update. Biomark Med 2019; 12:653-665. [PMID: 29944017 DOI: 10.2217/bmm-2017-0369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stemness characteristics are defining properties of cancer initiating cells and are associated with the ability to metastasize and survive in hostile environments. Establishment of the stem cell network depends on the action of a set of core transcription factors that work in concert with other ancillary proteins that are also important during embryonic development. New data consolidate the role of core pluripotency transcription factors OCT4, SOX2 and NANOG as adverse prognostic factors in colorectal cancer. mRNA-binding proteins LIN28 and Musashi, that are associated with stemness, and epigenetic modifiers such as de-acetylase SIRT1 may also have prognostic value in colorectal cancer. This paper provides an update of the stem cell factors in the pathogenesis and prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste Marie, Ontario, Canada.,Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
28
|
Milosevic V, Kopecka J, Salaroglio IC, Libener R, Napoli F, Izzo S, Orecchia S, Ananthanarayanan P, Bironzo P, Grosso F, Tabbò F, Comunanza V, Alexa-Stratulat T, Bussolino F, Righi L, Novello S, Scagliotti GV, Riganti C. Wnt/IL-1β/IL-8 autocrine circuitries control chemoresistance in mesothelioma initiating cells by inducing ABCB5. Int J Cancer 2019; 146:192-207. [PMID: 31107974 DOI: 10.1002/ijc.32419] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/26/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a tumor with high chemoresistance and poor prognosis. MPM-initiating cells (ICs) are known to be drug resistant, but it is unknown if and how stemness-related pathways determine chemoresistance. Moreover, there are no predictive markers of IC-associated chemoresistance. Aim of this work is to clarify if and by which mechanisms the chemoresistant phenotype of MPM IC was due to specific stemness-related pathways. We generated MPM IC from primary MPM samples and compared the gene expression and chemo-sensitivity profile of IC and differentiated/adherent cells (AC) of the same patient. Compared to AC, IC had upregulated the drug efflux transporter ABCB5 that determined resistance to cisplatin and pemetrexed. ABCB5-knocked-out (KO) IC clones were resensitized to the drugs in vitro and in patient-derived xenografts. ABCB5 was transcriptionally activated by the Wnt/GSK3β/β-catenin/c-myc axis that also increased IL-8 and IL-1β production. IL-8 and IL-1β-KO IC clones reduced the c-myc-driven transcription of ABCB5 and reacquired chemosensitivity. ABCB5-KO clones had lower IL-8 and IL-1β secretion, and c-myc transcriptional activity, suggesting that either Wnt/GSK3β/β-catenin and IL-8/IL-1β signaling drive c-myc-mediated transcription of ABCB5. ABCB5 correlated with lower time-to-progression and overall survival in MPM patients treated with cisplatin and pemetrexed. Our work identified multiple autocrine loops linking stemness pathways and resistance to cisplatin and pemetrexed in MPM IC. ABCB5 may represent a new target to chemosensitize MPM IC and a potential biomarker to predict the response to the first-line chemotherapy in MPM patients.
Collapse
Affiliation(s)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | | | - Roberta Libener
- Pathology Division, S. Antonio and Biagio Hospital, Alessandria, Italy
| | - Francesca Napoli
- Department of Oncology, University of Torino, Torino, Italy.,Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Stefania Izzo
- Department of Oncology, University of Torino, Torino, Italy.,Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Sara Orecchia
- Pathology Division, S. Antonio and Biagio Hospital, Alessandria, Italy
| | | | - Paolo Bironzo
- Department of Oncology, University of Torino, Torino, Italy.,Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Federica Grosso
- Oncology Division, S. Antonio and Biagio Hospital, Alessandria, Italy
| | - Fabrizio Tabbò
- Department of Oncology, University of Torino, Torino, Italy.,Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Valentina Comunanza
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Italy
| | | | - Federico Bussolino
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute - FPO IRCCS, Candiolo, Italy
| | - Luisella Righi
- Department of Oncology, University of Torino, Torino, Italy.,Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Silvia Novello
- Department of Oncology, University of Torino, Torino, Italy.,Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Giorgio V Scagliotti
- Department of Oncology, University of Torino, Torino, Italy.,Thoracic Oncology Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy.,Interdepartmental Center "G. Scansetti" for the Study of Asbestos and Other Toxic Particulates, University of Torino, Torino, Italy
| |
Collapse
|
29
|
The Influence of Curcumin on the Downregulation of MYC, Insulin and IGF-1 Receptors: A possible Mechanism Underlying the Anti-Growth and Anti-Migration in Chemoresistant Colorectal Cancer Cells. ACTA ACUST UNITED AC 2019; 55:medicina55040090. [PMID: 30987250 PMCID: PMC6524349 DOI: 10.3390/medicina55040090] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/31/2019] [Accepted: 03/27/2019] [Indexed: 01/02/2023]
Abstract
Background and objectives: Mounting evidence shows that curcumin, a bioactive substance originating from turmeric root, has anticancer properties. Additionally, curcumin prevents the migration and metastasis of tumor cells. However, the molecular mechanism involved in the anti-metastatic action of curcumin is not clear. Most studies have suggested that migration inhibition is related to curcumin’s anti-inflammatory properties. Curcumin possesses a regulatory effect on insulin and insulin-like growth factor-1 (IGF-1) receptors and signaling. Insulin signaling is one of the important pathways involved in tumor initiation and progression; therefore, we proposed that the anti-metastatic effect of curcumin may mediate the downregulation of insulin and insulin-like growth factor-1 receptors. Materials and Methods: Viable resistant cells resulting from treating SW480 cells with 5-fluorouracil (5-FU) were subjected to curcumin treatment to analyze the proliferation and migration capacity in comparison to the untreated counterparts. To test the proliferation and migration potential, MTT, colony formation, and wound healing assays were performed. Real-time polymerase chain reaction (RT-PCR) was performed to measure the mRNA expression of insulin-like growth factor-1R (IGF-1R), insulin receptor (IR), and avian myelocytomatosis virus oncogene cellular homolog (MYC). Results: Our findings showed that curcumin significantly decreased insulin and IGF-1 receptors in addition to MYC expression. Additionally, the downregulation of the insulin and insulin-like growth factor-1 receptors was correlated to a greater decrease in the proliferation and migration of chemoresistant colorectal cancer cells. Conclusions: These results suggest the possible therapeutic effectiveness of curcumin in adjuvant therapy in metastatic colorectal cancer.
Collapse
|
30
|
Zhang HL, Wang P, Lu MZ, Zhang SD, Zheng L. c-Myc maintains the self-renewal and chemoresistance properties of colon cancer stem cells. Oncol Lett 2019; 17:4487-4493. [PMID: 30944638 PMCID: PMC6444394 DOI: 10.3892/ol.2019.10081] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are responsible for cancer formation, recurrence and drug resistance. c-Myc, one of the core markers for stem cells, has recently been considered to serve as a link between malignancy and ‘stemness’. However, the precise function of c-Myc in colon CSCs is still unclear. In the present study, a subpopulation of colon CSCs expressing a CD133 surface phenotype was isolated from the human HT-29 cell line, which possess greater tumor sphere-forming efficiency and have higher expression of ‘stemness’-associated genes compared with CD133-negative cells. Furthermore, it was demonstrated that c-Myc was highly expressed in CD133+ colon CSCs. Knockdown of c-Myc expression with small interfering RNA in colon CSCs can significantly inhibit tumor sphere formation, reduce the invasive and migratory capacity of CD133+ cells in vitro, and suppress the tumorigenicity of colon CSCs in vivo. In addition, it was suggested that c-Myc silencing may sensitize colon CSCs to chemotherapy-induced cytotoxicity via the downregulation of ABCG2 and ABCB5. These findings support a central role for c-Myc in maintaining the self-renewing and chemoresistant properties of colon CSCs.
Collapse
Affiliation(s)
- Huan-Le Zhang
- Department of Oncology, Lihuili Hospital of Ningbo Medical Center, Ningbo, Zhejiang 315000, P.R. China
| | - Ping Wang
- Department of Molecular Biology, Ningbo University School of Medicine, Ningbo, Zhejiang 315000, P.R. China
| | - Miao-Zhen Lu
- Department of Oncology, Lihuili Hospital of Ningbo Medical Center, Ningbo, Zhejiang 315000, P.R. China
| | - San-Dian Zhang
- Department of Oncology, Lihuili Hospital of Ningbo Medical Center, Ningbo, Zhejiang 315000, P.R. China
| | - Lu Zheng
- Department of Oncology, Lihuili Hospital of Ningbo Medical Center, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
31
|
Xiao X, Gu Y, Wang G, Chen S. c-Myc, RMRP, and miR-34a-5p form a positive-feedback loop to regulate cell proliferation and apoptosis in multiple myeloma. Int J Biol Macromol 2019; 122:526-537. [DOI: 10.1016/j.ijbiomac.2018.10.207] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
|
32
|
Fouad MA, Salem SE, Hussein MM, Zekri ARN, Hafez HF, El Desouky ED, Shouman SA. Impact of Global DNA Methylation in Treatment Outcome of Colorectal Cancer Patients. Front Pharmacol 2018; 9:1173. [PMID: 30405408 PMCID: PMC6201055 DOI: 10.3389/fphar.2018.01173] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Global DNA methylation has an impact in cancer pathogenesis and progression. This study aimed at investigating the impact of global DNA methylation in treatment outcome of Colorectal Cancer (CRC). Patients and Methods: Global DNA methylation was measured by LC/MS/MS in peripheral blood leucocytes of 102, 48, and 32 Egyptian CRC patients at baseline and after 3 and 6 months of Fluoropyrimidine (FP) therapy respectively, in addition to 32 normal healthy matched in age and sex. The genetic expressions of DNA methyl transferases (DNMTs) were determined and correlated with patients‘ survival using univariate and multivariate methods of analyses. Results: Egyptian CRC patients had significant global hypomethylation of 5mC level and 5mC % with overexpression of DNMT3A and DNMT3B. Significant higher 5mC levels were shown in patients > 45 years, male gender, T2 tumors, stage II, negative lymph nodes, and absence of metastasis. FP therapy significantly reduced DNA methylation particularly in the subgroups of patients with high DNA methylation level at baseline and good prognostic features. After 3 years of follow up, patients with 5mC % > 8.02% had significant poor overall survival (OS) while, significant better event-free survival (EFS) was found in patients with 5mC level > 0.55. High initial CEA level and presence of metastasis were significantly associated with hazards of disease progression and death. Conclusion: Global DNA methylation has a significant impact on the treatment outcome and survival of Egyptian CRC patients treated with FP- based therapy.
Collapse
Affiliation(s)
- Mariam A Fouad
- Pharmacology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Salem E Salem
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Marwa M Hussein
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Abdel Rahman N Zekri
- Virology and Immunology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hafez F Hafez
- Pharmacology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Eman D El Desouky
- Department of Biostatistics and Epidemiology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Samia A Shouman
- Pharmacology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
33
|
Uppada SB, Gowrikumar S, Ahmad R, Kumar B, Szeglin B, Chen X, Smith JJ, Batra SK, Singh AB, Dhawan P. MASTL induces Colon Cancer progression and Chemoresistance by promoting Wnt/β-catenin signaling. Mol Cancer 2018; 17:111. [PMID: 30068336 PMCID: PMC6090950 DOI: 10.1186/s12943-018-0848-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chemotherapeutic agents that modulate cell cycle checkpoints and/or tumor-specific pathways have shown immense promise in preclinical and clinical studies aimed at anti-cancer therapy. MASTL (Greatwall in Xenopus and Drosophila), a serine/threonine kinase controls the final G2/M checkpoint and prevents premature entry of cells into mitosis. Recent studies suggest that MASTL expression is highly upregulated in cancer and confers resistance against chemotherapy. However, the role and mechanism/s of MASTL mediated regulation of tumorigenesis remains poorly understood. METHODS We utilized a large patient cohort and mouse models of colon cancer as well as colon cancer cells to determine the role of Mastl and associated mechanism in colon cancer. RESULTS Here, we show that MASTL expression increases in colon cancer across all cancer stages compared with normal colon tissue (P < 0.001). Also, increased levels of MASTL associated with high-risk of the disease and poor prognosis. Further, the shRNA silencing of MASTL expression in colon cancer cells induced cell cycle arrest and apoptosis in vitro and inhibited xenograft-tumor growth in vivo. Mechanistic analysis revealed that MASTL expression facilitates colon cancer progression by promoting the β-catenin/Wnt signaling, the key signaling pathway implicated in colon carcinogenesis, and up-regulating anti-apoptotic proteins, Bcl-xL and Survivin. Further studies where colorectal cancer (CRC) cells were subjected to 5-fluorouracil (5FU) treatment revealed a sharp increase in MASTL expression upon chemotherapy, along with increases in Bcl-xL and Survivin expression. Most notably, inhibition of MASTL in these cells induced chemosensitivity to 5FU with downregulation of Survivin and Bcl-xL expression. CONCLUSION Overall, our data shed light on the heretofore-undescribed mechanistic role of MASTL in key oncogenic signaling pathway/s to regulate colon cancer progression and chemo-resistance that would tremendously help to overcome drug resistance in colon cancer treatment.
Collapse
Affiliation(s)
- Srijayaprakash Babu Uppada
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68022 USA
| | - Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68022 USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68022 USA
| | - Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68022 USA
| | - Bryan Szeglin
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, NY USA
- Human Oncology and Pathogenesis Program at MSKCC, New York, NY USA
| | - Xi Chen
- Division of Biostatistics, University of Miami Miller School of Medicine, Miami, FL USA
| | - J. Joshua Smith
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, NY USA
- Human Oncology and Pathogenesis Program at MSKCC, New York, NY USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68022 USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE USA
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68022 USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68022 USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE USA
| |
Collapse
|
34
|
Guo Q, Grimmig T, Gonzalez G, Giobbie-Hurder A, Berg G, Carr N, Wilson BJ, Banerjee P, Ma J, Gold JS, Nandi B, Huang Q, Waaga-Gasser AM, Lian CG, Murphy GF, Frank MH, Gasser M, Frank NY. ATP-binding cassette member B5 (ABCB5) promotes tumor cell invasiveness in human colorectal cancer. J Biol Chem 2018; 293:11166-11178. [PMID: 29789423 DOI: 10.1074/jbc.ra118.003187] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/23/2018] [Indexed: 12/29/2022] Open
Abstract
ABC member B5 (ABCB5) mediates multidrug resistance (MDR) in diverse malignancies and confers clinically relevant 5-fluorouracil resistance to CD133-expressing cancer stem cells in human colorectal cancer (CRC). Because of its recently identified roles in normal stem cell maintenance, we hypothesized that ABCB5 might also serve MDR-independent functions in CRC. Here, in a prospective clinical study of 142 CRC patients, we found that ABCB5 mRNA transcripts previously reported not to be significantly expressed in healthy peripheral blood mononuclear cells are significantly enriched in patient peripheral blood specimens compared with non-CRC controls and correlate with CRC disease progression. In human-to-mouse CRC tumor xenotransplantation models that exhibited circulating tumor mRNA, we observed that cancer-specific ABCB5 knockdown significantly reduced detection of these transcripts, suggesting that the knockdown inhibited tumor invasiveness. Mechanistically, this effect was associated with inhibition of expression and downstream signaling of AXL receptor tyrosine kinase (AXL), a proinvasive molecule herein shown to be produced by ABCB5-positive CRC cells. Importantly, rescue of AXL expression in ABCB5-knockdown CRC tumor cells restored tumor-specific transcript detection in the peripheral blood of xenograft recipients, indicating that ABCB5 regulates CRC invasiveness, at least in part, by enhancing AXL signaling. Our results implicate ABCB5 as a critical determinant of CRC invasiveness and suggest that ABCB5 blockade might represent a strategy in CRC therapy, even independently of ABCB5's function as an MDR mediator.
Collapse
Affiliation(s)
- Qin Guo
- From the Departments of Medicine.,the Division of Genetics.,the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Tanja Grimmig
- the Department of Surgery, University of Würzburg, 97070 Würzburg, Germany
| | | | - Anita Giobbie-Hurder
- the Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and
| | - Gretchen Berg
- From the Departments of Medicine.,the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Brian J Wilson
- the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138.,Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Pallavi Banerjee
- From the Departments of Medicine.,the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jie Ma
- the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | - Qin Huang
- Pathology, Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02132
| | | | | | - George F Murphy
- the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138.,Department of Pathology, and
| | - Markus H Frank
- the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138.,Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Martin Gasser
- the Department of Surgery, University of Würzburg, 97070 Würzburg, Germany
| | - Natasha Y Frank
- From the Departments of Medicine, .,the Division of Genetics.,the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
35
|
Pan H, Zhu Y, Wei W, Shao S, Rui X. Transcription factor FoxM1 is the downstream target of c-Myc and contributes to the development of prostate cancer. World J Surg Oncol 2018; 16:59. [PMID: 29554906 PMCID: PMC5859725 DOI: 10.1186/s12957-018-1352-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/27/2018] [Indexed: 12/21/2022] Open
Abstract
Background Prostate cancer is a common malignancy and the second leading cause of cancer death in men. Elevated expression of the transcription factor FoxM1 and c-Myc has been identified in prostate cancer. However, the potential mechanism of elevated FoxM1 and c-Myc to the development of prostate cancer has not been identified. Methods In this report, the mRNA level of FoxM1 and c-Myc was detected in 30 prostate cancer and para-cancer tissues. Then, we detected the expression level of FoxM1 by real-time PCR and Western blot after disturbance of the expression level of c-Myc in PC-3 cells. Whether c-Myc could bind to FoxM1 promoter was identified by ChIP assay. Finally, the migratory, invasive, and proliferative abilities in FoxM1 overexpressing and silencing PC-3 cells were detected by wound healing, transwell assay, CCK-8 assays, and Ki-67 protein level. Results We found that the expression level of FoxM1 and c-Myc were both increased in prostate cancer samples compared with para-cancer samples. The expression level of FoxM1 was changed consistent with the protein level of c-Myc. ChIP assay detected the direct binding of c-Myc in FoxM1 gene promoter. Lastly, overexpression of FoxM1 increased the migratory, invasive, and proliferative abilities of PC-3 cells, and its downregulation significantly decreased the migratory, invasive, and proliferative abilities. Conclusions In conclusion, FoxM1 was significantly increased in prostate cancer samples, and it could regulate the proliferative and invasive ability of prostate cancer cells which might be a new target for prostate cancer. Besides, c-Myc could regulate the expression level of FoxM1 by directly binding to its gene promoter.
Collapse
Affiliation(s)
- Huafeng Pan
- Department of Urology, Ningbo No.2 Hospital, No.41 Xibei Street, Ningbo, 315010, Zhejiang Province, People's Republic of China
| | - Yudi Zhu
- Department of Urology, Ningbo No.2 Hospital, No.41 Xibei Street, Ningbo, 315010, Zhejiang Province, People's Republic of China
| | - Wei Wei
- Department of Urology, Ningbo No.2 Hospital, No.41 Xibei Street, Ningbo, 315010, Zhejiang Province, People's Republic of China
| | - Siliang Shao
- Department of Urology, Ningbo No.2 Hospital, No.41 Xibei Street, Ningbo, 315010, Zhejiang Province, People's Republic of China
| | - Xin Rui
- Department of Urology, Ningbo No.2 Hospital, No.41 Xibei Street, Ningbo, 315010, Zhejiang Province, People's Republic of China.
| |
Collapse
|
36
|
Addressing intra-tumoral heterogeneity and therapy resistance. Oncotarget 2018; 7:72322-72342. [PMID: 27608848 PMCID: PMC5342165 DOI: 10.18632/oncotarget.11875] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022] Open
Abstract
In the last several years, our appreciation of intra-tumoral heterogeneity has greatly increased due to accumulating evidence for the co-existence of genetically and epigenetically divergent cancer cells residing in different microenvironments within a tumor. Herein, we review recent literature discussing intra-tumoral heterogeneity in the context of therapy resistance mechanisms at the genetic, epigenetic and microenvironmental levels. We illustrate the influence of tumor microenvironment on therapy resistance and epigenetic states of cancer cells by highlighting the role of cancer stem cells in therapy resistance. We also summarize different strategies that have been employed to address various resistance mechanisms at genetic, epigenetic, and microenvironmental levels in preclinical and clinical studies. We propose that future personalized cancer therapy design needs to incorporate dynamic and comprehensive analyses of tumor heterogeneity landscape and multi-dimensional mechanisms of therapy resistance.
Collapse
|
37
|
Quercetin Suppresses CYR61-Mediated Multidrug Resistance in Human Gastric Adenocarcinoma AGS Cells. Molecules 2018; 23:molecules23020209. [PMID: 29364834 PMCID: PMC6017870 DOI: 10.3390/molecules23020209] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 01/23/2023] Open
Abstract
Cysteine-rich angiogenic inducer 61 (CYR61) is an extracellular matrix-associated protein involved in survival, tumorigenesis, and drug resistance. Therefore, we examined the effects of flavones against CYR61-overexpressing human gastric adenocarcinoma AGS (AGS-cyr61) cells, which show remarkable resistance to 5-fluorouracil (5-FU), adriamycin (ADR), tamoxifen (TAM), paclitaxel (PAC), and docetaxel (DOC). Among the tested flavones, quercetin had the lowest 50% inhibitory concentration (IC50) and significantly reduced the viability of AGS-cyr61 cells compared with AGS cells. Quercetin: (1) reduced multidrug resistance-associated protein 1 and nuclear factor (NF)-kappa B p65 subunit levels; (2) reversed multidrug resistance (MDR); (3) inhibited colony formation and induced caspase-dependent apoptosis; and (4) suppressed migration and down-regulated epithelial-mesenchymal transition-related proteins in AGS-cyr61. Moreover, AGS-cyr61 cells treated with quercetin concentrations close to the IC50 and simultaneously treated with 5-FU or ADR in the sub-lethal range showed strong synergism between quercetin and these two drugs. These findings indicate that CYR61 is a potential regulator of drug resistance and that quercetin may be a novel agent for improving the efficacy of anticancer drugs in AGS-cyr61 cells.
Collapse
|
38
|
Zhang J, Jiang Y, Zhu J, Wu T, Ma J, Du C, Chen S, Li T, Han J, Wang X. Overexpression of long non-coding RNA colon cancer-associated transcript 2 is associated with advanced tumor progression and poor prognosis in patients with colorectal cancer. Oncol Lett 2017; 14:6907-6914. [PMID: 29181105 PMCID: PMC5696717 DOI: 10.3892/ol.2017.7049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/16/2017] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to explore the clinicopathological and prognostic significance of long non-coding RNA (lncRNA) colon cancer-associated transcript 2 (CCAT2) expression in human colorectal cancer (CRC). Expression levels of lncRNA CCAT2 in CRC, adjacent non-tumor and healthy colon mucosa tissues were detected by quantitative polymerase chain reaction. The disease-free survival and overall survival rates were evaluated using the Kaplan-Meier method, and multivariate analysis was performed using Cox proportional hazard analysis. The expression level of lncRNA CCAT2 in CRC tissues was increased significantly compared with adjacent normal tissues or non-cancerous tissues. CCAT2 expression was observed to be progressively increased between tumor-node-metastasis (TNM) stages I and IV. A high level of CCAT2 expression was revealed to be associated with poor cell differentiation, deeper tumor infiltration, lymph node metastasis, distance metastasis, vascular invasion and advanced TNM stage. Compared with patients with low levels of CCAT2 expression, patients with high levels of CCAT2 expression had shorter disease-free survival and overall survival times. Multivariate analyses indicated that high CCAT2 expression was an independent poor prognostic factor. Therefore, increased lncRNA CCAT2 expression maybe a potential diagnostic biomarker for CRC, and an independent predictor of prognosis in patients with CRC.
Collapse
Affiliation(s)
- Junling Zhang
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Yong Jiang
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Jing Zhu
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Tao Wu
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Ju Ma
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Chuang Du
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Shanwen Chen
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Tengyu Li
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Jinsheng Han
- Department of General Surgery, The People's Hospital of Hebei, Shijiazhuang, Hebei 050000, P.R. China
| | - Xin Wang
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| |
Collapse
|
39
|
Suppression of cancer stemness by upregulating Ligand-of-Numb protein X1 in colorectal carcinoma. PLoS One 2017; 12:e0188665. [PMID: 29190716 PMCID: PMC5708683 DOI: 10.1371/journal.pone.0188665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/10/2017] [Indexed: 01/27/2023] Open
Abstract
Cancer stem-like cells (CSCs) have been reported to play major roles in tumorigenesis, tumor relapse, and metastasis after therapy against colorectal carcinoma (CRC). Therefore, identification of colorectal CSC regulators could provide promising targets for CRC. Ligand-of-Numb protein X1 (LNX1) is one E3 ubiquitin ligase which mediates the ubiquitination and degradation of Numb. Although several studies indicate LNX1 could be a potential suppressor of cancer diseases, the functions of LNX1 in mediating cancer stemness remain poorly understood. In this study, LNX1 was identified as a negative regulator of cancer stemness in CRC, which was downregulated in colonospheres or side population (SP) cells. Furthermore, the coxsackievirus and adenovirus receptor (CXADR) was found to be one critical downstream mediator of cancer stemness regulated by LNX1. Interestingly, the anti-breast cancer drug tamoxifen was found to be an agonist of LNX1 and suppress cancer stemness in CRC. In sum, this study provided the evidences that LNX1 signaling plays important roles in regulating the stemness of colon cancer cells.
Collapse
|
40
|
Investigating the role of miRNA-98 and miRNA-214 in chemoresistance of HepG2/Dox cells: studying their effects on predicted ABC transporters targets. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2079-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Chen Z, Shen A, Liu L, Chen Y, Chu J, Cai Q, Qi F, Sferra TJ, Peng J. Pien Tze Huang induces apoptosis and inhibits proliferation of 5-fluorouracil-resistant colorectal carcinoma cells via increasing miR-22 expression. Exp Ther Med 2017; 14:3533-3540. [PMID: 29042944 PMCID: PMC5639424 DOI: 10.3892/etm.2017.4951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/01/2017] [Indexed: 12/23/2022] Open
Abstract
The well-known traditional Chinese medicine formula Pien Tze Huang (PZH) has long been used to treat various malignancies, including colorectal cancer (CRC). It was recently reported that PZH possesses the ability to overcome multidrug resistance in CRC cells. In the present study, a 5-fluorouracil (5-FU) resistant human CRC cell line (HCT-8/5-FU) was used to further evaluate the effect of PZH on chemotherapy (chemo)-resistance and investigate the mechanisms through which this occurs. The results identified that PZH significantly reduced the viability and cell density of HCT-8/5-FU cells in a dose- and time-dependent manner (P<0.05). PZH inhibited cell survival, reduced the proportion of cells in S-phase, and suppressed the expression of pro-proliferative proteins cyclin D1 and cyclin-dependent kinase 4. In addition, PZH treatment induced nuclear condensation and fragmentation, activated caspase-9 and -3 and increased the pro-apoptotic Bcl-2-associated X protein/B-cell lymphoma 2 protein ratio. Furthermore, PZH treatment upregulated the expression of microRNA-22 (miR-22) and downregulated the expression of c-Myc (a target gene of miR-22). In conclusion, the findings from the present study suggest that PZH can overcome chemo-resistance in cancer cells, likely through increasing miR-22 expression, and by reversing the imbalance between levels of proliferation and apoptosis.
Collapse
Affiliation(s)
- Zhaorong Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Qiaoyan Cai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Fei Qi
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Thomas Joseph Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
42
|
Anti-colon cancer effect of caffeic acid p-nitro-phenethyl ester in vitro and in vivo and detection of its metabolites. Sci Rep 2017; 7:7599. [PMID: 28790461 PMCID: PMC5548715 DOI: 10.1038/s41598-017-07953-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/05/2017] [Indexed: 01/01/2023] Open
Abstract
Caffeic acid phenethyl ester (CAPE), extracted from propolis, was proven to inhibit colon cancer. Caffeic acid p-nitro-phenethyl ester (CAPE-pNO2), a derivative of CAPE, was determined to be an anti-platelet agent and a protector of myocardial ischaemia with more potent effects. In the present study, CAPE-pNO2 showed stronger cytotoxic activity than CAPE. We revealed interactions between CAPE-pNO2 and experimental cells. CAPE-pNO2 induced apoptosis in HT-29 cells by up-regulating P53, cleaved-caspase-3, Bax, P38 and CytoC; CAPE-pNO2 also up-regulated P21Cip1 and P27Kip1 and down-regulated CDK2 and c-Myc to promote cell cycle arrest in G0/G1. In xenograft studies, CAPE-pNO2 remarkably suppressed tumour growth dose dependently and decreased the expression of VEGF (vascular endothelial growth factor) in tumour tissue. Moreover, HE staining showed that no observable toxicity was found in the heart, liver, kidney and spleen. In addition, metabolites of CAPE-pNO2 in HT-29 cells and organs were detected. In conclusion, para-nitro may enhance the anticancer effect of CAPE by inhibiting colon cancer cell viability, inducing apoptosis and cell cycle arrest via the P53 pathway and inhibiting tumour growth and reducing tumour invasion by decreasing the expression of VEGF; additionally, metabolites of CAPE-pNO2 showed differences in cells and organs.
Collapse
|
43
|
Knockout of MARCH2 inhibits the growth of HCT116 colon cancer cells by inducing endoplasmic reticulum stress. Cell Death Dis 2017; 8:e2957. [PMID: 28749466 PMCID: PMC5584615 DOI: 10.1038/cddis.2017.347] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023]
Abstract
Membrane-associated RING-CH protein 2 (MARCH2), a member of the MARCH family, functions in vesicle trafficking and autophagy regulation. In this study, we established MARCH2 knockout HCT116 cell lines using CRISPR/Cas9-mediated genome editing to evaluate the role of MARCH2 in colon cancer in vitro and in vivo. Knockout of MARCH2 suppressed cell proliferation, and promoted autophagy, apoptosis and G2/M phase cell cycle arrest. These effects were associated with activation of endoplasmic reticulum (ER) stress. In addition, loss of MARCH2 sensitized HCT116 cells to the chemotherapy drugs etoposide and cisplatin. Moreover, we analyzed the clinical significance of MARCH2 in human colon carcinoma (n=100). High MARCH2 expression was significantly associated with advanced clinicopathological features and poorer overall survival in colon carcinoma. MARCH2 expression correlated negatively with expression of the unfolded protein response molecule p-PERK in colon cancer. Collectively, these data reveal a relationship between MARCH2, ER stress and colon cancer, and indicates MARCH2 may have an important role in the development and progression of colon cancer.
Collapse
|
44
|
Conde-Muiño R, Cano C, Sánchez-Martín V, Herrera A, Comino A, Medina PP, Palma P, Cuadros M. Preoperative chemoradiotherapy for rectal cancer: the sensitizer role of the association between miR-375 and c-Myc. Oncotarget 2017; 8:82294-82302. [PMID: 29137264 PMCID: PMC5669890 DOI: 10.18632/oncotarget.19393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Administration of chemoradiation before tumor resection has revolutionized the management of locally advanced rectal cancer, but many patients have proven resistant to this preoperative therapy. Our group recently reported a negative correlation between c-Myc gene expression and this resistance. In the present study, integrated analysis of miRNA and mRNA expression profiles was conducted in 45 pre-treatment rectal tumors in order to analyze the expressions of miRNAs and c-Myc and their relationship with clinicopathological factors and patient survival. Twelve miRNAs were found to be differentially expressed by responders and non-responders to the chemoradiation. Functional classification revealed an association between the differentially expressed miRNAs and c-Myc. Quantitative real-time PCR results showed that miRNA-148 and miRNA-375 levels were both significantly lower in responders than in non-responders. Notably, a significant negative correlation was found between miRNA-375 expression and c-Myc expression. According to these findings, miRNA-375 and its targeted c-Myc may be useful as a predictive biomarker of the response to neoadjuvant treatment in patients with locally advanced rectal cancer.
Collapse
Affiliation(s)
- Raquel Conde-Muiño
- Division of Colon & Rectal Surgery, University Hospital Virgen de las Nieves, Granada, Spain
| | - Carlos Cano
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
| | - Victoria Sánchez-Martín
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, Granada, Spain.,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
| | - Antonio Herrera
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of de Granada/Junta de Andalucía, PTS Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Ana Comino
- Division of Colon & Rectal Surgery, University Hospital Virgen de las Nieves, Granada, Spain
| | - Pedro P Medina
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of de Granada/Junta de Andalucía, PTS Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Pablo Palma
- Division of Colon & Rectal Surgery, University Hospital Virgen de las Nieves, Granada, Spain
| | - Marta Cuadros
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, Granada, Spain.,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
| |
Collapse
|
45
|
Role of let-7 family microRNA in breast cancer. Noncoding RNA Res 2016; 1:77-82. [PMID: 30159414 PMCID: PMC6096426 DOI: 10.1016/j.ncrna.2016.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 10/29/2016] [Accepted: 10/29/2016] [Indexed: 02/06/2023] Open
Abstract
Metastasis and resistance to therapy significantly contribute to cancer-related deaths. Growing body of evidence suggest that altered expression of microRNAs (miRNAs) is one of the root cause of adverse clinical outcome. miRNAs such as let-7 are the new fine tuners of signaling cascade and cellular processes which regulates the genes in post-transcriptional manner. In this review, we described the regulation of let-7 expression and the involvement of molecular factors in this process. We discussed the mechanism by which let-7 alter the expression of genes involved in the process of tumorigenesis. Further, we listed the pathways targeted by let-7 to reduce the burden of the tumor. In addition, we described the role of let-7 in breast cancer metastasis and stemness properties. This article will provide the in-depth insight into the biology of let-7 miRNA and its role in the breast cancer progression.
Collapse
|
46
|
Xiao X, Li N, Zhang D, Yang B, Guo H, Li Y. Generation of Induced Pluripotent Stem Cells with Substitutes for Yamanaka's Four Transcription Factors. Cell Reprogram 2016; 18:281-297. [PMID: 27696909 DOI: 10.1089/cell.2016.0020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) share many characteristics with embryonic stem cells, but lack ethical controversy. They provide vast opportunities for disease modeling, pathogenesis understanding, therapeutic drug development, toxicology, organ synthesis, and treatment of degenerative disease. However, this procedure also has many potential challenges, including a slow generation time, low efficiency, partially reprogrammed colonies, as well as somatic coding mutations in the genome. Pioneered by Shinya Yamanaka's team in 2006, iPSCs were first generated by introducing four transcription factors: Oct 4, Sox 2, Klf 4, and c-Myc (OSKM). Of those factors, Klf 4 and c-Myc are oncogenes, which are potentially a tumor risk. Therefore, to avoid problems such as tumorigenesis and low throughput, one of the key strategies has been to use other methods, including members of the same subgroup of transcription factors, activators or inhibitors of signaling pathways, microRNAs, epigenetic modifiers, or even differentiation-associated factors, to functionally replace the reprogramming transcription factors. In this study, we will mainly focus on the advances in the generation of iPSCs with substitutes for OSKM. The identification and combination of novel proteins or chemicals, particularly small molecules, to induce pluripotency will provide useful tools to discover the molecular mechanisms governing reprogramming and ultimately lead to the development of new iPSC-based therapeutics for future clinical applications.
Collapse
Affiliation(s)
- Xiong Xiao
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China .,2 Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Nan Li
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Dapeng Zhang
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Bo Yang
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Hongmei Guo
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Yuemin Li
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| |
Collapse
|
47
|
Tong M, Zheng W, Li H, Li X, Ao L, Shen Y, Liang Q, Li J, Hong G, Yan H, Cai H, Li M, Guan Q, Guo Z. Multi-omics landscapes of colorectal cancer subtypes discriminated by an individualized prognostic signature for 5-fluorouracil-based chemotherapy. Oncogenesis 2016; 5:e242. [PMID: 27429074 PMCID: PMC5399173 DOI: 10.1038/oncsis.2016.51] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/27/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022] Open
Abstract
Until recently, few prognostic signatures for colorectal cancer (CRC) patients receiving 5-fluorouracil (5-FU)-based chemotherapy could be used in clinical practice. Here, using transcriptional profiles for a panel of cancer cell lines and three cohorts of CRC patients, we developed a prognostic signature based on within-sample relative expression orderings (REOs) of six gene pairs for stage II-III CRC patients receiving 5-FU-based chemotherapy. This REO-based signature had the unique advantage of being insensitive to experimental batch effects and free of the impractical data normalization requirement. After stratifying 184 CRC samples with multi-omics data from The Cancer Genome Atlas into two prognostic groups using the REO-based signature, we further revealed that patients with high recurrence risk were characterized by frequent gene copy number aberrations reducing 5-FU efficacy and DNA methylation aberrations inducing distinct transcriptional alternations to confer 5-FU resistance. In contrast, patients with low recurrence risk exhibited deficient mismatch repair and carried frequent gene mutations suppressing cell adhesion. These results reveal the multi-omics landscapes determining prognoses of stage II-III CRC patients receiving 5-FU-based chemotherapy.
Collapse
Affiliation(s)
- M Tong
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - W Zheng
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - H Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - X Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - L Ao
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Y Shen
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Q Liang
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - J Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - G Hong
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - H Yan
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - H Cai
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - M Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Q Guan
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Z Guo
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
48
|
Yahya SMM, Hamed AR, Emara M, Soltan MM, Abd-Ellatef GEF, Abdelnasser SM. Differential effects of c-myc and ABCB1 silencing on reversing drug resistance in HepG2/Dox cells. Tumour Biol 2015; 37:5925-32. [PMID: 26596829 DOI: 10.1007/s13277-015-4426-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) in various kinds of cancers represents a true obstacle which hinders the successes of most of current available chemotherapies. ATP-binding cassette (ABC) trasporter proteins have been shown to contribute to the majority of MDR in various types of malignancies. c-myc has recently been reported to participate, at least partly, in MDR to some types of cancers. This study aimed to test whether c-myc could play a role, solely or with coordination with other ABCs, in the resistance of HepG2 cells to doxorubicin (Dox). MDR has been induced in wild-type HepG2 and has been verified both on gene and protein levels. Various assays including efflux assays as well as siRNA targeting ABCB1 and c-myc have been employed to explore the role of both candidate molecules in MDR in HepG2. Results obtained, with regard to ABCB1 silencing on HepG2/Dox cells, have shown that ABCB1-deficient cells exhibited a significant reduction in ABCC1 expression as compared to ABCB1-sufficient cells. However, these cells did not show a significant reduction in other tested ABCs (ABCC5 and ABCC10) while c-myc silencing had no significant effect on any of the studied ABCs. Moreover, silencing of ABCB1 on HepG2 significantly increased fluorescent calcein retention in HepG2 cells as compared to the control cells while downregulation of c-myc did not have any effect on fluorescent calcein retention. Altogether, this work clearly demonstrates that c-myc has no role in MDR of HepG2 to Dox which has been shown to be ABCB1-mediated in a mechanism which might involve ABCC1.
Collapse
Affiliation(s)
- Shaymaa M M Yahya
- Hormones Department, Meical Division, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.) Dokki, P.O. 12622, Giza, Egypt.
| | - Ahmed R Hamed
- Pharmaceutical Research Group, Center of Excellence for Advanced Sciences and Phytochemistry Department National Research Centre, 33 El Bohouth st. (Former El Tahrir st) Dokki, P.O. 12622, Giza, Egypt
| | - Mohamed Emara
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Ein Helwan, P.O.X: 11795, Cairo, Egypt
| | - Maha M Soltan
- Pharmaceutical Research Group, Center of Excellence for Advanced Sciences and Phytochemistry Department National Research Centre, 33 El Bohouth st. (Former El Tahrir st) Dokki, P.O. 12622, Giza, Egypt
| | - Gamal Eldein F Abd-Ellatef
- Pharmaceutical and Drug Industries Research Division, Therapeutic Chemistry Department, National Research Center, 33 El Bohouth st. (Former El Tahrir st) Dokki, P.O. 12622, Giza, Egypt
| | - Salma M Abdelnasser
- Microbial Biotechnology Department, National Research Center, 33 El Bohouth st. (Former El Tahrir st) Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
49
|
Ween MP, Armstrong MA, Oehler MK, Ricciardelli C. The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol 2015; 96:220-56. [PMID: 26100653 DOI: 10.1016/j.critrevonc.2015.05.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Over 80% of ovarian cancer patients develop chemoresistance which results in a lethal course of the disease. A well-established cause of chemoresistance involves the family of ATP-binding cassette transporters, or ABC transporters that transport a wide range of substrates including metabolic products, nutrients, lipids, and drugs across extra- and intra-cellular membranes. Expressions of various ABC transporters, shown to reduce the intracellular accumulation of chemotherapy drugs, are increased following chemotherapy and impact on ovarian cancer survival. Although clinical trials to date using ABC transporter inhibitors have been disappointing, ABC transporter inhibition remains an attractive potential adjuvant to chemotherapy. A greater understanding of their physiological functions and role in ovarian cancer chemoresistance will be important for the development of more effective targeted therapies. This article will review the role of the ABC transporter family in ovarian cancer progression and chemoresistance as well as the clinical attempts used to date to reverse chemoresistance.
Collapse
Affiliation(s)
- M P Ween
- Lung Research, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide
| | - M A Armstrong
- Data Management and Analysis Centre, University of Adelaide, Australia
| | - M K Oehler
- Gynaecological Oncology Department, Royal Adelaide Hospital, Australia; School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia
| | - C Ricciardelli
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Australia.
| |
Collapse
|